辉光放电等离子体降解水中有机污染物与苯一步合成苯酚的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
放电等离子体水处理技术是近20年来发展的具有工艺灵活,无二次污染的新型水处理高级氧化技术。和其他等离子体技术相比,辉光放电等离子体具有电压低,适合处理高含盐量的废水和工艺简单等优点,但是常规的辉光放电等离子体有较强的电极腐蚀。我们通过对各种放电形式的分析,结合等离子体产生的基本规律,对常规的辉光放电水处理装置进行彻底改进,应用隔膜产生辉光放电等离子体,使等离子体可以与水溶液更大地接触,并使放电可以在没有电极的参与下进行,探索以前国内外没有报道的新技术,使之具有能量效率高,不需要特殊电极和没有电磁辐射等特点。
     放电中的有机合成是令人振奋的研究工作,可以合成常规热反应难得到的产物。但是目前该技术的缺点在于产物的选择性和收率低。我们利用水溶液中辉光放电等离子体与催化相结合的方法由苯一步合成苯酚,提高了苯酚的收率和选择性,为等离子体和催化相结合的研究开拓新领域。
     论文分为两部分共五章:
     第一章介绍了高级氧化技术的概念,讨论了应用等离子体降解水中有机污染物的原理,并将典型的等离子体水处理工艺及其原理和发展趋势作了介绍;讨论了放电中的有机合成的现状和未来的发展趋势。
     第二章以硝基苯为模拟废水,采用辉光放电等离子体对其降解进行了研究。考察了污染物浓度、电流、催化剂等外界条件对降解速率的影响,比较了高压脉冲放电和辉光放电在硝基苯的去除和过氧化氢的生成过程中的能量效率,并探讨了硝基苯的降解机理。结果表明硝基苯降解遵守一级反应动力学规律,降解速率随着放电电流的增大而增大,pH值对降解没有明显的影响。反应过程生成了硝基苯酚,苯酚,1,3-二硝基苯、羧酸、硝酸根和亚硝酸根。其中硝基苯酚的分布规律是:邻>对>间硝基苯酚。主要的羧酸为甲酸,乙酸和醋酸,最终的降解产物是硝酸根离子、水和二氧化碳。反应过程中有大量的过氧化氢生成,加入三价铁离子比二价铁离子的催化效果好。实验证明降解过程中三价铁离子被反应中间体还原为二价铁离子,然后二价铁离子与溶液中生成的过氧化氢发生Fenton反应,从而加速硝基苯的降解。50mg/L的硝基苯在最佳条件下10分钟内可以完全被去除。
     第三章以4-氯苯酚为模拟废水,采用辉光放电等离子体对其降解进行了研究。考察了电压、pH、催化剂等外界条件对4-氯苯酚降解和过氧化氢生成速率的影响,比较了有和没有催化剂存在的条件下4-氯苯酚降解的中间产物。结果表明在有催化剂存在下,4-氯苯酚的降解中间产物与没有催化剂时不同,在催化剂存在下主要的中间产物为对4-氯儿茶酚、对苯醌和对苯二酚。实验证明降解过程中铁离子的良好催化作用是因为其被中间体还原为亚铁离子,然后亚铁离子与溶液中生成的过氧化氢发生Fenton反应,从而加速4-氯苯酚的降解。
     第四章对传统的辉光放电等离子体装置进行了改进,开发了隔膜型辉光放电等离子体水处理装置。以苯酚为模拟废水,从放电电压、自由基清除剂、pH等多个方面评价了实验效果,并研究了降解机理。结果表明提高电压、降低pH和加入一定量的铁盐对降解有利;而正丁醇和碳酸根离子会降低苯酚的去除速率。苯酚的降解的主要中间产物为儿茶酚、对苯醌、对苯二酚和羧酸。随着放电的进行,溶液的pH逐渐降低,苯酚的去除速率加快。和其他放电水处理技术比,本技术没有电极损耗、没有电磁辐射和实验装置简单等特点。本章结果已被著名杂志EST发表。
     第五章运用辉光放电等离子体和催化相结合的方法对苯一步合成苯酚进行了初步的研究,考察了催化剂和pH值对苯酚收率和选择性的影响,对机理进行了初步的解释,证实了催化与等离子体相结合用于有机合成是可行的。结果发现在铜铁混合型催化剂存在下苯酚的收率和选择性可达8.3%和81%。降低pH对苯酚合成有利。
Water treatment by electrical discharges is a novel kind of advanced oxidation processes that is developed in recent 20 years. Many types of discharges have been or are being developed, such as pulsed corona, gliding are or glow discharge. Compared with other electrical processes, the glow discharge plasma has the advantage of lower voltage needed and being able to operate at high conducting liquids. At the same time, it has the problem of electrode erosion. Based on the analysis of the principles of plasma generation, a new diaphragm glow discharge reactor for water treatment is developed for the first time in this thesis, where the issue of electrode erosion has been completely resolved.
     The organic synthesis in electrical discharges is an interesting topic for many researchers, because many organic compounds that are difficult to synthesize by conventional thermal reactions can be easily implemented by plasma. However, at present this technology has the disadvantages of poor yield and selectivity. We first utilize the glow discharge plasma in combination with catalysts to direct synthesize phenol from benzene, a very important industrial raw material, where the phenol yield and selectivity of as high as 8.3% and 81% have been reached.
     The present paper includes 5 chapters:
     Chapter 1 reviews the advanced oxidation processes especially the application of low temperature plasma technology in the treatment of wastewater and the organic syntheses in electrical discharges.
     Chapter 2 describes the degradation of nitrobenzene in a normal glow discharge plasma reactor. It is found that the nitrobenzene degradation follows a first order reaction kinetics. The degradation products were detected by high performance liquid chromatography and ionic chromatography, respectively. The major aromatic intermediates were nitrophenols, phenol and 1, 3-dinitrobenzene. The distribution of nitrophenols follows the order o->p->m-nitrophenol. Oxalic acid, formic acid and acetic acid were found to be major carboxylic intermediates. The eventual products were shown to be nitrate ion and carbon dioxide. During the degradation, a large amount of hydrogen peroxide was produced. Addition of ferrous or ferric ion into the system greatly enhanced the degradation rate due to Fenton's reaction. The energy efficiency of NB degradation and simultaneous hydrogen peroxide formation were compared with pulsed corona discharges. Based on the intermediate analysis, a possible reaction pathway was proposed.
     In Chapter 3, various influencing factors for 4-chlorophenol removal and simultaneous hydrogen peroxide production in a normal glow discharge reactor are examined. It is found that enhancing pH and applied voltage favors the 4-chlorophenol removal and hydrogen peroxide production. In addition, the major intermediate products in the presence of catalysts are found to be different from that observed in the absence of the catalysts. The major aromatic intermediate products were 4-chlorocatechol, benzoquinone and hydroquinone in the presence of iron ions.
     In Chapter 4, a non-pulsed DC diaphragm glow discharge process was first developed for phenol degradation in aqueous solution. The discharge was generated by a small hole in a dielectric diaphragm interposed between two submersed graphite electrodes. The experimental results revealed that the supplied voltage, initial pH, iron salts and radical scavengers impact the phenol degradation significantly. Enhancing the applied voltage, lowering the solution pH and adding appropriate amounts of Fe~(2+) or Fe~(3+) to the solution have shown to be favorable for phenol degradation. Carbonate ions or n-butanol in the solution can decelerate the phenol removal. With increasing time, the pH value of the solution decreased, leading to a synergistic effect on phenol elimination. The main intermediates such as hydroquinone, pyrocatechol, p-benzoquinone and organic acids produced during the treatment process were determined by HPLC and IC analysis. Compared with the high-voltage corona discharge plasma in distilled water, this process bears the advantages of experimental simplification, higher energy efficiency, easier scale-up and applicability to salt-containing wastewater with no electrode erosion and electrical radiation. The results of this chapter have been published by EST. salt-containing wastewater with no electrode erosion and electrical radiation. The results of this chapter have been published in EST.
