DBD等离子体—活性炭联用降解碱性品红的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国印染行业的快速发展,印染废水己经成为重点的水环境污染源之一,是水污染治理的重点和难点。开展对印染废水处理技术的研究正受到国内外有关专家的高度关注。
     由于活性炭具有巨大的比表面积和化学稳定性等优点,活性炭吸附法一度成为人们研究的焦点,但随着对这种技术的深入研究发现:活性炭吸附法只是将污染物从一相转移到另一相,本质上并没有彻底去除污染物,而且活性炭需要再生,目前其再生方法又存在许多不足,从而限制了该技术的广泛应用。DBD(Dielectric Barrier Discharge)等离子体技术作为一种新兴的高级氧化技术,虽然在难降解废水处理中表现出极大的优势,但是存在设备复杂、能耗高的等问题,成为其工业化应用的瓶颈。针对这两种技术存在的问题,本论文将DBD等离子体技术与活性炭吸附相结合,应用于印染废水的降解,一方面,利用活性炭的吸附性能将污染物截留,延长污染物与活性粒子的接触时间,可提高DBD等离子体的降解效率;另一方面,随着活性炭上污染物的降解,活性炭同步得到再生。本论文主要研究结果如下:
     (1)在相同放电电压、电源频率、初始浓度、pH值和循环流量的实验条件下,考查了活性炭吸附法、DBD等离子体处理法及DBD等离子体-活性炭联用三种处理方法对碱性品红的降解效果。结果表明:DBD等离子体-活性炭联用可大大提高碱性品红模拟印染废水的脱色率及COD去除率。
     (2)考查了反应装置的工艺参数(如放电电压、电源频率等)、活性炭添加量及循环流量等因素对DBD等离子体-活性炭联用降解碱性品红的影响。结果表明:在电源频率f=-8kHz和10kHz的条件下,碱性品红的脱色率较好;碱性品红溶液在酸性和中性条件下的降解效果要优于碱性条件;循环流量过大或过小均不利于碱性品红的降解;碱性品红的脱色率基本随着活性炭添加量的增加而升高;碱性品红溶液初始浓度越高,脱色率越差。
     (3)通过降解前后碱性品红的pH值、CODcr值及紫外光谱图的变化,可初步推断出碱性品红的降解机理,即在DBD等离子体产生的03、·OH等活性粒子作用下,碱性品红苯环结构首先发生羟基化,并进一步开环,然后再按照脂肪族有机物氧化途径逐步被氧化,最终矿化成CO2和H2O。
     (4)通过改变不同的实验条件,考查了DBD等离子体再生后活性炭吸附等温线及吸附动力学的变化。结果表明,DBD等离子体再生后活性炭对碱性品红的吸附等温线略低于新活性炭,但对于饱和活性炭,其吸附能力有很大的提高;当U-d=8kV-6mm时,再生后活性炭吸附速率最接近于新活性炭,当U-d=9kV-8mm时,活性炭再生效果最差;在电源频率f=8kHz和10kHz的条件下再生后活性炭的吸附速率均高于f=9kHz;再生后活性炭吸附速率随着活性炭添加量的增大而减小,说明活性炭量越少,再生效果越好。
Along with the rapid development of the dyeing and printing industry, printing and dyeing wastewater has become the main pollution sources of the water, the treatment of which is the emphasis and difficulty of the water pollution treatment. Research on printing and dyeing wastewater treatment technology is being highly concerned by the domestic and foreign experts.
     As the activated carbon with large specific surface area and chemical stability, active carbon absorption method has become the focus of research, but with in-depth study of this technology, the researchers found that:The method of Activated carbon adsorption only transfered the pollutants from one phase to another, in essence, did not completely remove the contaminants, and activated carbon regeneration is required, but now the regeneration methods have many disadvantages, thus limited the wide application of the technology. DBD (Dielectric Barrier Discharge) plasma technology is a new and advanced oxidation technology, although it showed great advantage in hard-degradation waste water processing, the need of complex equipment and high energy consumption become the bottleneck of its industrial application. In the view of these two kind of technical problems, this paper will combine the DBD plasma technology with activated carbon adsorption, used in the degradation of printing and dyeing wastewater, on one hand, the use of activated carbon adsorption can be extend the pollutants and active particles contact time and improve the degradation efficiency of DBD plasma; on the other hand, with the degradation of pollutants on the activated carbon, the activated carbon can be regenerated simultaneously. In this paper, the main results are as follows:
     (1) At the same experimental conditions (discharge voltage, power frequency, initial concentration, pH and circulating flow), The experiment investigated the activated carbon adsorption method,DBD plasma method and DBD plasma-activated carbon treatment three different treatment methods on the degradation of fuchsin basic.The results showed that:DBD plasma-activated carbon treatment can greatly improve the decolorization rate and COD removal of basic fuchsin simulated dyeing wastewater.
