猫眼谐振腔氦氖激光器及其位移传感器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光谐振腔的稳定性问题是影响激光器性能的重要研究课题,传统的谐振腔激光器对腔镜的失调非常敏感。本文研究使用猫眼谐振腔提高氦氖激光器的稳定性,及两种基于猫眼谐振腔氦氖激光器的新型位移传感器。
     本文的实验证明,在半外腔和全外腔结构的氦氖激光器中应用猫眼谐振腔后稳定性得以大幅度提高,其反射镜的最大允许失调角度比普通反射镜分别提高了10倍和60倍,功率漂移显著减小;当保证猫眼逆向器的凸透镜中心位于激光增益管的毛细管轴线上时,可以实现猫眼谐振腔的免调试实验,并以此为基础成功研制了半外腔和全外腔结构的免调试氦氖激光器;调整猫眼逆向器中凸透镜与凹面镜的间距可以改变输出激光的横模状态,从而保证基横模输出。
     对猫眼谐振腔氦氖激光器开展了深入的理论分析,包括用等价共焦腔理论分析了猫眼谐振腔中的高斯光束特性;用几何光学和矩阵光学的方法、并借用失调灵敏度参量的概念分析了猫眼谐振腔的失调特性;分别研究了尺寸误差和离轴误差对谐振腔特性的影响;对谐振腔中插入楔形元件后对谐振腔性能的影响进行研究;用牛顿-柯特斯公式求解衍射积分方程的方法分析了猫眼谐振腔的横模选择现象。各种理论分析与实验结果符合的比较理想。
     “位移自传感激光器系统”是猫眼谐振腔氦氖激光器应用于位移传感领域的成功范例。本文为解决仪器的长期稳定性问题做了诸多改进,使之成为能真正应用于工业领域的较成熟仪器,并将其用途拓展,可用来测量绝对量块厚度和标定电感测微仪的精度和线性度。
     本文提出、设计了“猫眼折叠腔”并以此为基础研制了“猫眼折叠腔——位移自传感激光器系统”。论述了其工作原理、两种结构方案和制作过程;理论分析并用对比实验验证了“猫眼折叠腔”相比普通的猫眼谐振腔更具稳定性;用该仪器进行了实际位移测量,获得了稳定而理想的两正交偏振光的功率调谐曲线;用HP5529A激光干涉仪对该仪器做了标定,证明现有仪器的分辨率为39.55nm,量程为14.4mm,线性度误差为4.2×10-5;对测量结果进行了误差分析,并提出了新电箱的设计方案。
The resonating stability of a laser is always an important research project for laser performance,and the conventional resonator is very sensitive to the swing of its cavity mirrors. This thesis researches the stability of HeNe lasers by employing the cat’s eye resonator, and introduces two novel displacement sensors based on the cat’s eye resonator HeNe laser.
     Experiment results in this thesis prove that: in the half-external and full-external cavity HeNe lasers, cat’s eye cavity can improve laser stability greatly, enhance the maximum misalignment angles of the reflecting mirror up to 10 and 60 times respectively, and lower the power drifts significantly. If the convex lens center of cat’s eye reflector is ensured in the laser bore axis, the adjustment-free performance of the cavity can be realized, founded on which the half-external and full-external cavity adjustment-free HeNe lasers are developed successfully. When the distance between the convex lens and concave mirror is regulated, the laser beam pattern will be modulated, according to which the transverse mode patterns can be selected to assure the fundamental transverse mode operating.
     Theoretic analysis is carried out comprehensively for the cat’s eye resonator HeNe laser, including analyzing the Gauss beam character in the equivalent confocal resonator method; studying the misalignment character respectively in geometric method and matrix optics with misalignment sensitivity parameter; calculating the influences to the resonator introduced by the dimensional and abaxial errors; discussing the case in which a wedge-shaped element is inserted into the laser cavity; researching the transverse mode selection phenomena by solving the two-dimensional diffraction integral equation with Newton-Cotes method. The analysis results match the experiments very well.
     The“Displacement self-sensing laser system”is a successful exemplification applying the cat’s eye resonator HeNe laser into the displacement measuring field. Much significant improvement is carried out to solve its long-term stability problem, and make it a mature apparatus used in industry and metrology realm. Accordingly its application area is widened to be competent for measuring the gage block thickness and calibrating the linearity and accuracy of the inductance displacement sensor.