     In Chapter 5, direct phenol synthesis from benzene in aqueous solution where water was used as the oxidant through glow discharge plasma process is described for the first time. The effec of pH, ferrous and cupric ions on the phenol yield and selectivity was examined. Phenol yield of 8.3% and selectivity of 81% has been achieved. The results of this chapter are to be published in Plasma Chem. Plasma process.
引文
[1] Glaze W H, Kang J-W. The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation. Ozone Sci. Eng. 1987, 9: 335~352
    [2] Carey J H. An Introduction to Advanced Oxidation Processes (AOP) for Destruction of Organics in Wastewater. Water Pollut. Res. J. Can. 1992, 27 (1): 1~21
    [3] Buxton G V, Greenstock C L, Hehman W P, Ross A B. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (·OH/O.) in Aqueous Solutions. J. Phys. Chem. Ref Data. 1988, 17: 513~886
    [4] 雷乐成,汪大珲.水处理高级氧化技术.第一版.北京:化学工业出版社 2001.198~202
    [5] 吴季兰,戚生初.辐射化学.第一版.北京:原子能出版社 1993.184~185
    [6] 汪大珲,雷乐成.水处理新技术及工程设计.第一版.北京:化学工业出版社 2001.14~17
    [7] Walling C. Fenton's Reagent Revisited. Acc. Chem. Res. 1975, 8: 125~131
    [8] 张其春,卢渊,薄和秋,刘涛.镀铜铁屑Fenton氧化反应的一种新催化剂.成都理工大学学报(自然科学版).2004,31(4):436~440
    [9] Ruppert G, Bauer R. The Photo-Fenton Reaction -An Effective Photochemical Wastewater Treatment Process. J. Photochem. Photobiol. A: Chem., 1993, 73: 75~78
    [10] Hislop K A, Bolton J R. The Photochemical Generation of Hydroxyl Radicals in the UV-vis/ferrioxalate/H_2O_2 System. Environ. Sci. Technol. 1999, 33: 3119~3126
    [11] 朱秀华,张诚,丁珂,沙宇,颜亦磊.Fenton催化氧化技术处理硝基苯类废水的研究现状.中外能源.2006,11(5):81~84
    [12] 克里斯蒂安·戈特沙克,由迪·利比尔,阿德里安·绍珀.水和废水臭氧化-臭氧及其应用指南.第一版,李风亭,张冰如,张善发,朱志良 译.北京,中国建筑工业出版社 2004.9~16
    [13] Yao C C D, Haag W R. Rate Constants for Direct Reactions of Ozone with Several Drinking Water Contaminants. Water Res. 1991, 25: 761~773
    [14] Baser H, Hoigne J. Determination of Ozone in Water by the Indigo Method. Water Res. 1981, 15: 449~456
    [15] Staehelin J, Hoigne J. Decomposition of Ozone in Water: Rate of Initiation by Hydroxide Ions and Hydrogen Peroxide. Environ. Sci. Tech. 1982, 16: 676~681
    [16] Woo H K, Nishijima W, Bases A U, Okada M. Micropollutant Removal with Saturated Biological Activated Carbon (BAC) in Ozonation-BAC Process. War Sci Tech. 1997, 12(36): 283~298
    [17] Joglekar H S, Samant S D, Joshi J B. Kinetics of Wet Air Oxidation of Phenol and Substituted Phenols. Water Res. 1991, 25 (2): 135~145
    [18] Thornton T D, Savage P E. Phenol. Oxidation Pathways in Supercritical Water. Ind. Eng. Chem. Res. 1992, 31 (11): 2451~2456
    [19] Lei L, Hu X, Chu, H P, Yue P L. Catalytic Wet Air Oxidation of Dyeing and Printing Wastewater. Water Sci. Tech. 1997, 35: 311~319
    [20] 赵化侨.等离子体化学与工艺.合肥:中国科学技术大学出版社 1993,1~40
    [21] Malik M A, Ghaffar A, Malik S A. Water Purification by Electrical Discharges. Plasma Source Sci. Tech. 2001, 10: 82~91
    [22] Locke B R, Sato M, Sunka P, Hoffmann F R, Chang J-S. Electrohydraulic Discharge and Non-thermal Plasma for Water Treatment. Ind. Eng. Chem. Res. 2006, (45): 882~905
    [23] 苏建龙,黄卫东.液电脉冲等离子体降解高浓度有机废液的机理研究.环境科学动态.1997.2:13~16
    [24] 卞文娟,杨彬,雷乐成.液电等离子体处理有机废水.环境污染治理技术与设备.2003.5:80~84
    [25] 朱曙光,丁媛媛,宋泽政.高压脉冲液相放电废水处理技术的研究进展.工业安全与环保.2006,32(4):7~11
    [26] Clements, J S, Sato, M, Davis, R H. Preliminary Investigation of Prebreakdown Phenomena and Chemical Reactions Using a Pulsed High Voltage Discharge in Water. IEEE Trans. Ind. Appl. 1987, IA-23: 224~235
    [27] Sharma A K, Locke B R, Arce P, Finney W C. A Preliminary Study of Pulsed Streamer Corona Discharge for the Degradation of Phenol in Aqueous Solutions. Hazard. Waste Hazard. Mater. 1993, 41: 209~219
    [28] Sun B, Sato M. Use of a Pulsed High Voltage Discharge for Removal of Organic Compounds in Aqueous Solution. J. Phys. D: Appl. Phys. 1999, 32: 1908~1915
    [29] Willberg D M, Lang P S, Hochemer R H, Kratel A, Hoffmann M R. Degradation of 4-chlorophenol, 3, 4-dichloroaniline, and 2, 4, 6-trinitrotoluene in an Electrohydraulic Discharge Reactor. Environ. Sci. Technol. 1996, 30 (8): 2526~2534
    [30] Lang P S, Ching W K, Willberg D M, Hoffmann M R. Oxidative Degradation of 2, 4, 6-Trinitrotoluene by Ozone in an Electrohydraulic Discharge Reactor. Environ. Sci. Technol. 1998, 32(20): 3142~3418
    [31] Hoeben W F L M. Pulsed Corona-induced Degradation of Organic Materials in Water, PhD Dissertation, Eindhoven University of Technology, The Netherlands, 2000
    [32] He Z, Liu J, Cai W. The Important Role of the Hydroxy Ion in Phenol Removal Using Pulsed Corona Discharge. J. Electrost. 2005, 63: 371~386
    [33] 李胜利,向浩,李劲.实验用ns级脉冲高压电源的研制高电压技术.2000,26(1):14~15
    [34] 赵君科,夏连胜,任先文,等.陡前沿纳秒级电源的研制.高电压新技术与应用.1999,25(2):44~46
