DBD等离子体降解活性炭吸附的有机物及活性炭再生研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性炭(AC)吸附与介质阻挡放电(DBD)等离子体技术分别作为传统与新兴水处理技术,一直受到各国学者的关注。随着人们对这两种技术的深入研究发现:AC吸附只是将污染物质从一相转移到另一相,本质上并没有达到彻底去除污染物的目的,且AC需要再生,而目前的AC再生方法又存在许多不足;DBD等离子体技术虽然能够有效的降解水体中的有机污染物,但是存在能耗高的问题,从而限制了其工业化的应用。针对两种技术存在的问题,扩展DBD等离子体技术在废水处理中的广泛应用,本论文将AC吸附与DBD等离子体技术相结合,用于水中难降解有机污染物的去除,同时实现了两个过程:一是DBD等离子体对AC上吸附的有机物的降解;二是DBD等离子体对AC的再生。主要开展的工作及研究结果如下:
     1.设计了一种AC填充DBD等离子体反应器。通过对影响反应器放电特性的因素(如介质材料、介质厚度、电极间距以及AC等)的考察和优化,获得较佳的反应器结构参数。考察了DBD等离子体对新AC的形貌、微晶结构和吸附能力的影响,结果表明:DBD等离子体对AC表面具有刻蚀作用,但不会显著影响AC的微晶结构,不同载气下产生的等离子体对AC吸附性能的影响是不同的。
     2.研究了DBD等离子体对吸附在AC上五氯酚(PCP)的降解作用,考察了放电电压、电源频率、载气种类和AC处理量等参数对AC上PCP降解效果的影响。结果表明:增加放电电压和电源频率可以提高PCP的降解率;O2作为载气的处理效果好于N2和空气作为载气的处理效果;气体流量和AC的处理量存在着一个最优值;增加AC的含水率,有利于AC上PCP的降解。在考察AC上PCP降解规律的同时,对DBD等离子体再生AC的可行性进行了研究,结果显示:DBD等离子体可以用于“废AC”的再生,并且具有较高的再生效率。
     3.采用热重(TG)、能量色散X射线光谱(EDX)、X射线光电能谱(XPS)傅立叶变换红外光谱(FT-IR)、气相色谱-质谱联用(GC/MS)等分析了DBD等离子体对AC上PCP的降解产物,并探讨了降解途径,从而推断其降解机理为DBD产生的高能电子和·OH、O3等活性物种使PCP脱氯脱羟基,生成氯代酚(如TetraCP、TriCP、DiCP等)和氯代苯(如四氯苯、三氯苯等)等中间产物,并在·OH、O3等活性物种的进一步作用下使苯环开环最终降解成酸、醛或酮等小分子的有机物以及H2O和CO2等。
     4.考察了AC吸附/DBD等离子体再生循环次数对吸附偶氮染料酸性橙Ⅱ(A07)AC再生的影响。通过测定不同吸附/再生循环后AC对AO7的吸附量和吸附速率分析此方法的再生效率,结果显示:DBD等离子体可以有效地恢复AC的吸附能力,经过多次连续吸附/再生循环后,AC仍保持较高的吸附性能。通过分析DBD等离子体再生对活性炭表面物理和化学特性及对AO7吸附能力的影响发现:AC孔隙结构和表面化学含氧官能团的变化以及AC上的残留物导致了该方法的再生效率随着再生次数的增加而下降。能耗分析显示:DBD等离子体再生AC技术是一种经济可行的再生工艺,具有广泛的工业化应用前景。
As traditional and emerging water treatment methods, respectively, activated carbon (AC) adsorption and dielectric barrier discharge (DBD) plasma technologies attract the extensive attention of scholars from different countries. Further studies on these two technologies find that AC adsorption simply transfers pollutants from one phase to another phase and does not remove the pollutants in essence, and the spent AC also needs to be regenerated for reuse. However, current AC regeneration methods exist many disadvantages. Although DBD plasma can degrade pollutants in wastewater effectively, high energy consumption limits its industrial applications. To solve these problems, and extend industrial applications of DBD plasma technology in wastewater treatment, an integrated AC adsorption and DBD plasma process is adopted for the treatment of refractory organic pollutants in this paper. Two procedures simultaneously are achieved:One is that the pollutants adsorbed on AC are degraded; the other is that AC is regenerated by DBD plasma. The following works are carried out and main results are summarized as follows:
     1. An AC packed DBD reactor for the pollutants treatment is designed. Through investigating the controlling factors (such as dielectric materials, dielectric thickness, gas gap between two electrodes and AC) that effect discharge characteristics of reactor, the optimal structure parameters of reactor are obtained. The effects of DBD plasma on morphology, microcrystalline structure and N2 adsorption capacity of virgin AC are also investigated in this optimal reactor. The result shows that plasma has etching behavior to AC surface, but has no significant effect to crystal structure of AC. N2 adsorption capacity of AC after plasma treatment under various gas atmospheres is different.
     2. By investigating the effects of condition factors (such as discharge voltage, power frequency, gas kinds and gas flow rate) on degradation efficiency, the decomposition of pentachlorophenol (PCP) on AC by DBD plasma is studied. The results indicate that with increasing of discharge and power frequency degradation efficiency of PCP on AC increases. The treatment effect of O2 as the carrier gas is better than that of N2 and air as carrier gas. While gas flow rate and treatment amount of AC has an optimal value, respectively. The higher is water content of AC, the better is degradation efficiency of PCP. In the investigation of PCP degradation process, AC regeneration feasibility by DBD plasma is also studied. The results indicate that DBD plasma can be used for the regeneration of AC, and can achieve high regeneration efficiency.
