非平衡等离子体助燃低热值气体燃料的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国节能减排政策的实施,国家对钢铁行业的能耗提出了具体的目标。如何实现低热值气体燃料的高效利用将成为钢铁企业节能减排的关键。低热值气体燃料在燃烧过程中遇到的主要问题是:热值较低使得燃料点火困难,燃烧稳定性较差,容易发生熄火现象。非平衡等离子体助燃技术具有解决低热值气体燃料点火困难以及燃烧不稳定问题的潜力。非平衡等离子体助燃技术是在工作气体(燃料、氧化剂或者可燃混合气)中进行放电,利用产生的非平衡等离子体的化学活性提高燃料的点火性能及燃烧特性的技术。
     本文的研究目的是利用放电产生的非平衡等离子体改善低热值气体燃料的燃烧特性以提高其点火可靠性和燃烧稳定性。本文首先设计了一种适用于助燃低热值气体燃料的等离子体发生装置,研究了该装置的放电特性和规律,分析了放电过程中各种活性基团的种类、产生过程及其相互之间的反应机理。随后利用该装置产生的等离子体对低热值气体燃料进行助燃,研究了低热值气体燃料的点火性能、熄火极限、火焰传播速度、燃烧效率、火焰形态等重要参数在等离子体助燃的影响下的变化规律。而后采用数值模拟的方法进一步深入研究了等离子体对于低热值气体燃料的点火过程和燃烧过程产生的影响,分析其影响机理。在对等离子体助燃进行实验研究和数值模拟的基础上,作者对等离子体助燃的机理进行初步的归纳和总结。最后本文把等离子体助燃技术与目前燃气轮机中普遍采用的旋流扩散燃烧技术相结合,设计了一种能够助燃旋流火焰的等离子体发生装置,研究了旋流火焰在等离子体助燃下的燃烧特性,为等离子体助燃技术向工程实用方向发展打下了基础。
     本文的研究中得到的主要结论包括:
     1、通过介质阻挡放电的方式能够产生大体积、高密度、富含活性粒子的非平衡等离子体;
     2、在非平衡等离子体的助燃下,低热值气体燃料的燃烧特性得到了显著的改善,主要体现在:点火可靠性增强、熄火极限拓宽、火焰传播速度增大、火焰根部的燃烧更加稳定、火焰中心区域的温度更高;
     3、非平衡等离子体助燃的机理可以归纳为温升效应和化学效应;
     4、在等离子体旋流器的作用下,火焰的旋流强度增大,燃料和空气的掺混更加充分,燃烧稳定性和燃烧效率都得到提升。
As the implementation of the policy of "energy saving and emission reduction" by the government, the steel industry need to find a more efficient way of using of low-BTU gas fuels. Low-BTU gas fuel is difficult to be ignited, and the flame is extremely unstable, and easily blown off. Non-equilibrium plasma assisted combustion technology might be a potential way to achieve reliable ignition and flame stabilization. Non-equilibrium plasma is generated by an electrical discharge through working gas (fuel, oxidant, or combustible mixture). The production of atoms, ions, and active radicals can significantly promote the process of chemical reactions.
     This paper mainly focuses on reliable ignition and flame stabilization of low-BTU gas fuels through the use of non-equilibrium plasma generated by an electrical discharge. First, an electrical discharge is designed to generate plasma. We learn the characteristics of the discharge, and analyze the production of active species in the discharge field. Then, we use the plasma generated by the discharge assisted the combustion process of low-BTU fuels. The changes of ignition ability, blow-off limits, flame speed, combustion efficiency and flame structure are observed. In order to analyze the influence of plasma deeply, we establish the numerical model of plasma assisted combustion process. Based on results of experiments and numerical simulation, mechanisms of plasma assisted combustion are ascertained. Finally, a plasma swirler is designed and the experiments are carried out to verify the feasibility of using plasma swirler to control diffusion flame.
     Main conclusions in this paper are below:
     1. Dielectric barrier discharge (DBD) can generate large volume, high concentration non-equilibrium plasma at atmosphere pressure.
     2. With the support of DBD plasma, the combustion characteristics of low BTU-fuels are improved a lot, including:more reliable ignition, wider blow-off limits, increased flame speed, and higher flame temperature.
     3. Mechanisms of plasma assisted combustion are ascertained to be results of raise of temperature and acceleration of chemical reactions.
     4. The plasma swirler can enhance combustion stability through ionizing the air to produce active free radical and promoting the swirling air.
引文
[1]焦树建.燃气轮机燃烧室(修订本).北京:机械工业出版社,1990.