    [35] 李国锋,吴彦,王宁会.脉冲电晕放电特性研究.大连理工大学学报.1999,39 (6):736~740
    [36] Massimo, Yan K. Evalution of Pulse Voltage Generators. IEEE, 1992, 1: 1434~1441
    [37] Masuda S. Pulse Energization System of Electrostatic Precipitator for Retrofitting Application. IEEE Trans. Ind Appl, 1988, 24 (4): 708~716
    [38] Lawless P A, Yamamoto T, Shofran S, et al. Characteristics of a Fast-rise Time Power Supply for a Pulsed Plasma Reactor for Chemical Vapor Destruction. IEEE Trans. Ind. Appl. 1996, 32(6): 1257~1265
    [39] Yan K, Heesch, Nair S A, et al. A Triggered Spark Gap Switch for High Repetition Rate High Voltage Pulse Generation. J. Electrost. 2003, 57: 29~33
    [40] Mok Y S. Efficient Energy Delivery Condition From Pulse Generation Circuit to Corona Discharge Reactor. Plasma Chem. Plasma Process. 2000, 20 (3): 353~364
    [41] Sugiarto A T, Ohshima T, Sato M. Advanced Oxidation Processes Using Pulsed Streamer Corona Discharge in Water. Thin Solid Films, 2002, 407: 174~178
    [42] 李胜利,李劲.脉冲电晕放电对印染废水脱色效果的实验研究.环境科学,1996,17(1):13~15
    [43] Sugiarto A T, Sato M. Pulsed Plasma Processing of Organic Compounds in Aqueous Solution. Thin Solid Films, 2001, (386): 295~299
    [44] Grymonpre D R, Finney W C, Locke B R. Aqueous Phase Pulsed Streamer Corona Reactor Using Suspended Activated Carbon Particles Phenol Oxidation: Model Data. Chem. Eng. Sci. 1999, (54): 3095~3105
    [45] Joshi A A, Locke B R, Arce P, Finney W C. Formation of Hydroxyl Radicals, Hydrogen Peroxide and Aqueous Electrons by Pulsed Streamer Corona Discharge in Aqueous Solution. J. Hazard. Material. 1995, 41: 3~30
    [46] Sun B, Sato M, Clements J-S. Optical Study of Active Species Produced by a Pulsed Streamer Corona Discharge in Water. J. Electrost. 1997, 39: 189~202
    [47] Sun B, Sato M, Clements J S. Oxidative Processes Occurring When Pulsed High Voltage Discharges Degrade Phenol in Aqueous Solution. Environ. Sci. Tech. 2000, 34: 509~513
    [48] Sahni M, Locke B R. Quantification of Hydroxyl Radicals Produced in Aqueous Phase Pulsed Electrical Discharge Reactors. Ind. Eng. Chem. Res. 2006, 45, 5819~5825
    [49] Sunka P, Babicky V, Clupek, Lukes P, Simek M, Schmidt J, Cernak M. Generation of Chemically Active Species by Electrical Discharges in Water. Plasma Sources Sci. Tech. 1999, 8 (2): 258~265
    [50] 陈银生,张新胜,袁渭康.高压脉冲放电低温等离子体法降解废水中 4-氯酚.华东理工大学学报(自然科学版).2002,28(3):232~234
    [51] Wen Y, Jiang X. Degradation of Acetophenone in Water by Pulsed Corona Discharges. Plasma Chem. Process. 2000, 20: 343~351
    [52] Wen Y, Liu H, Jiang X. Degradation of Organic Contaminants in Water by Pulsed Corona Discharge. Plasma Chem. Plasma Process. 2005, 5(2): 137~146
    [53] Lukes P, Clupek M, Sunka P, Peterka F, Sano T, Negishi N, Matsuzawa S, Takeuchi K. Degradation of Phenol by Underwater Pulsed Corona Discharge in Combination with TiO_2 Photocatalysis. Res. Chem. Intermediat. 2005, 31 (4-6): 285~294
    [54] Mizuno A, Hori Y J. Destruction of Living Cells by Pulsed High Voltage Application. IEEE Trans Ind Appl. 1988, 24: 387~394
    [55] Sato M, Ohgiyama T, Clements J S. Formation of Chemical Species and Their Effects on Microorganisms Using a Pulsed High-voltage Discharge in Water. IEEE Trans. Ind. Appl. 1996, 32(1): 106~112
    [56] Sunka P. Pulse Electrical Discharges in Water and Their Applications. Phys. Plasmas. 2001, 8(5): 2587~2594
    [57] Czernichowski A. Gliding Arc Applications to Engineering and Environment Control. Pure Appl. Chem. 1994, 66(6): 1301~1310
    [58] 严建华,杜长明,Cheron B G,李晓东,倪明江,岑可法.滑动弧等离子体技术用于环境治理领域的研究进展.热力发电.2005,(5):1~6
    [59] Krawczyk K, Ulejczyk B. Influence of Water Vapor on CCl_4 and CHCl_3 Conversion in Gliding Discharge. Plasma Chem. Plasma Process. 2004, 24 (2): 155~167
    [60] Abdelmalek F, Gharbi S, Benstaali B, Addou A, Brisset JL. Plasmachemical Degradation of Azo Dyes by Humid Air Plasma: Yellow Supranol 4 GL, Scarlet Red Nylsan F3 GL and Industrial Waste. Water Res. 2004, 38(9): 2338~2346
    [61] Abdelmalek F, Ghezzar M R, Belhadj M, Addou A, Brisset J. Bleaching and Degradation of Textile Dyes by Non-Thermal Plasma Process at Atmospheric Pressure. Ind. Eng. Chem. Res. 2006, 45: 23~29
    [62] Ghezzar M R, Abdelmalek F, Belhadj M, Benderdouche N, Addou A. Gliding Arc Plasma Assisted Photocatalytic Degradation of Anthraquinonic Acid Green 25 in Solution with TiO_2. Applied Catalysis B: Environmental. 2007, 72: 304~313
    [63] Moussa D, Brisset J-L. Disposal of Spent Tributylphosphate by Gliding Arc Discharge. J. Hazard. Mater. B. 2003, 102: 189~200
    [64] Yah J H, Du C M, Li X D, Sun X D, Ni J, Cen K F, Cheron B. Plasma Chemical Degradation of Phenol in Solution by Gas-Liquid Gliding Arc Discharge. Plasma Sources Sci. Tech., 2005, 14: 637~644
    [65] Burlica R, Kirkpatrick M J, Locke B R. Formation of Reactive Species in Gliding Arc Discharges with Liquid Water. J Electrost. 2006, 64: 35~43
    [66] Marouf-Khelifa K, Abdelmalek F, Khelifa A, Belhadj M, Addou A, Brisset J-L. Reduction of Nitrite by Sulfamic Acid and Sodium Azide from Aqueous Solutions Treated by Gliding Arc Discharge. Sep. Purif. Tech. 2006, 50(3): 373~379
    [67] Moussa D, Abdelmalek F, Benstaali B, Addou A, Hnatiuc E, Brisset J-L. Acidity Control of the Gliding Arc Treatments of Aqueous Solutions: Application to Pollutant abatement and Bio-Decontamination. European Phys. J.: Appl. Phys. 2005, 29(2): 189~199
    [68] 李晓东,杜长明,严建华,芩可法,Cheron B G.气液滑动弧等离子体处理高浓度有机 废水的研究.工程热物理学报增刊.2006,27(2):237~239
    