     3. Identification of intermediates is accomplished by some analysis tools, such as thermal gravimetric (TG), energy-dispersive X-ray spectrometer (EDX), Fourier transform-infrared spectroscopy (FT-IR) and gas chromatography/mass selective (GC/MS), and the degradation mechanism of PCP is speculated. The PCP is dechlorinated and dehydroxylated to chlorinated phenols (such as TetraCP, TriCP, DiCP) and chlorinated benzene (such as 4-chlorophenyl, 3-chlorobenzene) by DBD generated high energy electrons and active species at first, and then the dechlorinated or dehydroxylated products are further degraded into organic small molecules (such as acid, aldehyde or ketone), H2O and CO2 by·OH and O3.
     4. Another investigation is performed for the regeneration of AC exhausted with acid orange II (AO7). The efficiency of this procedure is analyzed by determining the rate and amount of AO7 adsorbed in successive adsorption/DBD plasma regeneration cycles. Although the regeneration efficiency decreases with the adsorption/regeneration cycle numbers increases, the adsorption rate and capacity of AC can maintain relatively high levels. Effects of this regeneration on the structural properties,.surface chemistry and the AO7 adsorption capacities of AC samples are examined. It is found that the decreases of AC adsorption capacity are resulted from the change of pore size distribution and surface chemistry, and residue on AC. Energy consumption analysis indicates that AC regeneration by DBD plasma is a viable regeneration technology, and has extensive industry application prospects.
引文
[1]http://zls.mep.gov.cn/hjtj/qghjtjgb/200909/t20090928_161740.htm.
    [2]冀滨弘,章非娟.难降解有机污染物的处理技术.重庆环境科学,1998,20(5):36-40.
    [3]吴贤格.臭氧活性炭—高级氧化组合技术处理水中有机污染物的研究[D].广州:中国科学院研究院,2006.
    [4]薛军.辐射分解处理氯酚类有机污染物的研究[D].北京:清华大学,2007.
    [5]王建龙.生物固定化技术与水污染控制[M].北京:科学出版社,2002.
    [6]刘雅巍,张春青,池勇志.处理难生物降解有机物的厌氧颗粒污泥形成的技术进展[J].天津城市建设学院学报,2004,10(4):263-265.
    [7]王爱平,刘中华.活性炭水处理技术及在中国的应用前景[J].昆明理工大学学报,2002,27(6):48-51.
    [8]戴芳天.活性炭在环境保护方面的应用[J].东北林业大学学报,2003,31(2):48-49.
    [9]曹玉登.煤制活性炭及污染治理[M].北京:中国环境科学出版社,1995.
    [10]于洪斌,丁蕴铮.活性炭在水处理中的应用方法研究与进展[J].工业水处理,2003, 23(8):12-16.
    [11]黄律先.木材热解工艺学(第二版)[M].北京:中国林业出版社,1996.
    [12]Sabio E, Gonzalez E, Gonzalez J F, et al. Thermal regeneration of activated carbon saturated with p-nitrophenol[J]. Carbon,2004,42(11):2285-2293.
    [13]Maroto-Valer M M, Dranca I, Clifford D, et al. Thermal regeneration of activated carbons saturated with ortho-and meta-chlorophenols[J]. Thermochimica Acta,2006,444(2):148-156.
    [14]Morenocastilla C, Riverautrilla J, Joly J P, et al. Thermal regeneration of an activated carbon exhausted with different substituted phenols[J]. Carbon,1995,33(10):1417-1423.
    [15]Dewalle F B, Chian E. Biological regeneration of powdered activated carbon added to activated-sludge units[J]. Water Research,1977,11(5):439-446.
    [16]Shende R V, Mahajani V V. Wet oxidative regeneration of activated carbon loaded with reactive dye[J]. Waste Management,2002,22(1):73-83.
    [17]Martin R J, Ng W J. Chemical regeneration of exhausted activated carbon-I[J]. Water Research,1984, 18(1):59-73.
    [18]Martin R J, Ng W J. Chemical regeneration of exhausted activated carbon-II[J]. Water Research,1985, 19(12):1527-1535.
    [19]Newcombe G, Drikas M. Chemical regeneration of granular activated carbon from an operating water-treatment plant[J]. Water Research,1993,27(1):161-165.
    [20]Zhou M H, Lei L C. Electrochemical regeneration of activated carbon loaded with p-nitrophenol in a fluidized electrochemical reactor[J]. Electrochimica Acta,2006,51(21):4489-4496.
    [21]Narbaitz R M, Cen J Q. Electrochemical regeneration of granular activated carbon[J]. Water Research, 1994,28(8):1771-1778.
    [22]Wang L Z, Balasubramanian N. Electrochemical regeneration.of granular activated carbon saturated with organic compounds[J]. Chemical Engineering Journal,2009,155(3):763-768.
    [23]Weng C H, Hsu M C. Regeneration of granular activated carbon by an electrochemical process[J]. Separation and Purification Technology,2008,64(2):227-236.
    [24]San Miguel G, Lambert S D, Graham N. The regeneration of field-spent granular-activated carbons[J]. Water Research,2001,35(11):2740-2748.
    [25]蓝淑澄.活性炭水处理技术[M].北京:中国环境科学出版社,1992.
    [26]陈岳松,陈玲,赵建夫.湿式氧化再生活性炭研究进展[J].上海环境科学,1998,17(9):5-7.
    [27]陈玲,熊飞,张颖,等.非均相催化湿式氧化法再生活性炭实验[J].环境科学,2003,24(4):150-153.
    [28]李光明,王华,陈玲,等.多相催化湿式氧化法再生活性炭反应条件[J].同济大学学报(自然科学版),2004,32(5):636-643.
    [29]张会平,傅志鸿,叶李艺,等.活性炭的电化学再生机理[J].化工科技,2000,8(1):1-4.