     (2) Examined reactor process parameters (such as discharge voltage, power frequency, etc), add the amount of activated carbon and recycle flow rate and other factors on DBD plasma-activated carbon degradation of basic fuchsin.The results showed that:in the power frequency f=8kHz and 10kHz conditions, can obtian a good decolorization rate; The degradation effect of Basic fuchsin solution under acidic and neutral conditions is superior to the alkaline conditions; Too large or too small recycle flow is not conducive to the degradation of basic fuchsin;The increase of the decolorization rate of Basic fuchsin basic is with the activated carbon dosage increase; Basic fuchsin solution initial concentration is higher, the decolorization rate is worse.
     (3) Through the degradation of pH value, CODcr value and spectrum variation of fuchsin basic,can be inferred the degradation mechanism of Basic fuchsin, under the action of O3,·OH and other active particles generated in the DBD plasma, the hydroxylated benzene ring structure of basic fuchsin occurs first, and further open-loop, and then the organic matter was oxidized with fat family Organic oxidation way, eventually mineralized into CO2 and H2O.
     (4) By varying the experimental conditions, investigate the change of DBD plasma regeneration of activated carbon adsorption isotherms and adsorption.The results showed that, DBD plasma regeneration of activated carbon on adsorption isotherms of Fuchsin Basic slightly below the new activated carbon, but for saturated activated carbon, adsorption capacity has greatly improved; As U-d=8KV-6mm, the adsorption rate of regenerated activated carbon is closest to the new activated carbon, As U-d=9KV-8mm, activated carbon regeneration effect is the worst; In the power frequency f=8kHz and 10kHz, the regenerated activated carbon adsorption rate is higher than the f=9kHz; the adsorption rate of regenerated activated carbon diminished with the added amount of carbon, indicated that the smaller use of activated carbon, the regeneration rate is better.
引文
[1]屈广周.DBD等离子体降解活性炭吸附的有机物及活性炭再生研究[D].大连理工大学,2010.
    [2]钱慧娟.国外活性炭水处理技术的应用与发展[J].生物质化学工程,1988,02:28-31.
    [3]王爱平,刘中华.活性炭水处理技术及在中国的应用前景[J].昆明理工大学学报(理工版).2002,6(27):48-51.
    [4]李英杰,纪智玲,候风等,活性炭吸附法处理含铬废水的研究[J].沈阳化工学院学报,3(19):184-187.
    [5]朱新锋.用活性炭处理焦化废水的研究[J].燃料与化工,2005,5(36):43-45.
    [6]王九思,卯晖.活性炭吸附—化学氧化处理印染废水[J].兰州铁道学院学报(自然科学版),2000,6(19):77-80.
    [7]沈善明,徐振新.粉末活性炭热再生[J].上海环境科学,1984,04.15-19.
    [8]张会平,钟辉,叶李艺.苯酚在活性炭上的吸附与脱附研究[J].化工科技,1999,7(4):35-38.
    [9]张果金,周永璋,魏无际等.废水处理中用于活性炭再生的新型再生剂[J].南京化工大学学报.1999,6(21):73-75.
    [10]曾雪玲,唐晓东,卢涛.活性炭再生技术的研究进展[J].四川化工.2008,4(11).11-14.
    [11]张会平,钟辉,叶李艺.不同化学方孩再峨活性炭的对比研究[J].化工进展.1999.5.31-34.
    [12]张爱丽,杨桦,金若菲等.吸附苯胺饱和颗粒活性炭生物再生特性研究[J].大连理[工大学学报.2010,1(50):31-37.
    [13]ZhaoX,Hickey RF,Voice TC, et al. Long-term evaluation of adsorption capacity in bio logical activated carbonfluidized bed reactor system[J].WatRes,1999,33(13):2983-2991.