    [69] Hickling A. Electrochemical Processes in Glow Discharge at the Gas-Solution Interface. In Modern Aspects of Electrochemistry. Bockris, J. O'M. Conway, B. E., Butterworths: London, 1971, 6:329
    
    [70] Susanta K S, Rajeshwar S, Ashok K S. A Study on the Origin of Non-Faradaic Behavior of Anodic Contact Glow Discharge Electrolysis. J. Electrochem. Soc. 1998, 145 (7): 2209-2213
    [71] Tezuka M. Anodic Hydrogen Evolution in Contact Glow Discharge Electrolysis of Sulfuric Acid Solution. Denki Kagaku 1993, 61: 794-795
    
    [72] Sengupta S K, Singh, R, Srivastava A K. A Study on Non-Faradaic Yields of Anodic Contact Glow Discharge Electrolysis Using Cerous Ion as the ·OH Scavenger: an Estimate of the Primary Yield of OH Radicals, Indian J. Chem. A.1998, 37A(6): 558-560
    
    [73] Hase H, Harada K. ESR Detection of ·OH and ·H Radicals Generated by Contact Glow Discharge in Aqueous Solutions. Viva Origino 2001, 29(2): 61-62
    
    [74] Tezuka M, Iwasaki M. Oxidative Degradation of Phenols by Contact Glow Discharge Electrolysis. Denki Kagaku 1997, 65: 1057-1058
    
    [75] Tezuka M, Iwasaki, M. Plasma Induced Degradation of Chlorophenols in an Aqueous Solution. Thin Solid Films, 1998,316: 123-126
    
    [76] Tezuka M, Iwasaki M. Liquid-Phase Reactions Induced by Gaseous Plasma: Decomposition of Benzoic Acids in Aqueous Solution. Plasmas Ions. 1999, 1: 23-26
    
    [77] Tezuka M, Iwasaki M. Plasma-Induced Degradation of Aniline in Aqueous Solution. Thin Solid Film, 2001, 3 86: 204-207
    
    [78] Tomizuwa S, Tezuka M. Oxidative Degradation of Aqueous Cresols Induced by Gaseous Plasma with Contact Glow Discharge Electrolysis. Plasma Chem. Plasma Process, 2006, 26: 43-52
    
    [79] Amano R, Tomizawa S, Tezuka M. Mineralization of Aqueous Benzenesulfonates by Contact Glow Discharge Electrolysis. Electrochemistry, 2004, 72: 836-838
    
    [80] Amano R, Tezuka M, Mineralization of Alkylbenzenesulfonates in Water by Means of Contact Glow Discharge Electrolysis. Water Res. 2006,40: 1857-1863
    
    [81] Gao J, Hu Z, Wang X, Hou J, Lu X, Kang J. Oxidative Degradation of Acridine Orange Induced by Plasma with Contact Glow Discharge Electrolysis. Thin Solid Films, 2001, 390: 154-158
    
    [82] Gao J, Liu Y, Yang W, Pu L, Yu J, Lu Q. Oxidative Degradation of Phenol in Aqueous Electrolyte Induced by Plasma from a Direct Glow Discharge. Plasma Sources Sci. Tech. 2003, 12: 533-538
    
    [83] Gao J, Pu L, Yang W, Yu J, Li Y. Oxidative Degradation of Nitrophenols with Submersed Glow Discharge Electrolysis. Plasma Proces. Polym. 2004, 1: 171-176
    
    [84] Gao J, Wang X, Hu Z, Deng H, Hou J, Lu X, Kang J. Plasma Degradation of Dyes in Water with Contact Glow Discharge Electrolysis. Water Res. 2003,37: 267-272
    
    [85] Gao J, Yu J, Li Y, He X, Bo L, Pu L, Yang W, Lu Q, Yang Z. Decoloration of Aqueous Brilliant Green by Using Glow Discharge Electrolysis. J. Hazard. Mater. 2006, 137: 431-436
    [86] Bugaenko L T, Kalinina T A, Kovalev G V, Sizikov A M. On the use of an anodic microdischarge in water treatment for the removal of organic pollutants. High Energy Chem. 2003, 37(5): 351-352
    
    [87] Kalinina T A, Bugaenko L T, Kovalev G V, Sizikov A M. Degradation of Aqueous Pentadecane Emulsion by an Anodic Microdischarge: 5. Comparison with Other Alkanes. High Energy Chem. 2004, 38(2): 120-123
    
    [88] Polyakov O V, Badalyan A M, Bakhturova L F. The Yields of Radical Products in Water Decomposition under Discharges with Electrolytic Electrodes. High Energy Chem. 2003, 37(5): 322-327
    
    [89] Kalinina T A, Sizikov A M, Bugaenko L T, Kovalev G V. Degradation of Aqueous Pentadecane Emulsion by an Anodic Microdischarge: 4. Gaseous Products, High Energy Chem. 2003, 37(1): 34-37
    
    [90] Polyakov O V, Badalyan A M, Bakhturova L F. The Water Degradation Yield and Spatial Distribution of Primary Radicals in the Near-Discharge Volume of an Electrolytic Cathode. High Energy Chem. 2002, 36(4): 280-284
    
    [91] Kalinina T A, Sizikov A M, Bugaenko L T, Kovalev G V. Degradation of Aqueous Pentadecane Emulsion by an Anodic Microdischarge: 3. The Pentadecane-Syrene System. High Energy Chem. 2002, 36(2): 129-130
    