    [30]Tao Y, Wu C Y, Mazyck D W. Removal of methanol from pulp and paper mills using combined activated carbon adsorption and photocatalytic regeneration[J]. Chemosphere,2006,65(1):35-42.
    [31]炭素材料学会编[日].高尚愚,陈维,译.活性炭基础与应用[M].北京:中国林业出版社,1984.
    [32]Liu X T, Quan X, Bo L L, et al. Simultaneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by microwave irradiation[J]. Carbon,2004,42(2):415-422.
    [33]Chihara K, Oomori K, Oono T, et al. Supercritical CO2 regeneration of activated carbon loaded with organic adsorbates[J]. Water Science and Technology,1997,35(7):261-268.
    [34]Tan C S, Liou D C. Supercritical regeneration of activated carbon loaded with benzene and toluene[J]. Industrial & Engineering Chemistry Research,1989,28(8):1222-1226.
    [35]王三反.超声波再生活性炭的初步研究[J].中国给水排水,1998,14(2):24-26.
    [36]雷乐成,汪大翚.水处理高级氧化技术[M].北京:化学工业出版社,2001.
    [37]Huang C P, Dong C, Tang Z. Advanced chemical oxidation:its present role and potential future in hazardous waste treatmerit[J]. Waste Mangement,1993,13(5-7):361-377.
    [38]郑展望.非均相UV/Fenton处理难降解有机废水研究[D].杭州:浙江大学,2004.
    [39]Rivas F J, Beltran F J, Frades J, et al. Oxidation of p-droxybenzoix acid by Fenton's reagent[J]. Water Researeh,2001,35(2):387-396.
    [40]Safarzadeh-Amiri A, Bolton J R, Cater S R. The use of iron in advaneed oxidation proeesses[J]. Journal of Advanced Oxidation Technologies,1996,1(1):18-26.
    [41]Zhang X, Chen P Y, Wu F, et al. Degradation of 17a-ethinylestradiol in aqueous solution by ozonation[J]. Journal of Hazardous Materials,2006,133(1-3):291-298.
    [42]Muruganandham M, Swaminathan M. Photochemical oxidation of reactive azo dye with UV-H2O2 process[J]. Dyes and Pigments,2004,62(3):269-275.
    [43]Shu H Y, Huang C R. Degradation of commercial azo dyes in water using ozonation and UV enhanced ozonation process[J]. Chemosphere,1995,31(8):3813-3825.
    [44]Rathi A, Rajor H K, Sharma R K. Photodegradation of direct yellow-12 using UV/H2O2/Fe2+[J]. Journal of Hazardous Materials,2003,102(2-3):231-241.
    [45]Zalazar C S, Labas M D, Brandi R J, et al. Dichloroacetic acid degradation employing hydrogen peroxide and UV radiation[J]. Chembsphere,2007,66(5):808-815.
    [46]Irmak S, Erbatur O, Akgerman A. Degradation of 17β-estradiol and bisphenol A in aqueous medium by using ozone and ozone/UV techniques[J]. Journal of Hazardous Materials,2005,126(1-3):54-62.
    [47]Mokrini A, Ousse D, Esplugas S. Oxidation of aromatic compounds with UV radiation/ozone/hydrogen peroxide[J]. Water Science and Technolog,1997,35(4):95-102.
    [48]El-Morsi T M, Emara M M, Abd El Bary H M H, et al. Homogeneous degradation of 1,2,9, 10-tetrachlorodecane in aqueous solutions using hydrogen peroxide, iron and UV light[J]. Chemosphere,2002,47(3):343-348.
    [49]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,238(7):37-38.
    [50]劳志雄,陈陨贤.水处理催化湿式氧化技术的研究进展[J].能源及环境,2008,11:20-21.
    [51]路长青,张果金,杨文忠.电化学氧化处理废水中有机污染物技术进展[J].南京化工大学学报,1996,18(12):117-121.
    [52]赵化侨.等离子体化学与工艺[M].合肥:中国科学技术大学出版社,1993.
    [53]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996.
    [54]等离子体物理学科发展战略研究课题组.核聚变与低温等离子体[M].北京:科学出版社,2004.
    [55]江南.我国低温等离子体研究进展(Ⅰ)[J].物理,2006,35(2):130-139.
    [56]江南.我国低温等离子体研究进展(Ⅱ)[J].物理,2006,35(3):230-237.
    [57]张远涛.大气压介质阻挡放电时空演化行为理论研究[D].大连:大连理工大学,2006.
    [58]张若兵.双向窄脉冲放电染料废水脱色技术研究[D].大连:大连理工大学,2005.
    [59]张仁熙,侯健,侯惠奇.等离子体技术在环境保护中的应用(上)[J].上海化工,2000,20:4-5.
    [60]张仁熙,侯健,侯惠奇.等离子体技术在环境保护中的应用(下)[J].上海化工,2000,21:4-5.
    [61]朱元右.等离子体技术在废水处理中的应用[J].工业水处理,2004,9(11):13-16.
    [62]Locke B R, Sato M, Sunka P, et al. Electrohydraulic discharge and nonthermal plasma for water treatment[J]. Industrial & Engineering Chemistry Research,2006,45(3):882-905.
    [63]李劲,王泽文,高秋华,等.放电等离子体水处理技术中的放电问题[J].高电压技术,1997,23(2):7-12.
    [64]李胜利,李劲,王泽文,等.用高压脉冲放电等离子体处理印染废水的研究[J].中国环境科学,1996,16(1):73-76.
    [65]Abdelmalek F, Gharbi S, Benstaali B, et al. Plasmachemical degradation of azo dyes by humid air plasma:Yellow Supranol 4 GL, Scarlet Red Nylsan F3 GL and industrial waste[J]. Water Research, 2004,38(9):2338-2346.