     An original“cat’s eye folded resonator”is built, based on which another new displacement sensor named“folded resonator--displacement self-sensing laser system”is set up, and its principle, two kinds of structures and fabrication procedure are presented detailedly. Both the theoretic analysis and comprehensive experiments show that the folded cat’s eye resonator has higher stability than the common one. Practical displacement measurements are made, ideal and stable power tuning curves of the two orthogonal polarization lights obtained. Calibration by HP 5529A laser interferometer indicates that the sensor has a high resolution of 39.55nm, a large measurement range up to 14.4mm, and a tiny linearity error of 4.2×10-5. Measurement error is analyzed and the design project of the new circuit is discussed.
引文
[1] A L Schawlow and C H Townes. Infrared and optical masers. Phys. Rev. 1958, 112: 1940-1949
    [2] Boyd G D and Kogelnik H. Generalized confocal resonator theory. Bell Sys. Tech. J. 1962, 41: 1374-1369
    [3] M. Trew, G. J. Crofts, M. J. Damzen, et al. Multiwatt continuous-wave adaptive laser resonator.Opt. Lett. 2000, 25(18): 1346-1348
    [4] J. Banerji, Alan R. Davies, and Richard M. Jenkins. Phased array 1-to-N-way resonator with a convex mirror for phase conjugation. Appl. Opt. 2005, 44 (16): 3364-3369
    [5] R. H. Freeman, R. J. Freiberg, and H. R. Garcia. Adaptive laser resonator. Opt. Lett. 1978, 2(3): 61-63
    [6] Y. Kwon and F. Barnes. Laser Resonator Design with Dual Phase Conjugation Mirrors. Proc. SPIE. 2002, 4629: 152-157
    [7] Yao A Y, Hou W, Li H Q, et al. Reducing Thermal Effect in End-Diode-Pumped Laser Crystal by Using a Novel Resonator. Chin. Phys. Lett. 2005, 22(3): 607-610
    [8] Chen Y, Wu E, Zhang S, et al. A novel ring laser resonator of linear geometry with twin off-axially cut Nd:YVO4. Opt. Commun. 2003, 220(1): 179-186
    [9] Salvador G S , Alan H. P , Swaminathan T S, et al. Novel high-power and coherent semiconductor laser with a shaped unstable resonator. Appl. Phys. Lett. 1995, 66(16): 2048-2050
    [10] O. Svelto and D C Hanna. Principle of Lasers. New York: Plenum Press, 1998. 161~165.
    [11] 吕百达. 激光光学:光束描述、传输变换与光腔技术物理. 北京:高等教育出版社,2003. 461~462
    [12] 卿光弼,王学楷,郭勇,等. “猫眼效应”的物理模型及证明. 激光技术,1995,19(4):244~247
    [13] 郑荣山. 地面“猫眼”目标激光探测距离分析. 光电技术应用,2005,20(4):16~19
    [14] 赵铭军,周彬,胡永钊,等. 数字正交检波技术在主动探测中的应用研究. 激光技术,2006,30(2):212~214
    [15] 蒋治国,谭吉春,梁晶,等. “猫眼”效应用于主动式激光侦察的适用条件分析. 激光技术,2005,29(5):549~551
    [16] 周建民,郭劲,付有余. 激光对远程目标光电探测器的干扰技术分析. 半导体光电,2004,25(4):326~328
    [17] 赵铭军,胡永钊,曾小东. 激光主动侦察作用距离评估. 西安电子科技大学学报(自然科学版),2004,31(1):72~75
    [18] 谷锁林,孙华燕,张永继,等. 空中目标的激光主动探测. 激光与红外,2005,35(7):476~478
    [19] 赵勋杰,高稚允,张英远. 基于“猫眼”效应的激光侦察技术及其在军事上的应用. 光学技术,2003,29(4):415~417
    [20] 马浩洲. 目标反射特性与“猫眼”效应研究. 激光技术,2003,27(6):600~602
    [21] 欧家明,李岩,张书练,等. CER 腔 He-Ne 激光器. 激光与光电子学进展,2000,415(7):27~30
    [22] Lin Y B, Zhang G X, Li Z. An improved cat's-eye retroreflector used in a laser tracking interferometer system. Meas. Sci. Technol. 2003, 14(6): 36-40