    
    [92] Sizikov A. M, Kalinina, T. A, Glizdinskii, I. A, Bugaenko L. T, Degradation of Aqueous Pentadecane Emulsion by an Anodic Microdischarge: 1. General Characterization of the Process, High Energy Chem. 2001, 35(3): 192~196
    [93] Polyakov O V, Badalyan A M, Bakhturova L F. Relative Contributions of Plasma Pyrolysis and Liquid-Phase Reactions in the Anode Microspark Treatment of Aqueous Phenol Solutions. High Energy Chem. 2004, 38(2): 131~133
    [94] Liu Y, Jiang X, Wang L, Efficient Degradation of Nitrobenzene Induced by Glow Discharge Plasma in Aqueous Solution, Water Res, Under review
    [95] 刘永军.放电等离子体在水处理中的应用 硕士毕业论文 兰州 西北师范大学 2004
    [96] 王晓艳.水溶液中有机物降解新技术-低温辉光放电等离子体 硕士毕业论文 兰州 西北师范大学 2002
    [97] 安得列夫.放电中的有机合成.金道森译,北京:科学出版社 1959
    [98] Suhr H. Organic Synthesis in the Plasma of Glow Discharges and Their Preparative Application, Angew. Chem. Internat. Edit. 1972, 11(9): 781~792
    [99] Suhr H. Application of Nonequilibrium Plasmas in Organic Chemistry. Plasma Chem. Plasma Process. 1983, 3: 1~61
    [100] 薛永强,王志忠,张蓉等.现代有机合成方法与技术.第一版,北京:化学工业出版社,2003,299~304
    [101] 陈杰蓉.低温等离子体化学及其应用.北京:科学出版社,2001,34~38
    [102] Miller S L. Production of Some Organic Compounds under Possible Primitive Earth Conditions. J. Am. Chem. Soc. 1955, 77: 2351~2361
    [103] Hanic F, Morvova M, Morva I. Thermochemical Aspects of the Conversion of the Gaseous System CO_2-N_2-H_2O into a Solid Mixture of Amino Acids. J. Therm. Anal. Calorim. 2000, 60: 1111~1121
    [104] Tokuda M, Miller L L, Szabo A, Suhr H. Extrusion Reactions in an RF Plasma, Production of Benzocycloalkenes. J. Org. Chem., 1979, 44(25): 4504~4508
    [105] Tezuka M. and Miller L L. Dynamics and Mechanism of the Plasmolysis of Anisole. J. Am. Chem. Soc. 1978, 100(3): 4201~4208
    [106] Miller L L. Organic Plasma Chemistry. Acc. Chem. Res. 1983, 16: 194~199
    [107] So Y H, Bezuk S J, Miller L L. Reactions of Acetonitrile in a Radiofrequency Discharge. J Org. Chem. 1982, 47: 1475~1479
    [108] Okazaki K, Kishida T, Ogawa K, Nozaki T. Direct Conversion from Methane to Methanol for High Efficiency Energy System with Energy Regeneration. Energy Conversion and Management, 2002, 43(9): 1459-1468
    
    [109] Lee D W, Lee J H, Chun B H, Lee K.The Characteristics of Direct Hydroxylation of Benzene to Phenol with Molecular Oxygen Enhanced by Pulse DC Corona at Atmospheric Pressure. Plasma Chem. Plasma Process. 2003, 23(3): 519-539
    
    [110] Sekiguchi H, Ando M, Kojima.Study of Hydroxylation of Benzene and Toluene Using a Micro-DBD Plasma Reactor. J. Phys. D: Appl. Phys. 2005, 38: 1722-1727
    
    [111] Liu C J, Li Y, Zhang Y P, Wang Y, Zou J J, Eliasson B, Xue B Z. Production of Acetic Acid Directly from Methane and Carbon Dioxide Using Dielectric-Barrier Discharges. Chem. Letter. 2001,30(12): 1304-1305
    
    [112] Harada K, Iwasaki T. Synthesis of Amino Acids from Aliphatic Carboxylic Acid by Glow Discharge Electrolysis. Nature 1974, 250: 426-428
    
    [113] Harada K, Suzuki S.Formation of Amino Acids from Elemental Carbon by Contract Glow Discharge Electrolysis. Nature 1977, 266: 275-276
    
    [114] Harada K, Iwasaki T. Syntheses of Amino Acids from Aliphatic Amines by Contact Glow Discharge Electrolysis. Chem. Lett. 1975, 2: 185-188
    
    [115] Kokufuta E, Shibasaki T, Sodeyama T, Harada K. Simultaneously Occurring Hydroxylation, Hydration, and Hydrogenation of the C=C Bond of Aliphatic Carboxylic Acids in Aqueous Solution by Glow Discharge Electrolysis. Chem. Lett. 1985, 10: 1569-1572
    
    [116] Munegumi T, Shimoyama A, Harada K. Abiotic Asparagine Formation from Simple Amino Acids by Contact Glow Discharge Electrolysis. Chem. Lett. 1997, 5: 393-394
    
    [117] Gupta S K S, Singh R, Srivastava A K. Chemical Effects of Anodic Contact Glow Discharge Electrolysis in Aqueous Formic Acid Solutions: Formation of Oxalic Acid, Indian Journal of Chemistry, Section A: 1995, 34A(6): 459-461
    
    [118] Harada K, Ito Y, Wada T, Munegumi T. Efficient Diemerization of Formic Acid in Aqueous Solution Induced by Ar-Arc Plasma. Bull. Chem. Soc. Jpn. 2001, 74: 2175-2179
    
    [119] Tezuka M, Iwasaki M. Effects of Electric Field in Contact Glow Discharge Electrolysis of Acetonitrile Solution. Trans. Mat. Res. Soc. Jpn. 2000, 25(1): 115-118
    
    [120] Suhr H, Schmid H, Pfeundschuh H, Iacocca D. Plasma Oxidation of liquids. Plasma Chem. Plasma Process. 1984,4:285-295
    [121] Malik M A, Ahmed M, Rehman E, Naheed R, Ghaffar A. Synthesis of Superabsorbent Copolymers by Pulsed Corona Discharges in Water. Plasmas Polym. 2003, 8: 271~279
    [122] Sano N, Charinpanitkul T, Kanki T, Tanthapanichakoon W. Controlled Synthesis of Carbon Nanoparticles by Arc in Water Method with Forced Convective Jet. J. Appl. Phys. 2004, 96: 645~649
    [123] Sano N. Formation of Multi-Shelled Carbon Nanoparticles by Arc Discharge in Liquid Benzene. Mater. Chem. Phys. 2004, 88: 235~238
    [124] Sano N. Separated Syntheses of Gd-hybridized Single-wall Carbon nanohorns, Single-wall Nanotubes and Multiwall Nanostructures by Arc Discharge in Water with Support of Gas Injection. Carbon, 2005, 43: 450~453
    [125] Liu Y, Jiang X, Wang L. One-Step Hydroxylation of Benzene to Phenol Induced by Glow Discharge Plasma in an Aqueous Solution. Plasma Chem. Plasma Process. In press.
    [1] Maillarddupuy C, Quillard C, Pichat P. The Degradation of Nitrobenzene in Water by Photocatalysis over TiO_2: Kinetics and Products; Simultaneous Elimination of Benzamide or Phenol or Pb~(2+) Cations. New J. Chem. 1994, 18:941-948
    