    [2]2008年中国高炉煤气发电项目投资决策咨询报告.
    [3]娄马宝,“低热值气体燃料(包括高炉煤气)的利用”,燃气轮机技术,2000年9月,第13卷,第3期.
    [4]夏胜国,何俊佳.非平衡等离子体燃烧强化[J].高电压技术,2007,33(10):109-113.
    [5]任兆杏,丁振峰.低温等离子体技术,自然杂志,18卷4期.
    [6]周少任,张煜盛,内燃机脉冲电晕放电点火研究现状与发展方向,车用发动机,2006年10月,第5期.
    [7]W.T. Brande, Phil. Trans. Roy. Soc.104 (1814) 51.
    [8]J. Lawton and F. Weinberg, Electrical Aspects of Combustion, Clarendon Press, Oxford, 1969.
    [9]H.F. Calcote, C.H. Berman, ASME Fossil Fuels Combustion Symposium PD,25,1989, 25-31.
    [10]C.H. Berman, R.J. Grill, ASME Fossil Combs. Symposium,3rd Energy-Sources Technology Conference,1991
    [11]D. Bradley, S.H. Nasser, Combust. Flame,55,1984,53-58.
    [12]靳宝林,郑永成,航空发动机等离子流点火技术探讨,航空发动机,2002年第4期.
    [13]Igor Matveev and Svetlana Matveeva, "Non-Equilibrium Plasma Igniters and Pilots for Aerospace Application", AIAA conference, AIAA 2005-1191.
    [14]冀光,张文平,穆勇,燃气轮机等离子点火系统实验研究,燃气轮机技术,2006年6月,第19卷第2期.
    [15]白希尧,白敏冬,非平衡等离子体化学研究进展,中国基础科学科学前沿.
    [16]Naveen Chintala, "Measurements of combustion efficiency in non-equilibrium RF plasma-ignited flows",2004, Non-equilibrium Thermodynamics Laboratories, Department of Mechanical Engineering.
    [17]Bryan McEldowney, Rodney Meyer, Naveen Chintala, "Ignition of Premixed Hydrocarbon-Air Flows Using a Non-equilibrium RF discharge, AIAA 2003-3478.
    [18]Ainan Bao, Guofeng Lou, Munetake Nishihara, "On the Mechanism of Ignition of Premixed CO-Air and Hydrocarbon-Air Flows by Nonequilibrium RF Plasma", AIAA 2005-1197.
    [19]F. Wang, C. Jiang, A. Kuthi, M. A. Gundersen, C. Brophy, J. O. Sinibaldi, "Transient Plasma Ignition of Hydrocarbon-Air Mixtures in Pulse Detonation Engines",42nd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Hilton.2004. AIAA Paper AIAA 2004-0834.
    [20]F. Wang, A. Kuthi, "Technology for Transient Plasma Ignition", AIAA 2005-0951.
    [21]Jianbang Liu, Fei Wang, Long C. Lee, Paul D. Ronney, Martin A. Gundersen, "Effect Of Fuel Type On Flame Ignition By Transient Plasma Discharges",42nd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Hilton.2004. AIAA Paper AIAA-2004-0837.
    [22]Jianbang Liu, Fei Wang, Long C. Lee, "Effect Of Discharge Energy and Cavity Geometry on Flame Ignition by Transient Plasma",42nd Aerospace Sciences Meeting.
    [23]Bellenoue M, Labuda S, Ruttun B, et al. Spark plug and corona abilities to ignite lean methane/air mixtures[EB].2006-10-26.
    [24]W. Kim, M.G. Mungal and M.A. Cappelli, "Flame stabilization using a plasma discharge in a lifted jet flame",43rd AIAA Aerospace Sciences Meeting and Exhibit 10-13 January 2005, Reno, Nevada. AIAA 2005-0931.
    [25]A.Yu.Starikovskii, "Plasma Supported Combustion",30th International Symposium on Combustion Paper.
    [26]V.P. Zhukov, A.Yu.Starikovskii, "Deflagration-to-Detonation Control by Non-Equilibrium Gas Discharges and Its Applications for Pulsed Detonation Engine", AIAA 2005-1196.
    [27]I.N.Kosarev, N.B.Anikin, "Ignition of Homological Series of Hydrocarbons by Volume Nanosecond Discharge", MIC 2005, Minsk,12-17 Nov,2005.
    [28]Mintoussov EI, Nikipelov A A, Starikovaia S M, "Mechanisms of nanosecond barrier discharge influence on flame propagation", XVI International Conference on Gas Discharges and their Applications, Xi'an China,2006.