    [66]Abdelmalek F, Ghezzar M R, Belhadj M, et al. Bleaching and degradation of textile dyes by non-thermal plasma process at atmospheric pressure[J]. Industrial & Engineering Chemistry Research, 2006,45(1):23-29.
    [67]Hu Q H, Wang L M, Huang X H. Textile processing wastewater treatment by high voltage discharge[J]. Journal of Tsinghua University (Science and Technology),2002,42(9):1148-1150.
    [68]Wang H J, Li J, Quan X. Decoloration of azo dye by a multi-needle-to-plate high-voltage pulsed corona discharge system in water[J]. Journal of Electrostatics,2006,64(6):416-421.
    [69]叶其政,万辉,雷燕.放电等离子体水处理中的若干问题[J].高电压技术,2003,29(4):32-34.
    [70]Sengupta S K, Singh 0 P. Contact glow discharge electrolysis:a study of its chemical yields in aqueous inert-type electrolytes[J]. Journal of Electroanalytical Chemistry,1994,369(1-2):113-120.
    [71]Tezuka M, Iwasaki M. Liquid-phase reactions induced by gaseous plasma:Decomposition of benzoic acids in aqueous solution[J]. Plasmas & Ions,1999,2(1):23-26.
    [72]Kokufuta E, Shibasaki T, Nakamura I, et al. Degradation of polyethyleneglycol in a localized reaction zone during glow discharge electrolysis[J]. Journal of the Chemical Society-Chemical Communications,1985,2:100-102.
    [73]Tezuka M, Iwasaki M. Plasma induced degradation of chlorophenols in an aqueous solution[J]. Thin Solid Films,1998,316(1-2):123-127.
    [74]Tezuka M, Iwasaki M. Liquid-phase reactions induced by gaseous plasma decomposition of benzoic acids in aqueous solution[J]. Plasmas & Ions,1999,2(1):23-26.
    [75]Gao J Z, Liu Y J, Y W, et al. Oxidative degradation of phenol in aqueous induced by plasma from a direct glow discharge[J]. Plasma Sources Science & Technology,2003,12(4):533-537.
    [76]Gao J Z, Pu L M, Yang W, et al. Oxidative degradation of nitrophenols in aqueous solution induced by plasma with submersed glow discharge electrolysis[J]. Plasma Processes and Polymers,2004,1(2): 171-176.
    [77]Gao J Z, Gai K, Lu Q F, et al. Plasma induced degradation of aniline in aqueous solution[J]. Plasma Science & Technology,2002,4(2):1243-1251.
    [78]Gao J Z, Hu Z A, Wang X Y, Degradation of a-naphthol by plasma in aqueous solution[J]. Plasma Science & Technology,2001,3(1):641-646.
    [79]Lu Q F, Yu J, Gao J Z, et al. Glow discharge induced hydroxyl radical degradation of 2-naphthylamine[J]. Plasma Science & Technology,2005,7(3):2856-2859.
    [80]Gao J Z, Yu J, Lu Q F, et al. Plasma degradation of 1-naphthylamine by glow discharge electrolysis[J]. Pakistan Journal of Biological Sciences,2004,7(10):1715-1720.
    [81]Gao J Z, Wang X Y, Hu Z A. Plasma degradation of dyes in water with contact glow discharge eletrolysis[J]. Water research,2003,37(2):267-272.
    [82]高锦章,俞洁,李岩,等.辉光放电等离子体技术处理印染废水的研究[J].环境化学,2005,24(2):183-185.
    [83]Gao J Z, Hu Z A, Wang X Y, et al. Oxidative degradation of acridine oranne induced by plasma with contact glow discharge electrolysis[J]. Thin Solid Films,2001,390(1-2):154-158.
    [84]Brisset J L, Moussa D, Doubla A, et al. Chemical reactivity of discharges and temporal post-discharges in plasma treatment of aqueous media:examples of gliding discharge treated solutions[J]. Industrial & Engineering Chemistry Research,2008,47(16):5761-5781.
    [85]Burlica R, Kirkpatrick M J, Locke B R. Formation of reactive species in gliding arc discharges with liquid water[J]. Journal of Electrostatics,2006,64(1):35-43.
    [86]Porter D, Poplin M D, Holzer F, et al. Formation of hydrogen peroxide, hydrogen, and oxygen in gliding arc electrical discharge reactors with water spray[C].42nd IAS Annual Meeting, Industry Applications Conference, Tallahassee:IEEE Industry Applications Society,2007,1119-1123.
    [87]杜长明.滑动弧放电等离子体降解气相及液相中的有机污染物的研究[D].杭州:浙江大学,2006.
    [88]Yan J H, Du C M, Li X D, et al. Degradation of phenol in aqueous solutions by gas-liquid gliding arc discharges[J]. Plasma Chemistry and Plasma processing,2006,26(1):31-40.
    [89]杜长明,严建华,李晓东,等.气液两相滑动弧等离子降解4-氯酚溶液的研究[J].中国电机工程学报,2006,26(13):89-93.
    [90]李晓东,杜长明,严建华,等.气液两相滑动弧等离子降解高浓度有机废水的研究[J].工程热物理学报(赠刊),2006,27(2):237-239.
    [91]孙晓丹,严建华,李晓东,等.气液两相流滑动弧放电循环降解高浓度苯酚废水的实验研究[J].能源工程,2006,1(1):32-35.
    [92]孙晓丹.滑动弧等离子体降解模拟有机废水的初步研究[D].浙江:浙江大学,2006.
    [93]Radu B, Michael J K, Wright C F, et al. Organic dye removal from aqueous solution by glid arc discharges[J]. Journal of Electrostatics,2004,62(4):309-321.