    [2] Bhatkhande D S, Pangarkar V G, Beenackers A A. Photocatalytic Degradation of Nitrobenzene Using Titanium Dioxide and Concentrated Solar Radiation: Chemical Effects and Scale up. Water Res. 2003, 37: 1223-1230
    
    [3] Rodriguez M L, Timokhin V I, Contreras S, Chamarro E, Esplugas S. Rate Equation for the Degradation of Nitrobenzene by 'Fenton-like' Reagent. Adv. Environ. Res. 2003, 7: 583-595
    
    [4] Kuruc J, Sahoo M K, Locaj J, Hutta M. Radiation Degradation of Wastewater: 1. Reverse Phase-high Performance Liquid Chromatography and Multicomponent UV-Vis Analysis of Gamma-irradiated Aqueous Solutions of Nitrobenzene. J. Radianal. Nucl. Chem. 1994, 183: 99-107
    
    [5] Feng S, Zhang S, Yu H, Li Q. Radiation-induced Degradation of Nitrobenzene in Aqueous Solutions. Chem. Lett. 2003, 32: 718-719
    
    [6] Beltran F J, Encinar J M, Alonso M A. Nitroaromatic Hydrocarbon Ozonation in Water. 1. Single Ozonation. Ind. Eng. Chem. Res. 1998, 37: 25-31
    
    [7] Garcia Einschlag FS, Lopez J, Carlos L, Capparelli A L, Braun A M, Oliveros E. Evaluation of the Efficiency of Photodegradation of Nitroaromatics Applying the UV/H_2O_2 Technique. Environ. Sci. Technol. 2002, 36: 3936-3944
    
    [8] Hickling A. Electrochemical Processes in Glow Discharge at the Gas-solution Interface. In Modern Aspects of Electrochemistry; Bockris, J. O'M., Conway, B. E.; Butterworths: London, 1971; Vol. 6, p 329.
    
    [9] Susanta K S, Rajeshwar S Ashok K S. A Study on the Origin of Non-Faradaic Behavior of Anodic Contact Glow Discharge Electrolysis. J. Electrochem. Soc. 1998,145 (7): 2209-2213
    
    [10] Tezuka M, Iwasaki M. Oxidative Degradation of Phenols by Contact Glow Discharge Electrolysis. Denki Kagaku 1997, 65: 1057-1058
    
    [11] Tezuka M, Iwasaki M. Plasma Induced Degradation of Chlorophenols in an Aqueous Solution. Thin Solid Films. 1998,316: 123-126
    [12] Tomizuwa S, Tezuka M. Oxidative Degradation of Aqueous Cresols Induced by Gaseous Plasma with Contact Glow Discharge Electrolysis. Plasma Chem. Plasma Process. 2006, 26: 43~52
    [13] Tezuka M, Iwasaki M. Liquid-phase Reactions Induced by Gaseous Plasma: Decomposition of Benzoic Acids in Aqueous Solution. Plasmas Ions. 1999, 1: 23~26
    [14] Tezuka M, Iwasaki M. Plasma-induced Degradation of Aniline in Aqueous Solution. Thin Solid Films. 2001, 386: 204~207
    [15] Amano R, Tezuka M. Mineralization of Alkylbenzenesulfonates in Water by Means of Contact Glow Discharge Electrolysis. Water Res. 2006, 40: 1857~1863
    [16] Hu Z, Wang X, Gao J, Deng H, Hou J, Lu X, Kang J. A Study on Water Treatment Induced by Plasma with Contact Glow Discharge Electrolysis. Plasma Sci. Technol. 2001, 3: 927~932
    [17] Gao J, Wang X, Hu Z, Deng H, Hou J, Lu X, Kang J. Plasma Degradation of Dyes in Water with Contact Glow Discharge Electrolysis. Water Res. 2003, 37: 267~272
    [18] Gao J, Yu J, Li Y, He X, Bo L, Pu L, Yang W, Lu Q. Yang Z. Decoloration of Aqueous Brilliant Green by Using Glow Discharge Electrolysis. J. Hazard. Mater 2006, 137: 431~436
    [19] Eisenberg G M. Colorimetric Determination of Hydrogen Peroxide. Ind. Eng. Chem. Res. 1943, 15: 327~328
    [20] 华中师范大学,东北师范大学,陕西师范大学,北京师范大学.分析化学实验.第三版.北京:高等教育出版社,2001.150~152
    [21] Bhatia K. Hydroxyl Radical Induced Oxidation of Nitrobenzene. J. Phys. Chem. 1975, 79: 1032~1038
    [22] Eberhardt M K. Radiation-induced Homolytic Aromatic Substitution. Ⅳ. Effect of Metal Ions on the Hydroxylation of Nitrobenzene. J. Phys. Chem. 1975, 79: 1913~1916
    [23] Appleton AT, Lukes P, Finney W C, Locke BR. Study of the Effectiveness of Different Hybrid Pulsed Corona Reactors in Degrading Aqueous Pollutants. in contributed papers HAKONE. Ⅷ Puhajarve, Estonia. 2002, July 21-25: 313~317
    [24] Sahni M, Locke B R. Quantification of Hydroxyl Radicals Produced in Aqueous Phase Pulsed Electrical Discharge Reactors. Ind. Eng. Chem. Res. 2006, 45: 5819~5825
    [1] Pera-Titus M, Garcia-Molina V, Banos M A, Gimenez J, Esplugas S. Degradation of Chlorophenols by Means of Advanced Oxidation Processes: a General review. Appl. Catal. B: Environ. 2004, 47(4): 219~256
    [2] Hickling A. Electrochemical Processes in Glow Discharge at the Gas-solution Interface. In Modern Aspects of Electrochemistry; Bockris, J. O' M, Conway, B. E.; Butterworths: London, 1971; Vol. 6, p 329.
    [3] Susanta K S, Rajeshwar S Ashok K S. A Study on the Origin of Non-Faradaic Behavior of Anodic Contact Glow Discharge Electrolysis. J. Electrochem. Soc. 1998, 145 (7): 2209~2213
    [4] Tezuka M, Iwasaki M. Oxidative Degradation of Phenols by Contact Glow Discharge Electrolysis. Denki Kagaku 1997, 65: 1057~1058
    [5] Tezuka M, Iwasaki M. Plasma Induced Degradation of Chlorophenols in an Aqueous Solution. Thin Solid Films. 1998, 316: 123~126
    [6] Tezuka M, Iwasaki M. Liquid-phase Reactions Induced by Gaseous Plasma: Decomposition of Benzoic Acids in Aqueous Solution. Plasmas Ions. 1999, 1: 23~26
    [7] Tezuka M, Iwasaki M. Plasma-induced Degradation of Aniline in Aqueous Solution. Thin Solid Films. 2001, 386: 204~207
    [8] Amano R, Tezuka M. Mineralization of Alkylbenzenesulfonates in Water by Means of Contact Glow Discharge Electrolysis. Water Res. 2006, 40: 1857~1863
    [9] Hu Z, Wang X, Gao J, Deng H, Hou J, Lu X, Kang J. A Study on Water Treatment Induced by Plasma with Contact Glow Discharge Electrolysis. Plasma Sci. Technol. 2001, 3: 927~932
    [10] Gao J, Wang X, Hu Z, Deng H, Hou J, Lu X, Kang J. Plasma Degradation of Dyes in Water with Contact Glow Discharge Electrolysis. Water Res. 2003, 37: 267~272
    [11] Gao J, Yu J, Li Y, He X, Bo L, Pu L, Yang W, Lu Q. Yang Z. Decoloration of Aqueous Brilliant Green by Using Glow Discharge Electrolysis. J. Hazard. Mater 2006, 137: 431~436
    [12] Eisenberg G M. Colorimetric Determination of Hydrogen Peroxide. Ind. Eng. Chem. Res. 1943, 15: 327~328
    [13] 华中师范大学,东北师范大学,陕西师范大学,北京师范大学.分析化学实验.第三版.北京:高等教育出版社,2001.150~152
    [14] Bhatia K, Schuler R. Oxidation of Hydroxycyclohexadienyl Radicals by Metal Ions. J. Phys. Chem. 1974, 78: 2335~2338
    [15] Du Y, Zhou M, Lei L. Role of the Intermediates in the Degradation of Phenolic Compounds by Fenton-like Process. J. Hazard. Mater. B, 2006, 136: 859~865
    [1] Malik M A, Ghaffar A, Malik S A. Water Purification by Electrical Discharges. Plasma Sources Sci. Technol. 2001,10:82-91
    