    [29]Mintoussov EI, Nikipelov A A, "Fast Flame Control by Nanosecond Barrier Discharge", Moscow Institute of Physics and Technology, Russia.
    [30]Chiranjeev S Kalra, Igor Matveev, Alexander Gutsol, Alexander Fridman, "Transient Gliding Arc for Fuel Ignition and Combustion Control",2004, AIAA conference.
    [31]Igor Matveev, Serhiy Serbin, "Experimental and Numerical Definition of the Reverse Vortex Combustor Parameters", AIAA 2006-551.
    [32]张会强,郑殿峰,一种低温等离子体非热点火稳焰装置,专利公开号:CN101158321A.
    [33]樊有德,煤粉燃料采用低温等离子体点火及稳定燃烧,锅炉技术,1995年1月.
    [34]李辉,郭文康,电弧等离子体煤粉燃烧器的研究,核技术,2004年8月,第27卷,第8期.
    [35]张孝勇,王雨蓬,等离子体点燃煤粉的热物理分析,中国电力,2005年12月,第38卷第12期.
    [36]韩立忠,曾喜,等离子点火系统在燃气轮机上的应用,热能动力工程,2003年7月,第18卷,第4期.
    [37]李志华,刘顺隆,郑洪涛,电弧等离子体点火器湍流燃烧流场传热与流动数值模拟,汽轮机技术,2006年6月,第48卷,第3期.
    [38]Klimov A., Bityurin V., "External and Internal Plasma-Assisted Combustion", AIAA 2004-1014.
    [39]Klimov A., Bityurin V., "Non-Premixed Plasma-Assisted Combustion in High-Speed Airflow", AIAA 2005-599.
    [40]Timothy Ombrello, Alexander Gutsol, "Enhancement of Combustion and Flame Stabilization Using Stabilized Non-Equilibrium Plasma", AIAA 2005-1194.
    [41]Timothy Ombrello, Shailesh Gangoli, "Non-Equilibrium Plasma Discharge-Characterization and Effect on Ignition", AIAA 2006-1214.
    [42]Sy. Stange, Yongho Kim, Vincent Ferreri, et al. Flame images indicating combustion enhancement by dielectric barrier discharges [J]. IEEE Trans on Plasma Science,2005, 33 (2):3162317.
    [43]Evgeny I., Svetlana E., "Plasma-Chemical Processes in Plasma-Assisted Combustion", AIAA 2007-1354.
    [44]I.N. Kosarev, S.V. Kindusheva, "Kinetics in Gas Mixtures for Problem of Plasma Assisted Ignition", AIAA 2007-1386.
    [45]蔡忆昔,刘志楠,介质阻挡放电特性及其影响因素,江苏大学学报,2005年11月,第26卷,第6期.
    [46]王艳辉,王德真,大气压下多脉冲均匀介质阻挡放电的研究,物理学报,2005年3月,第54卷,第3期.
    [47]邵建设,严萍,袁伟群,大气压空气中同轴介质阻挡放电微放电特性,高电压技术,2006年10月,第32卷,第10期.
    [48]Charles Cathey, Jeremy Cain, "Transient Plasma Induced Production of OH and its Effects on Ignition in Atmospheric CH4-Air Quiescent Mixtures", AIAA 2008-997-678.
    [49]廖敏夫,段雄英,李劲,同轴电极脉冲电晕放电形态的研究,电工技术学报,2002年8月,第17卷第4期.
    [50]左莉,侯立安,介质阻挡放电与脉冲电晕放电净化气态污染物的试验研究,洁净 与空调技术,2003年第3期.
    [51]何正浩,李劲,纳秒脉冲电晕放电的衰减及电晕线电阻率对其的影响,高压电器,2003年10月,第39卷,第5期.
    [52]周少任,张煜盛,内燃机脉冲电晕放电点火研究现状与发展方向,车用发动机,2006年10月,第5期.
    [53]Timothy Ombrello, Alexander Gutsol, "Combustion Enhancement via Stabilized Piecewise Non-equilibrium Gliding Arc Plasma Discharge", AIAA Journal, Jan.2006, Vol.44, No.1.
    [54]Timothy Ombrello, Shailesh Gangoli, "Ignition Enhancement Using Magnetic Gliding Arc", AIAA 2007-1025.
    [55]Alexander Fridman, Alexander Gutsol, "Characteristics of Gliding Arc and Its Application in Combustion Enhancement", Journal of Propulsion and Power, Nov. 2008, Vol.23, No.6.