    [94]Moussa D, Brisset J L, Hnatiuc E, et al. Plasma-chemical destruction of trilaurylamine issued from nuclear laboratories of reprocessing plants[J]. Industrial and Engineering Chemistry Research,2006, 45(1):30-33.
    [95]Moussa D, Brisset J L. Disposal of spent tributylphosphate by gliding arc plasma[J]. Journal of Hazardous Materious B,2003,102(2-3):189-200.
    [96]Ghezzar M R, Abdelmalek F, Belhadj M, et al. Gliding arc plasma assisted photocatalytic degradation of anthraquinonic acid green 25 in solution with TiO2. Applied Cataiysis B:Environmental,2007, 72(3-4):304-313.
    [97]Kheira M K, Fatiha Abdelmalek, Amine Khelifa, et al. TiO2 assisted degradation of a pemuorinated surfactant in aqueous solutions treated by gliding arc discharge[J]. Separation and Purification Technology,2006,50(11):373-379.
    [98]Wangner H E, Brandenburg R. Kozlov K V, et al. The barrier discharge:basic properties and applications to surface treatment[J]. Vacuum,2003,71(3):417-436.
    [99]Venugopalan M, Jones R A. Chemistry of dissociated water vapor and related systems[J]. Chemical Reviews,1966,66(2):133-160.
    [100]赵斌.板式介质阻挡放电氢氧合成过氧化氢的研究[D].大连:大连理工大学,2009.
    [101]Kogelschatz U, Eliasson B, Egli W. From ozone generators to flat television screens:history and future potential of dielectric-barrier discharges [J]. Pure and Applied Chemistry,1999,71(10): 1819-1828.
    [102]Eliasson B, Kogelschatz U. Modeling and applications of silent discharge. plasmas[J]. IEEE Transactions on Plasma Science,1991,19(2):309-323.
    [103]Kogelschatz U. Silent discharges and their applications[C]. Proceedings of the tenth international conference on gas discharges and their applications. Swansea:University College Swansea, UK, 1992.
    [104]Chang J S. Recent development of plasma pollution control technology: a critical review[J]. Science and Technology of Advance materials,2001,2(3-4):571-576.
    [105]Evans D, Rosocha L A, Anderson G K, et al. Plasma remediation of trichloroethylene in silent discharge plasmas[J]. Journal of Applied Physics,1993,74(9):5378-5386.
    [106]Chang M B, Lee C C. Destruction of formaldethyde with dielectric barrier discharge plasmas[J]. Environmental Science & Technology,1995,29(1):181-186.
    [107]Chang C L, Lin T S. Decomposition of toluene and acetone in packed dielectric barrier discharge reactors[J]. Plasma Chemistry and Plasma Processing,2005,25(3):227-243.
    [108]Yamamoto K, Kawamura K, Yukimura K, et al. Oxygen effect of high concentration NO removal using an intermittent DBD[J]. Vacuum,2004,73(3-4):583-588.
    [109]Sun W M, Pashaie B, Dhali S K, et al. Non-thermal plasma remediation of SO2/NO using a dielectric barrier discharge[J]. Journal of Applied Physics,1996,79(7):3438-3444.
    [110]侯健,潘循皙,赵太杰,等.常压非平衡态等离子体降解挥发性烃类污染物[J].中国环境科学,1999,19(3):277-280.
    [111]蒋洁敏,侯健,郑光云等.介质阻挡放电常压分解苯、二甲苯[J].中国环境科学,2001,21(6):531-534.
    [112]Lee H M, Chang M B. Removal of gaseous acetaldehyde via a silent discharge reactor packed with Al2O3 beads[J]. Journal of Advance Oxidation Technologies.2003,6(1):48-54.
    [113]Lu B, Zhang X, Yu X, et al. Catalytic oxidation of benzene using DBD corona discharges[J]. Journal of Hazardous Materials,2006,137(1):633-637.
    [114]Yao S, Fushimi C, Madokoro K, et al. Uneven dielectric barrier discharge reactors for diesel particulate matter removal[J]. Plasma Chemistry and Plasma Processing,2006,26(5):481-493.
    [115]Pei M X, Lin H, Shangguan W F. et al. Simultaneous catalytic removal of NOx and diesel PM over La0.9K0.1CoO3 catalyst assisted by plasma[J]. Journal of Environmental Sciences-China,2005,17(2): 220-223.
    [116]黄齐飞.介质阻挡放电技术去除柴油机NOx、HC和PM排放物[J].质量技术监督研究,2009,3:27-31.
    [117]Young S M, Jin-Oh J. Degradation of organic contaminant by using dielectric barrier discharge reactor immersed in wastewater[J]. IEEE Transactions on Plasma Science,2006,34(6):2624-2629.
    [118]黄兴华,王黎明,关志成,等.脉冲电压处理染料废水[J].高电压技术,2002,38(6):10-15.
    [119]Zhang R B, Zhang C, Cheng X X, et al. Kinetics of decolorization of azo dye by bipolar pulsed barrier discharge in a three-phase discharge plasma reactor[J]. Journal of Hazardous Materials,2007, 142(1-2):105-110.
    [120]靳承铀.介质阻挡放电反应器在水处理中的实验研究[D].大连:大连理工大学,2003.
    [121]Feng J W, Zheng Z, Luan J F, et al. Gas-liquid hybrid discharge-induced degradation of diuron in aqueous solution[J]. Journal of Hazardous Materials,2009,164(2-3):838-846.
    [122]Li J, Song L, Liu Q, et al. Degradation of organic compounds by active species sprayed in a dielectric barrier corona discharge system[J]. Plasma Science and Technology,2009,11(2):211-215.