    [23] Nakamura O, Goto M, Toyoda K, et al. A laser tracking robot-performance calibration system using ball-seated bearing mechanisms and a spherically shaped cat’s-eye retroreflector Rev. Sci. Instrum. 1994, 65: 1006-1011
    [24] Hughes E B, Wilson A and Peggs G N. Design of a high-accuracy CMM based on multi-lateration techniques CIRP Ann. 2000, 49: 391-394
    [25] Takatsuji T, Goto M, Osawa S, et al. Whole-viewing-angle cat's-eye retroreflector as a target of laser trackers. Meas. Sci. Technol. 1999, 10: 87-90
    [26] 刘欣丽,张国雄,李杏华,等. 激光跟踪测量系统中的光学误差分析. 光学技术,2004,30(2):245~250
    [27] 张国雄,林永兵,李杏华,等. 四路激光跟踪干涉三维坐标测量系统. 光学学报,2003,23(9):1030~1036
    [28] T. Li and P W Smith. Mode selection and mode volume enhancement in a gas laser with internal lens. Proc. IEEE. 1965, 53: 399-400
    [29] Dimakov S A, Kliment’ev S I, Kyprenyuk V I, et al. Low-sensitive to misalignments resonator. Proc. SPIE. 1994, 2257: 187-192
    [30] Dimakov S A, Habich U, Kliment’ev S I, et al. Comparison of Radiation Characteristics of Lasers Equipped with Ordinary Stable Resonator and Resonator with Cat-Eye Type Mirror. Conference on Lasers and Electro-Optics Europe - Technical Digest, 1998, CWI6: 218
    [31] Kossowsky R, Jelinek M, and Novak J. Optical resonators: Science and Engineering. Netherlands: Kluwer Academic Publishers, 1998. 311~326
    [32] Sherstobitov V E, Ageichik A A, Bulaev V D, et al. Phase conjugation in a high-power E-beam sustained CO2 laser. Proc. SPIE. 1991, 1841: 135-145
    [33] Dimakov S A, Kliment'ev S I, Khloponina V. Cavity with a cat’s-eye reflector based on elements of conical optics. J. Opt. Technol. 2002, 69: 536-540
    [34] B Fermigier, G Lucas-Leclin, J Dupont, F, et al. Self-aligned external-cavity semiconductor lasers for high resolution spectroscopy. Opt. Commun. 1998, 153: 73-77
    [35] 万勇,夏惠军,曾钦勇,等. 基于“猫眼效应”的 NdYAG 激光谐振腔. 激光技术,2005,29(2):194~204
    [36] Yang S and Zhang S L. The frequency split phenomenon in a HeNe laser with a rotation quartz crystal plate in its cavity, Opt. Commun. 1988, 68: 55-57
    [37] 张书练,徐亭,李岩,等. 正交线偏振激光原理与应用研究(I):原理和器件. 自然科学进展,2004,14(2):145-154
    [38] 张书练,刘刚,朱钧,等. 正交线偏振激光原理与应用研究(II):现象. 自然科学进展,2004,14(3):273-281
    [39] 张书练,杜文华,李岩,等. 正交线偏振激光原理与应用研究(III):应用. 自然科学进展,2004,14(4):380-389
    [40] Zhang S L, Guo H, Li Kelan, et al. Laser longitudinal mode splitting phenomenon and its applications in laser physics and active metrology sensors, Opt. Laser. Eng. 1995, 23: 1-28
    [41] Han Y M, Zhang S L, Zhang Y, et al. Two kinds of novel birefringence dual- frequency Laser, Opt. Laser. Eng. 1999, 31: 207-212
    [42] Zhang S L, Li K L, Wu M X, et al. The pattern of mode competition between two frequencies produced by mode split technology with tuning of the cavity length, Opt. Commun.1992, 90: 279-282
    [43] Han Y M, Jin Y Y, Li Y, et al. Observation of two frequency differences in a birefringence He-Ne Laser, Opt. Eng. 1999, 38: 549-551
    [44] Zhang S L and He W K. Laser frequency split by rotating an intracavity, tilt cut crystal quartz plate around its surface normal axis, Opt. Commun. 1993, 97: 210-214