    [56]杨驰,林烈,吴彬,滑动弧非平衡等离子体研究,核聚变与等离子体物理,2006年3月,第26卷,第1期.
    [57]张路路,杜长明,谭中兴,熊亚,滑动弧放电等离子体在废水处理领域的研究,环境工程,2009年第27卷增刊.
    [58]倪明江,余量,李晓东,大气压直流滑动弧等离子体工作特性研究,物理学报,2011年,第60卷,第1期.
    [59]刘峰,脉冲电晕放电与直流辉光放电中OH自由基等活性物种的光谱诊断,大连理工大学,博士论文.
    [60]谢维杰,光谱解析低温等离子体中O2、N2、CO2的活性中间体及其环境化学行为,上海交通大学,博十论文.
    [61]Moore, C.E., Selected Table of Atomic Spectra.1976, Washington, D.C.:Office of Standard Reference Data.
    [62]Cernogora, G., "Population of N2 metastable states in a pure nitrogen glow discharge", Journal of Physics B:Atomic and Molecular Physics,1981.14(16).
    [63]Gudmundsson, J.T., E.G. Thorsteinsson, Oxygen discharges diluted with argon: Dissociation processes", Plasma Sources Science and Technology,2007,16(2).
    [64]Kenner, R.D., E.A. Ogryzlo, "Rate constant for the deactivation of O2 (A) by N2", Chemical Physics Letters,1983,103(3).
    [65]Cosby, P.C., "Electron-impact dissociation of oxygen", The Journal of Chemical Physics,1993,98(12).
    [66]Krishnakumar, E., S.K. Srivastava, "Cross-sections for electron impact ionization of 02", International Journal of Mass Spectrometry and Ion Processes,1992,113(1).
    [67]Zatsarinny, O., S.S. Tayal, "Low-energy electron collisions with atomic oxygen", Journal of Physics B:Atomic, Molecular and Optical Physics,2001,34(7).
    [68]Brandenburg, R., "Diffuse barrier discharges in nitrogen with small admixtures of oxygen", J.Phys, D:Apply Physics,2005,38(13).
    [69]Lofthus, A, P.H. Krupenie, "The spectrum of molecular nitrogen", J Phys Chem Ref Data,1977,6(1).
    [70]Clark, W.G., D.W. Setser, "Energy transfer reactions of N2(A) quenching by hydrogen halides and other molecules", Journal of Physical Chemistry,1980,84(18).
    [71]Piper, L.G., "State-to state N2(A) energy-pooling reactions", The Journal of Chemical Physics,1988,88(1).
    [72]Partridge, H., "Theoretical study of the A5 and C5 states of N2", The Journal of Chemical Physcis,1988,88(5).
    [73]S.P. Bruhl, "A study by emission spectroscopy of the active species in pulsed DC discharges", J.Phys, D:Apply Physics,1997,30(21).
    [74]Iannuzi, M.P., J.B. Jeffries, "Product Channels of the N2(A)+O2 interaction", Chemical Physics Letters,1982,87(6).
    [75]Piper, L.G., "The excitation of O(1S) in the reaction between N2(A) and O(3P)", The Journal of Chemical Physcis,1982,77(5).
    [76]Ronaid K.H, Jerry M.S, Phillip H.P, "Planar Laser-Fluorescence Imaging of Combustion Gases", Applied Physics B,1990, Vol.50.
    [77]Quang-viet N, Phillip H.P, "The time evolution of a vortex-flame interaction observed via planar imaging of CH and OH",26th Symposium International on combustion/The Combustion Institute,1996.
    [78]Mark J.D, David R.C, "Two-dimensional imaging of OH laser-induced fluorescence in a flame", Optics Letters,1982, Vol.7(8).
    [79]Sehefer R.W., "Hydrogen enrichment for improved lean flame stability", International Journal of Hydrogen Energy,2003, Vol.28.
    [80]Su L.K., Sun O.S., Mungal M.G., "Experimental investigation of stabilization mechanisms in turbulent lifted jet diffusion flames", combustion and Flame,2006, Vol.144(1-2).
    [81]Timothy Ombrello, Sang Hee Won, Lifted Flame Speed Enhancement by Plasma Excitation of Oxygen, AIAA-2009-689.
    [82]A.Bao, "Ignition of Ethylene-Air and Methane-Air Flows by Low-Temperature Repetitively Pulsed Nanosecond Discharge Plasma", IEEE Transactions on Plasma Science, Vol.35, No.6,2007.
    [83]G. Lou, A.Bao, "Ignition of Premixed Hydrocarbon-Air Flows by Repetitively Pulsed Nanosecond Duration Plasma", Proceedings of the Combustion Institute, Vol.31, No.2, 2007.