    [123]宋玲.气相介质阻挡放电活性粒子喷射降解水中有机污染物的研究[D].大连:大连理工大学2008.
    [124]吴向阳,仰榴青,储金宇,等.DBD等离子体处理废液技术[J].化工环保,2002,22(2):111-114.
    [125]陈伯通,罗建中,刘芳.DBD等离子体氧化法及其在有机废水中的应用[J].工业水处理,2006,26(5):45-48.
    [126]Mok Y S, Jo J O, Lee H J, et al. Application of dielectric barrier discharge reactor immersed in wastewater to the oxidative degradation of organic contaminant[J]. Plasma Chemistry and Plasma Processing,2007,27(1):51-64.
    [127]Mok Y S, Jo J O, Whitehead J C. Degradation of an azo dye Orange Ⅱ using a gas phase dielectric barrier discharge reactor submerged in water[J]. Chemical Engineering Journal,2008,142(1): 56-64.
    [128]Xue J, Chen L, Wang H L. Degradation mechanism of Alizarin red in hybrid gas-liquid phase dielectric barrier discharge plasmas:experimental and theoretical examination[J]. Chemical Engineering Journal,2008,138(10):120-127.
    [129]胡又平,罗志娟.不同电极结构介质阻挡放电的放电特性研究[J].武汉科技大学学报,2008,31(4):421-423.
    [130]王辉,孙岩洲,方志,等.不同电极结构下介质阻挡放电的特性研究[J].高压电器,2006,42(1):25-27.
    [131]许金豹,李成榕,詹花茂,等.大气中电极结构对介质阻挡放电的影响[J].高压电器,2008,44(2):132-134.
    [132]李雪辰,贾鹏英,刘志辉,等.介质阻挡放电丝模式和均匀模式转化的特性[J].物理学报,2008,57(2):1001-1007.
    [133]黄玉水,胡凌燕.一种实用的测量臭氧发生器负载参数的方法[J].南昌水专学报,2003, 22:24-26.
    [134]杨宽辉,王保伟,许根慧.介质阻挡放电等离子体特性及其在化工中的应用[J].北工学报,2007,158(17):1609-1616.
    [135]Eliasson B, Kogelschatz U. Nonequilibrium volume plasma chemical processing[J]. IEEE Transactions on Plasma Science,1991,19(6):1063-1077.
    [136]张芝涛,鲜于泽,白敏冬,等.强电离放电研究[J].东北大学学报(自然科学版),2002,23(5):507-510.
    [137]蔡忆昔,刘志楠.介质阻挡放电特性及其影响因素[J].江苏大学学报,2005,26(6):476-479.
    [138]白希尧,张芝涛.高气压强电离放电等离子体学科的形成及应用展望[J].自然杂志,2000,22(3):156-160.
    [139]单国彬,张冠东,田青,等.磁性活性炭的制备与表征[J].过程工程学报,2004,42(2):141-145.
    [140]Jung M W, Ahn K H, Lee Y, et al. Adsorption characteristics of phenol and chlorophenols on granular activated carbons (GAC)[J]. Microchemical Journal,2001,70(2):123-131.
    [141]Jibril B Y, Al-Maamari R S, Hegde G, et al. Effects of feedstock pre-drying on carbonization of KOH-mixed bituminous coal in preparation of activated carbon[J]. Journal of Analytical and Applied Pyrolysis,2007,80(2):277-282.
    [142]Zhu Z L, Li A M, Yan L, et al. Preparation and characterization of highly mesoporous spherical activated carbons from divinylbenzene-derived polymer by ZnCl2 activation[J]. Journal of Colloid and Interface Science,2007,316(2):628-634.
    [143]Sing K S W. The use of physisorption for the characterization of microporous carbons[J]. Carbon, 1989,27(1):5-11.
    [144]Liang W J, Li J, Li J, et al. Abatement of toluene from gas streams via ferro-electric packed bed dielectric barrier discharge plasma[J]. Journal of Hazardous Materials,2009,170(2-3):633-638.
    [145]Xia L Y, Huang L, Shu X H, et al. Removal of ammonia from gas streams with dielectric barrier discharge plasmas[J]. Journal of Hazardous Materials,2008,152(1):113-119.
    [146]Wang Z H, Xu D X, Chen Y, et al. Plasma decoloration of dye using dielectric barrier discharges with earthed spraying water electrodes[J]. Journal of Electrostatics,2008,66(9-10):476-481.
    [147]Feng J W, Zheng Z, Sun Y B, et al. Degradation of diuron in aqueous solution by dielectric barrier discharge[J]. Journal of Hazardous Materials,2008,154(1-3):1081-1089.
    [148]Yamagata Y, Niho K, Inoue K, et al. Decomposition of volatile organic compounds at low concentrations using combination of densification by zeolite adsorption and dielectric barrier discharge[J]. Japanese Journal of Applied Physics,2006,45:8251-8254.
    [149]Lee D, Hong S H, Paek K H, et al. Adsorbability enhancement of activated carbon by dielectric barrier discharge plasma treatment[J]. Surface and Coatings Technology,2005,200(7):2277-2282.
    [150]Satoshi K, Hiroaki H, Hidetoshi S, et al. Surface modification of adsorbents by dielectric barrier discharge[J]. Thin Solid Films,2002,407(1-2):151-155.
    [151]Abdul H M, Campbell W R. Pentachlorophenol adsorption and desorption characteristics of granular activated carbon.1. Isotherms[J]. Water Research,1996,30(12):2901-2906.
    [152]Gregg S J, Sing K S W. Adsorption, surface area, and porosity[M]. London:Academic Press,1982.
    [153]Boehm H P. Surface oxides on carbon and their analysis:a critical assessment J]. Carbon,2002, 40(2):145-149.