    [2] Willberg D M, Lang P S, Hochemer R H, Kratel A, Hoffmann M R. Degradation of 4-chlorophenol, 3,4-dichloroaniline, and 2,4,6-trinitrotoluene -in an Electrohydraulic Discharge Reactor. Environ. Sci. Technol. 1996, 30 (8): 2526-2534
    
    [3] Willberg D M, Lang P S, Hochemer R H, Kratel A, Hoffmann M R. Electrohydraulic Destruction of Hazardous Wastes. CHEMTECH. 1996, 26: 52-57
    
    [4] Lang P S, Ching W K, Willberg D M, Hoffmann M R, Oxidative Degradation of 2,4,6-Trinitrotoluene by Ozone in an Electrohydraulic Discharge Reactor. Environ. Sci. Technol. 1998, 32(20): 3142-3418
    
    [5] Clements J S, Sato M, Davis R H. Preliminary Investigation of Prebreakdown Phenomena and Chemical Reactions Using a Pulsed High-voltage Discharge in Water. IEEE Trans. Ind. Appl. 1987, 1A-23: 224-235
    
    [6] Sharma A K, Locke B R, Arce P, Finney W C. A Preliminary Study of Pulsed Streamer Corona Discharge for the Degradation of Phenol in Aqueous Solutions. Hazard. Waste Hazard. Mater. 1993,41:209-219
    
    [7] Sun B, Sato M, Clements J S. Oxidative Processes Occurring When Pulsed High Voltage Discharges Degrade Phenol in Aqueous Solution. Environ. Sci. Technol. 2000, 34: 509-513
    
    [8] Tezuka M, Iwasaki M. Oxidative Degradation of Phenols by Contact Glow Discharge Electrolysis. Denki Kagaku. 1997, 65: 1057-1058
    
    [9] Tezuka M, Iwasaki M. Plasma Induced Degradation of Chlorophenols in an Aqueous Solution. Thin Solid Films. 1998,316: 123-126
    
    [10] Tezuka M, Iwasaki M. Liquid-phase Reactions Induced by Gaseous Plasma: Decomposition of Benzoic Acids in Aqueous Solution. Plasma ions. 1999, 1: 23-26
    
    [11] Sharma A K, Josephson G. B, Camaioni D M, Goheen S C. Destruction of Pentachlorophenol Using Glow Discharge Plasma Process. Environ. Sci. Technol. 2000, 34: 2267-2272
    
    
    [12] Hu Z, W X, G.ao J, Deng H, Hou J, Lu X, Kang J. A Study on Water Treatment Induced by Plasma With Contact Glow Discharge Electrolysis. Plasma Sci. Technol. 2001, 3: 927-932
    [13] Tezuka M, Iwasaki M. Plasma-induced Degradation of Aniline in Aqueous Solution. Thin Solid Films. 2001, 386: 204-207
    
    [14] Joshi A A, Locke B R, Arce P, Finney W C. Formation of Hydroxyl Radicals, Hydrogen Peroxide and Aqueous Electrons by Pulsed Streamer Corona Discharge in Aqueous Solution. J. Hazard. Mater. 1995, 41: 3-30
    
    [15] Grymonpre D R, Finney W C, Locke B R. Aqueous-phase Pulsed Streamer Corona Reactor Using Suspended Activated Carbon Particles for Phenol Oxidation: Model-data Comparison. Chem. Eng. Sci. 1999, 54: 3095-3105
    
    [16] Grymonpre D R, SharmaA K, Finney W C, Locke B R. The Role of Fenton's Reaction in Aqueous Phase Pulsed Streamer Corona Reactors. Chem. Eng. J. 2001, 82: 189-207
    
    [17] Grymonpre D R, Finney W C, Clark R J, Locke B R. Suspended Activated Carbon Particles and Ozone Formation in Aqueous Pulsed Corona Discharge Reactors. Ind. Eng. Chem. Res. 2003, 42:5117-5134
    
    [18] Wen Y, Jiang X. Degradation of Acetophenone in Water by Pulsed Corona Discharges. Plasma Chem. Plasma Proces. 2000, 20(3): 343-351
    
    [19] Sun B, Sato M, Harano A, Clements J S. Non-uniform Pulse Discharge-induced Radical Production in Distilled Water. J. Electrostatics. 1998, 43: 115-126
    
    [20] Hickling A. Electrochemical Processes in Glow Discharge at the Gas-solution Interface. In Modern aspect of electrochemistry, Vol. 6, edited by JO'M Bockris & B. E. Conway (Butterworths, London), 1971, p 329
    
    [21] Tezuka M. Anodic Hydrogen Evolution in Contact Glow-discharge Electrolysis of Sulfuric Acid Solution. Denki Kagagu. 1993, 794-795
    
    [22] Susanta K S, Rajeshwar S, Ashok K S.A Study on the Origin of Non-faradaic Behavior of Anodic Contact Glow Discharge Electrolysis. J. Electrochem. Soc. 1998, 145(7): 2209-2213
    [23] Gao J, Liu Y, Yang W, Pu L, Yu J, Lu Q. Oxidative Degradation of Phenol in Aqueous Electrolyte Induced by Plasma from a Direct Glow Discharge. Plasma Sources Sci. Technol. 2003, 12:533-538
    