    [45] Zhang S L, Jin Y Y, Fu J, et al. Mode suppressing, its elimination and generation of small frequency-difference in birefringence He-Ne lasers, Opt. Eng. 2001, 40: 594-597
    [46] Han Y M, Zhang S L and Li K L. Extra-short He-Ne lasers based on mode splitting, Sci. Chin. (Series E). 1996, 39: 191-195
    [47] Zhang S L, Wu M X and Jin G F. Birefringence tuning double frequency He-Ne laser. Appl. Opt. 1990, 29: 1265-1267
    [48] Zhang S L, Lu M, Wu M X, et al. Laser frequency split by an electron-optical element in its cavity. Opt. Commun. 1993, 96: 245-248
    [49] Jin Y Y, Zhang S L, Li Y, et al. Zeeman birefringence dual frequency lasers. Chin. Phys. Lett. 2001, 18: 533-536
    [50] 肖岩,张书练,韩艳梅,等. 全内腔角块定频差双折射双频激光器及其稳频研究. 中国激光,2001,28(6):509-512
    [51] Xiao Y, Zhang S L, Li Y, et al. Tuning Characteristics of frequency difference for Zeeman-Birefringence He-Ne dual frequency laser, Chin. Phys. Lett. 2003, 20: 230-233
    [52] Zhang S L and Li D S. Using beat frequency lasers to measure micro-displacement and gravity, Appl. Opt. 1998, 27: 20-21
    [53] Zhang S L, Li J, Han Y M, et al. Study of displacement sensing based on laser mode splitting by intercavity quarts crystal wedges of HeNe Lasers, Opt. Eng. 1998, 37: 1801-1803
    [54] Zhang S L and Tang M. Principle for measurement of micrometer and manometer displacement and air refractivity based on laser mode split technology and lasing action. Opt. Eng. 1994, 30: 3381-3386
    [55] Li Y, Zhang S L and Han Y M. Displacement sensing HeNe laser with λ/8 accuracy and self-calibration. Opt. Eng. 2000, 39: 3039-3043
    [56] 郭辉. LD 泵浦 Nd:YAG 激光器压力测量研究:[硕士学位论文]. 北京:清华大学精密仪器与机械学系,2000
    [57] 黄春宁. LD 泵浦 Nd:YAG 频率分裂激光器及其应用研究:[硕士学位论文]. 北京:清华大学精密仪器与机械学系,2002
    [58] Zhang S L, Li K L, Ren M, et al. Investigation of high-resolution angel sensing with laser mode split technology. Appl. Opt. 1995, 34: 1967-1970
    [59] Zhang Y, Deng Z B, Li Y, et al. Approach for Vibration Measurement Based on Laser Frequency Splitting Technology. Meas. Sci. Technol. 2000, 11: 1552-1556
    [60] Zhang Y, Zhang S L, Han Y M, et al. Method for the measurement of retardation of wave plates based on laser frequency-splitting technology. Opt. Eng. 2001, 40: 1071-1075
    [61] 张毅. 基于激光频率分裂的波片相位延迟测量原理和技术研究:[博士学位论文]. 北京:清华大学精密仪器与机械学系,2001
    [62] 宗晓斌,朱钧,李岩,等. 基于激光频率分裂的波片位相差测量方法. 激光技术,2003,27(4):293-295
    [63] Liu G, Zhang S L, Zhu J, et al. A laser with a Quartz Crystal Plate in External Cavity With Optical Feedback. Appl. Opt. 2003, 42: 6636~6639
    [64] Liu G, Zhang S L, Zhu J, et al. Theoretical and experimental study of intensity branch phenomena in self-mixing interference in a He-Ne laser, Opt. Commun. 2003, 221: 387-393
    [65] Liu G, Zhang S L, Zhu J, et al. Optical feedback laser with a quartz crystal plate in the external cavity, Appl. Opt. 2003, 42: 6636-6639
    [66] Liu G and Zhang S L. A 450MHz frequency difference dual frequency laser with optical feedback, Opt. Commun. 2004, 231: 349-369