    [154]Derylo-Marczewska A, Swiatkowski A, Buczek B, et al. Adsorption equilibria in the systems: Aqueous solutions of organics—oxidized activated carbon samples obtained from different parts of granules[J]. Fuel,2006,85(3):410-417.
    [155]Terzyk A P, Wisniewski M, Gauden P A, et al. Carbon surface chemical composition in para-nitrophenol adsorption determined under real oxic and anoxic conditions[J]. Journal of Colloid and Interface Science,2008,320(1):40-51.
    [156]Sun B, Sato M, Clements J S. Optical study of active species produced by a pulsed streamer corona discharge in water[J]. Journal of Electrostatics,1997,39 (3):189-202.
    [157]唐晓亮,邱高,王良,等.常压介质阻挡放电等离子体发射光谱的检测分析[J].光散射学报,2006,18(2):156-159.
    [158]Debal F, Wautelet M, Bretagne J, et al. Spatiallu-resolved spectroscopic optical emission of dcmagnetron sputtering discharges in argon-nitrogen gas mixtures[J]. Plasma Sources Science Technology,2000,9(2):152-160.
    [159]Lei L C, Gu L, Zhang X W, et al. Catalytic oxidation of highly concentrated real industrial wastewater by integrated ozone and activated carbon[J]. Applied Catalysis A:General,2007,327(2): 287-294.
    [160]Terzyk A P, Rychlicki G. The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro:The temperature dependence of adsorption at the neutral pH[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2000,163(2-3): 135-150.
    [161]Terzyk A P. The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro:Part II. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2001,177(1):23-45.
    [162]Pereira M F R, Soares S F, Orfao J J M, et al. Adsorption of dyes on activated carbons:influence of surface chemical groups[J]. Carbon,2003,41(4):811-821.
    [163]Franz M, Arafat H A, Pinto N G. Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon[J]. Carbon,2000,38(13):1807-1819.
    [164]IPCS (International Programme on Chemical Safety). Health and Safety Guide No.19[DB/OL]. 2008-06-20. http://www.inchem.org/documents/hsg/hsg/hsg019.htm.
    [165]Yuwono A H, Zhang Y, Wang J, et al. Diblock copolymer templated nanohybrid thin films of highly ordered TiO2 nanoparticle arrays in PMMA matrix[J]. Chemistry of Materials,2006,18(25): 5876-5889.
    [166]Beamson G, Clark D T, Law DSL. Electrical conductivity during XPS of heated PMMA:detection of core line and valence band tacticity effects[J]. Surface and Interface Analysis,1999,27(2):76-86.
    [167]Zhu Y J, Olson N, Beebe T P. Surface chemical characterization of 2.5 μm particulates (PM2.5) from air pollution in salt lake city using TOF-SIMS, XPS, and FTIR[J]. Environmental Science & Technology,2001,35(15):3113-3121.
    [168]Que W, Zhou Y, Lam Y L, et al. Preparation and characterizations of SiO2/TiO2/γ-glycidoxypropyltr-imethoxysilane compositematerials for optical wave guides[J]. Applied Physics B,2001,73(2): 171-176.
    [169]Wagner C D, Riggs W M, Davis L E, et al. Handbook of X-ray Photoelectron Spectroscopy[M]. Eden Prairie, MN:Perkin-Elmer Corporation,1978.
    [170]Yang W P, Costa D, Marcus P. Resistance to pitting and chemical composition of passive films of a Fe-17%Cr alloy in chloride-containing acid solution[J]. Journal of the Electrochemical Society,1994, 141(10):2669-2676.
    [171]Gardner S D, Singamsetty C S K, Booth G L, et al. Surface characterization of carbon fibers using angle-resolved XPS and ISS[J]. Carbon, 995,33(5):587-595.
    [172]Biniak S, Szymanski G, Siedlewski J, et al. The characterization of activated carbons with oxygen and nitrogen surface groups[J]. Carbon,1997,35(12):1799-1810.
    [173]Moulder J F, Stickle W F, Sobol P E, et al. Handbook of X-ray Photoelectron Spectroscopy[M].2nd ed., in:J. Chastain (Ed.), Eden Prairie, MN:Perkin-Elmer Corporation, Physical Electronics Division, 1992.
    [174]Ismail H M, Cadenhead D A, Zaki M I. Surface reactivity of iron oxide pigmentary powders toward atmospheric components:XPS and gravimetry of oxygen and water vapor adsorption[J]. Journal of Colloid and Interface Science,1996,183(2):320-328.
    [175]Burg P, Fydrych P, Cagniant D, et al. The characterization of nitrogen-enriched activated carbons by IR, XPS and LSER methods[J]. Carbon,2002,40(9):1521-1531.
    [176]Karanfil T, Kilduff J. Role of granular activated carbon surface chemistry on the adsorption of organic compounds.1. Priority pollutants[J]. Environmental Science & Technology,1999,33(18): 3217-3224.
    [177]Kaneko Y, Abe M, Ogino K. Adsorption characteristics of organic compounds dissolved in water on surface-improved activated carbon fibers[J]. Colloids and Surfaces,1989,37:211-222.
    [178]Pendleton P, Wong S H, Shumann R, et al. Properties of activated carbon controlling 2-methylisoborneol adsorption[J]. Carbon,1997,35(8):1141-1149.
    [179]Samaranayake W J M, Miyahara Y, Namihira T, et al. Pulsed streamer discharge characteristics of ozone produetion in dry air[J].IEEE Transactions on Dielectrics and Electrical Insulation,2000,7(2): 254-260.
    [180]Staeholin J, Hoigne J. Decomposition of ozone in water:rate of initiation by hydroxide ions and hydrogen peroxide[J]. Environmental Science & Technology,1982,16(10):676-681.