    [84]B.F. Mayers and E.R.Bartle, "Reaction and Ignition Delay Times in Oxidation of Propane", AIAA Journal, V.7, No10.
    [85]E.Schultz, J.Sheperd, "Validation of Detailed Reaction Mechanism for Detonation Simulation", Explosion Dynamics Laboratory Report FM99-5, California Institute of Technology, Pasadena, CA, February 8,2000.
    [86]M.V. Petrova and F.A. Williams, "A Small Detailed Chemical-Kinetic Mechanism for Hydrocarbon Combustion", Combustion and Flame, Volume 144, Issue 3, Feb.2006.
    [87]http://www.me.berkeley.edu/gri_mech/version30/text30.html
    [88]J.A.Miller, M.C. Branch, W.J. mclean, et al. in Proceedings of the Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1985.
    [89]Scott Davis, Ameya Joshi, Hai Wang, Department of Mechanical Engineering, University of Delaware, Neark, DE 19716, January 2003.
    [90]Igor Matveev, Serhiy Serbin, Anna Mostipanenko, "Numerical Optimization of the "Tornado" Combustor Aerodynamic Parameters", AIAA 2007-391.
    [91]Igor Matveev, Serhiy Serbin, "CFD Investigations of Spatial Arc Kinetic Influence on Fuel Burning-Out in the "Tornado"Combustor", Applied Plasma Technology.
    [92]张明昌,包吉威,刘敏,等离子发生器燃烧流场的数值模拟,热能动力工程,第19卷,第1期,2004年1月.
    [93]郭向阳,何立明,非平衡等离子体对甲烷燃烧影响的研究,弹箭与制导学报,第28卷第4期,2008年8月.
    [94]杜宏亮,何立明,等离子体对氢气-空气混合物燃烧过程影响的数值研究,弹箭与制导学报,第28卷第6期,2008年12月.
    [95]Yetter R.A., Dryer F.L., Rabitz H., "A comprehensive reaction mechanism for carbon monoxide/hydrogen/oxygen kinetics", Combust. Sci. Tech. v79,1991.
    [96]焦树健.论设计IGCC电站时燃气轮机的选取原则,燃气轮机发电技术,2000(2).
    [97]Beebe, K.W., and Blanton, J.C., "Design and Development Test of a Heavy-Duty Industrial Gas Turbine Combustor for Low-Btu Coal Gas Fuel", ASME Paper 85-GT-45.
    [98]Beebe, K.W., Li, J.Y., Yang., D.G., et al., "Design and Development Test of a Gas Turbine Combustor for Air-Blown Lurgi Coal Gas Fuel," ASME Paper 85-GT-128.
    [99]Savelli, J.F., and Touchton, G.L., "Development of a Gas Turbine Combustion System for Medium-Btu Fuel," ASME Paper 85-GT-98.
    [100]Battista, R.A., Pandalai, R.P., and Hilt, M.B., "Low Heating Value Fuel Burning Capabilities of General Electric Industrial Gas Turbines," ASME Paper 82-GT-255.
    [101]Bahr, D.W., Sabla, P.E., and Vinson, J.W., "Small Industrial Gas Turbine Combustor Performance with Low BTU Gas Fuels," ASME Paper 85-IGT-125.
    [102]刘泉,模型燃烧室水蒸汽伴随稀释燃烧降低污染物排放的实验研究,工程热物理年会燃烧学,2006年,064006.
    [103]David R. Noble, Syngas Mixture Composition Effects upon Flashback and Blowout, ASME Pater GT2006-90470.
    [104]Qingguo Zhang, Characterization of Fuel Composition Effects in H2/CO/CH4 Mixtures upon Lean Blowout, ASME Pater GT2005-68907.
    [105]张永生,穆克进,张哲巅,等.不同空气和燃料旋流强度下合成气稀释扩散火焰特性研究[J].中国电机工程学报,2009,29(2):63-68.
    [106]张永生,穆克进,张哲巅,等.同向和反向合成气旋流扩散燃烧研究[J].中国电机工程学报,2009,29(14):63-68.
    [107]穆克进,张哲巅,王岳,等.燃料/空气旋流强度对合成气旋流扩散火焰结构的影响[J].中国工程热物理学会燃烧学,编号084294.
    [108]张永生,王岳,张哲巅,等.合成气稀释旋流扩散火焰稳定性研究[J].燃气轮机技术,2007,20(3):29-34.
    [109]Stephen R. Turns, An Introduction to Combustion, chapter 12, p459.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700