    [24] Kobayashi K, Tomita Y, Sanmyo M. Electrochemical Generation of Hot Plasma by Pulsed Discharge in an Electrolyte. J. Phys. Chem. B 2000, 104(26): 6318-6326
    [25] Sokolov V. M. X-ray analysis of a pulsed diaphragmed discharge in an electrolyte. Sov. Phys. Tech. Phys. 1984,29, 1112-1115
    
    [26] Sokolov V M, Drobyshevskii E M. Non-uniformity of the plasmoid in a pulsed Diaphragmed Discharge in Electrolytes. Sov. Phys. Tech. Phys. 1987, 32: 508-509
    
    [27] Monte M, De Baerdemaeker, F, Leys C, Maximov A I. Experimental Study of a Diaphragm Discharge in Water. Czech. J. Phys. 2002, 52 (Suppl. D): D724-D730
    
    [28] Sunka P, Babicky V, Clupek M, Lukes P, Simek M, Schmidt J, Cernak M. Generation of Chemically Active Species by Electrical Discharges in Water. Plasma Sources Sci. Technol. 1999, 8: 258-265
    
    [29] Johannes S, Juerg H. Decomposition of Ozone in Water in the Presence of Organic Solutes Acting as Promoters and Inhibitors of Radical Chain Reactions. Environ. Sci. Technol. 1985, 19(12): 1206-1213
    
    [30] Oturan M A, Peiroten J, Chartrin P, Acher A J. Complete Destruction of p-Nitrophenol in Aqueous Medium by Electro-Fenton Method. Environ. Sci. Technol. 2000, 34(16): 3474-3479
    
    [31] He Y, Mallard W, Tsang W. Kinetics of Hydrogen and Hydroxyl Radical Attack on Phenol at High Temperatures. J. Phys. Chem. 1988, 92(8): 2196-2201
    
    [32] Wen Y, Liu H, Jiang X. Degradation of Organic Contaminants in Water by Pulsed Corona Discharge. Plasma Chem. Plasma Process. 2005, 5(2): 137-146
    [1] Niwa S, Eswaramoorthy M, Nair J, Raj A, Itoh N, Shoji H, Namba T, Mizukami F. A one-step Conversion of Benzene to Phenol with a Palladium Membrane. Science. 2002, 295: 105~107
    [2] Bianchi D, Bortolo R, Tassinari R, Ricci M, Vignola R. A Novel Iron-Based Catalyst for the Biphasic Oxidation of Benzene to Phenol with Hydrogen Peroxide. Angew. Chem. Int. Ed. 2000, 39: 4321~4323
    [3] Balducci L, Bianchi D, Bortolo R, D' Aloisio R, Ricci M, Tassinari R, Ungarelli R. Direct Oxidation of Benzene to Phenol with Hydrogen Peroxide over a Modified Titanium Silicalite. Angew. Chem. Int. Ed. 2003, 42: 4937~4940
    [4] Tani M, Sakamoto T, Mita S, Sakaguchi S, Ishii Y. Hydroxylation of Benzene to Phenol under Air and Carbon Monoxide Catalyzed by Molybdovanadophosphoric Acid. Angew. Chem. Int. Ed. 2005, 117: 2586~2588
    [5] 广东工学院精细化工教研室.精细化工基本生产技术及其应用.第一版,广州:广东科技出版社,1995,190~191
    [6] Iwamoto M, Hirata J, Matsukami K, Kagawa S. Catalytic oxidation by oxide radical ions. 1. One-step hydroxylation of benzene to phenol over Group 5 and 6 oxides supported on silica gel. J. Phys. Chem. 1983, 87: 903~906
    [7] Laufer W, Niederer J P M, Hoelderich W F. New Direct Hydroxylation of Benzene With Oxygen in the Presence of Hydrogen over Bifunctional Palladium/Platinum Catalysts. Adv. Synth. Catal. 2002, 344: 1084~1089
    [8] Sato K, Hanaoka T, Niwa S, Stefan C, Namba T, Mizukami F. Direct Hydroxylation of Aromatic compounds by a Palladium Membrane Reactor. Catal. Today, 2005, 104: 260~266
    [9] Malik M A, Ahemed M, Naheed E F, Ghaffar A. Synthesis of Superabsorbent Copolymers by Pulsed Corona Discharges in Water. Plasma Polymer 2003, 8: 271~279
    [10] Lee D, Lee J, Chun B, Lee K. The Characteristics of Direct Hydroxylation of Benzene to Phenol with Molecular Oxygen Enhanced by Pulse DC Corona at Atmospheric Pressure. Plasma Chem. Plasma Process. 2003, 23: 519~539
    [11] Sekiguchi H, Ando M, Kojima. Study of hydroxylation of benzene and toluene using a micro-DBD plasma reactor. J. Phys. D: Appl. Phys. 2005, 38: 1722~1727
    [12] Hickling A. Electrochemical processes in glow discharge at the gas-solution interface. In Modern Aspects of Electrochemistry; Bockris, J. O'M, Conway, B. E.; Butterworths: London, 1971, 6:329
    
    [13] Sengupta S K, Singh R, Srivastavaa A. A Study on Non-Faradaic Yields of Anodic Contact Glow Discharge Electrolysis Using Cerous Ion as the ·OH Scavenger: An Estimate of the Primary Yield of OH Yield. Indian J. Chem. 1998, 37(A): 558-560
    
    
    [14] Harada K, Iwasaki T. Synthesis of Amino Acids from Aliphatic Carboxylic Acid by Glow Discharge Electrolysis. Nature, 1974, 250: 426-428
    
    [15] Harada K, Suzuki S. Formation of Amino Acids from Elemental Carbon by Contract Glow Discharge Electrolysis. Nature, 1977, 266: 275-276
    
    [16] Harada K, Suzuki S. Formation of Amino Acids from Ammonium Bicarbonate or Ammonium Formate by Contact Glow-discharge Electrolysis. Naturwissenschaften, 1977, 64(9): 484
    
    [17] Tezuka M, Iwasaki M. Aromatic Cyanation in Contact Glow Discharge Electrolysis. Thin Solid Films, 2002,407: 169-173
    
    [18] Walling C, Richard A. Fenton's Reagent. 5. Hydroxylation and Side-Chain Cleavage of Aromatics. J. Am. Chem. Soc. 1975, 97: 363-367
    
    [19] Ito S, Mitarai A, Kikino K, Hirama M, Sasaki K. Deactivation Reaction in the Hydroxylation of Benzene with Fenton's Reagent..J Org. Chem. 1992, 57: 6937-6941
    
    [20] Bhatia K, Schuler R. Oxidation of Hydroxycyclohexadienyl Radicals by Metal Ions. J. Phys. Chem. 1974,78:2335-2338
    
    [21] Jefcoate C R E, Lindsay Smith J R, Norman R O C. Hydroxylation. Part IV. Oxidation of Some Benzenoid Compounds by Fenton's Reagent and the Ultraviolet Irradiation of Hydrogen Peroxide. J. Chem. Soc. (B), 1969, 1013-1018

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700