    [181]Tomiyasu H, Fukutomi H, Gordon G. Kinetics and mechanisms of ozone decomposition in basic aqueous solutions[J]. Inorganic Chemistry,1985,24(19):2964-2985.
    [182]Nemes A, Fabian I, Gordon G. Experimental aspects of mechanistic studies on aqueous ozone decomposition in alkaline solution[J]. Ozone Science and Engineering,2000,22(3):287-304.
    [183]Wang H J, Li J, Quan X, et al. Enhanced generation of oxidative species and phenol degradation in a discharge plasma system coupled with TiO2 photocatalysis[J]. Applied Catalysis B:Environmental, 2008,83(1-2):72-77.
    [184]Sanchez-Polo M, Rivera-Utrilla J. Effect of the ozone-carbon reaction on the catalytic activity of activated carbon during the degradation of 1,3,6-naphthalenetrisulphonic acid with ozone[J]. Carbon, 2003,41(2):303-307.
    [185]Beltran F J, Garcia-Araya J F, Giraldez I. Gallic acid water ozonation using activated carbon[J]. Applied Catalysis B:Environmental,2006,63(3-4):249-259.
    [186]Alvarez P M, Garcia-Araya J F, Beltran F J, et al. The influence of various factors on aqueous ozone decomposition by granular activated carbons and the development of a mechanistic approach[J]. Carbon,2006,44(14):3102-3112.
    [187]Paola P, Pierre P, Chantal G. Phototransformations of solid pentachlorophenol[J]. Journal of Photochemistry and Photobiology A:Chemical,1998,119(2):137-142.
    [188]Zielke U, Huttinger K, Hoffman W. Surface-oxidized carbon fibers:Ⅰ. Surface structure and chemistry[J]. Carbon,1996,34(8):983-988.
    [189]Alvarez P M, Garcia-Araya J F, Beltran F J, et al. Ozonation of activated carbons:effect on the adsorption of selected phenolic compounds from aqueous solutions[J]. Journal of Colloid and Interface Science,2005,283(2):503-512.
    [190]Fanning P, Vannice M. A DRIFTS study of the formation of surface groups on carbon by oxidation[J]. Carbon,1993,31(5):721-730.
    [191]Mangun C L, Benak K R, Economy J, et al. Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia[J]. Carbon,2001,39(12):1809-1820.
    [192]Moreno-Castilla C, Lopez-Ramon M, Carrasco-Marin F. Changes in surface chemistry of activated carbons by wet oxidation[J]. Carbon,2000,38(4):1995-2001.
    [193]Guo Y P, Rockstraw D A. Physical and chemical properties of carbons synthesized from xylan, cellulose, and Kraft lignin by H3PO4 activation[J]. Carbon,2006,44(8):1464-1475.
    [194]Andreozzi R, Marotta R. Ozonation of p-chlorophenol in aqueous solution[J]. Journal of Hazardous materials,1999,69(3):303-317.
    [195]Weavers L K, Malmstadt N, Hoffmann M R. Kinetics and mechanism of pentachlorophenol degradation by sonication, ozonation, and sonolytic ozonation[J]. Environmental Science & Technology,2000,34(7):1280-1285.
    [196]刘华丽.印染废水的生物处理技术[J].环境科学与技术,1996,72(1):42.
    [197]刘作华.微波促进含铬矿物催化氧化甲基橙的研究[D].重庆:重庆大学,2005.
    [198]Jain A K, Gupta V K, Bhatnagar A, et al. Utilization of industrial waste products as adsorbents for the removal of dyes[J]. Journal of Hazardous Materials,2003,101(1):31-42.
    [199]Yurii M M, Moshe S. Catalytic regeneration of chloroorganics-saturated activated carbon using hydrodechlorination[J]. Industry & Engineering Chemistry Research,2000,39(1):18-23.
    [200]Salvador F, Sanchez J C. A new method for regenerating activated carbon by thermal desorption with liquid water under subcritical conditions[J]. Carbon,1996,34(4):511-516.
    [201]ASTM. Annual Book of ASTM Standards, Standard test method for pH of activated carbon[M]. Philadelphia PA, D3838-80,1996.
    [202]Salvador F, Sanchez J C. Effect of regeneration treatment with liquid water at high pressure and temperature on the characteristics of three commercial activated carbons[J]. Carbon,1999,37(4): 577-583.
    [203]Walker G M, Weatherley L R. Adsorption of dyes from aqueous solution-the effect of adsorbent pore size distribution and dye aggregation[J]. Chemical Engineering Journal,2001,83(3):201-206.
    [204]Sabio E, Gonzalez-Martin M L, Ramiro A, et al. Influence of the regeneration temperature on the phenols adsorption on activated carbon[J]. Journal of Colloid and Interface Science,2001,242(1): 31-35.
    [205]Alvarez P M, Beltrana F J, Gomez-Serranob V, et al. Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol[J]. Water Research,2004,38(8): 2155-2165.
    [206]罗麟,王占生.臭氧对活性炭吸附性能及其再生的试验研究[J].中国给水排水,1987,1:29-32.
    [207]Lahaye J. The chemistry of carbon surfaces[J]. Fuel,1998,77(6):543-547.
    [208]Radovic L R, Silva I F, Ume J I, et al. An experimental and theoretical study of the adsorption of aromatics possessing electron-withdrawing and electron-donating functional groups by chemically modified activated carbons[J]. Carbon,1997,35(9):1339-1348.
    [209]范延臻,王宝贞.活性炭表面化学[J].煤炭转化,2000,23(4):26-30.
    [210]Kienle H, Bader E.活性炭及其工业应用[M].魏同成译.北京:中国环境科学出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700