    [67] Liu G, Zhang S L and Zhang H Y. Self-mixing Interference in Zeeman-Birefringence Dual Frequency Laser, Opt. Commun. 2004, 241: 159-166
    [68] Liu G, Zhang S L, Li Y, et al. Optical feedback characteristics in a dual frequency laser during laser cavity tuning, Chin. Phys. 2005, 14: 1984~1989
    [69] Ding Y C Zhang S L, Li Y, et al. Displacement sensors based on feedback effect of orthogonally polarized lights of frequency-split HeNe lasers. Opt. Eng. 2003, 42: 2225-2228
    [70] 杜文华. 位移自传感激光器系统的仪器化研究:[博士学位论文]. 北京:清华大学精密仪器与机械学系,2005
    [71] L R Izquierdo, J L Bufton, and P Hayes. Optical system design and integration of the Mars Observer Laser Altimeter. Appl. Opt. 1994, 33: 307~322
    [72] 程勇, 陈波, 王小兵,等. LD 抽运免调试谐振腔被动调 Q 的固体激光器. 中国激光,2003,30(11):973~976
    [73] 程勇,毛少卿,王志怀,等. 免调试固体激光器的研究. 激光技术,1999,23(2):68~70
    [74] 周炳琨,高以智,陈倜嵘,等. 激光原理. 北京:国防工业出版社,2000. 24~25
    [75] 李士杰,张书练. 应用激光基础. 北京:浙江大学出版社,1994. 49~51
    [76] 崔铁基,多丽萍,周大正,等. 高能超音速氧碘化学激光光束质量的测量. 强激光与粒子束,1997,9(1):13~16
    [77] W T Silfvast. Laser fundamentals. Cambridge: Cambridge University Press, 1996. 335~337
    [78] 张光寅,郭曙光. 光学谐振腔的图解分析与设计方法. 北京:国防工业出国社,2003. 39-40
    [79] W H Du, Y Li, S L Zhang, , et al. Using a cat’s eye cavity to improve displacement self-sensing laser. Sensors and Actuators A. 2005, 122: 76-82
    [80] R Hauck, H P Kortz and H Weber. Misalignment sensitivity of optical resonators. Appl. Opt. 1980, 19: 598-601
    [81] 吕百达. 激光光学:光束描述、传输变换与光腔技术物理. 北京:高等教育出版社,2003. 467~469
    [82] 李俊昌. 激光的衍射及热作用计算. 北京:科学出版社,2002. 204~220
    [83] 郭继华,神帅,蒋建华,等. 双折射双频激光器偏振特性的分析. 光学学报,1996,16(1):32~36
    [84] 张书练,王玉堂. 激光频率分裂技术现状和展望. 光电子激光,1997,8(2):1~5
    [85] 宋峰,丁欣,张潮波,等. LD 抽运 Nd:YVO4 平行平面腔激光器中的激光输出功率凹陷. 中国激光,2001,28(11):974~976
    [86] N R Belashenkov, V B Karasev, V V Nazarov, et al. Effect of the phase response of a graded-reflectivity output mirror on the characteristics of laser modes in a plane-parallel resonator. J. Opt. Technol. 2000, 67: 20-22
    [87] 张栋,吕百达. 多棒平行平面腔动态工作特性的研究. 激光技术,2004,28(1):65~67
    [88] 周涛. 内置透镜平平腔自调 Q 激光器的特性研究. 激光与红外,2005,35(7):496~499
    [89] 魏在福,王润文,王之江. 90°束转动环形非稳腔模场数值计算. 光学学报,1995,15(6):696~702
    [90] 陈钟鸣. 直角棱镜复合谐振腔. 合肥工业大学学报(自然科学版). 1999,22(2):55~60
    [91] 周国生. 矩形激光介稳共振腔的衍射理论结果. 山西大学学报(自然科学版). 1980,4:19~23
    [92] 王宁,陆雨田,孔勇. 用快速傅里叶变换法分析超高斯反射镜腔的光场分布. 中国激光,2004,31(11):1317~1322
    [93] 陆俭,王二玉,丁良恩. 啁啾脉冲放大系统中空间滤波器小孔尺寸的设计. 光学学报, 2006,26(1):71~76
    [94] 凌东雄,任恩扬. 高斯反射平凹二维腔横模选择特性的有限阶矩阵分析. 激光杂志, 1999,120(41):67~69
    [95] 项党,金振洪,李英. F-P 有源微片激光腔横模场分析. 光子学报, 1996,25(12):1131~1134
    [96] 卢亚雄,余学才,张晓霞. 激光物理. 北京:北京邮电大学出版社,2005. 32~35
    [97] 张书练. 激光器纳米测尺原理. 中国工程科学,2005,7(3):27~34
    [98] 李岩,傅杰,张书练,等. He-Ne 激光器功率调谐位移传感激光器. 激光技术,2000, 24(6):337~340
    [99] W H Du, S L Zhang, Y Li. Principles and realization of a novel instrument for high performance displacement measurement—nanometer laser ruler. Opt. Laser. Eng. 2005, 43: 1214-1225
    [100] 刘静华. 双折射双频激光器技术研究:[硕士学位论文]. 北京:清华大学精密仪器与机械学系,2003
    [101] 谈宜东,张书练,刘静华. 折叠腔 He-Ne 激光器中角锥棱镜直角误差分析. 红外与激光工程,2006,35(3):345~350

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700