    [14]WedekingC.A.,SnoeyinkV.L.,LarsonR.A.,et al.Wet Air Regeneration of PAC:ComParison of Carbons with Different Surface oxygen Charaeeristies.WaterRes.,1987,21:929-937.
    [15]李光明,王华,陈玲等.多相催化湿式氧化法再生活性炭反应条件[J]同济大学学报.2004,5(32):635-643.
    [16]LiuXT,QuanX, BoLL,et al.Simultaneous Pentachlorophenol decomposition and graularac tivated carbon regeneration assited by microwave irradiation[J].Carbon,2004,42(2):425-4 22.
    [17]王三反.超声波再生活性炭的初步研究[J].中国给水排水,1998,14(2):24-26.
    [18]雷乐成,汪大肇.水处理高级氧化技术[M].北京:化学工业出版社,2001.
    [19]高尚愚,陈维.活性炭基础与应用[M].北京:中国林业出版社,1984.
    [20]吕德隆,白汾河.高频脉冲活性炭再生新技术[J].江苏科技信息.1997,6:13-14.
    [21]张倩倩,邱业先,朱艳霞等.阳离子淀粉絮凝剂的制备及对印染废水的处理[J].苏州科技学 院学报(自然科学版).2011,3(28):45-49.
    [22]高蓉菁,夏明芳,尹协东等.臭氧氧化法处理印染废水[J].污染防治技术.2003,4(16):68-70.
    [23]高立新,王燕,张大全.电化学法处理印染废水[J].印染.2010,10:12-15.
    [24]安虎仁,钱易,顾夏声.染料在好氧条件下的生物降解性能[J].环境科学.1994,6(15):16-19.
    [25]邵坚,翟鸿飞,刘或.光催化-好氧生物降解处理染料废水试验研究[J].人民黄河.2009,11(31):60-63.
    [26]刘兴旺,戴友芝.厌氧生物法处理活性染料废水的研究[J].湘潭大学自然科学学报.2005,2(27):116-119.
    [27]于振生.活性染料废水厌氧生物脱色影响因素的试验研究[J].河北建筑科技学院学报.1997,2(14):9-12.
    [28]程沧沧,胡德文,周菊香.微电解-光催化氧化法处理印染废水[J].水处理技术.2005,7(31):46-47.
    [29]柴嫔姬,何誉,张波等.光催化氧化处理亮蓝染料废水研究[J].河北化工.2009,5(32):30-32.
    [30]褚旅云,廖传华,方向.超临界水氧化法处理高含量印染废水研究[J].水处理技术.2009,8(35):84-86.
    [31]马承愚,李艳华,李丹等.超临界水氧化法处理活性染料生产废水[J].化学世界.2006,12:723-725.
    [32]李绍锋,张秀忠,等.Fenton试剂氧化降解活性染料的实验研究[J].给水排水,2002,28(3):46-49.
    [33]徐向荣,王文华,等.Fenton试剂处理酸性染料废水的研究[J].环境导报,1999,12(4):228-230.
    [34]谭万春,稂友明,王云波等.混凝-Fenton试剂对印染废水的处理[J].长沙理工大学学报(自然科学版).2010,1(7):87-91.
    [35]毛志红,汤茜,范宗良等.阴极电Fenton法处理模拟偶氮染料废水影响因素的研究[J].水处理技术.2010,1(36):91-94.
    [36]刘静,谢英,卞华松.超声电化学法处理印染废水的实验研究[J].上海环境科学.2001,3(20):151-153.
    [37]朱驯,项东升,刘德驹等.内电解-超声波耦合处理活性黄3RX染料废水的研究[J].工业水处理.2010,3(30):25-27.
    [38]雷乐成,汪大辉.湿式氧化法处理高浓度活性染料废水[J].中国环境科学.1999,19(1):42-46.
    [39]刘刚,雷乐成,岑沛霖.纺织印染废水的湿式空气氧化处理[J].浙江大学学报(工学版).2001,1(35):37-40.
    [40]王良.常压介质阻挡放电材料表面处理装置的优化[D].东华大学.2006.
    [41]王育.介质阻挡放电下甲烷转化的基础研究[D].天津大学.2003
    [42]高锦章,俞洁,李岩等.辉光放电等离子体技术处理印染废水的研究[J].环境化学.2005,2(24):183-185.
    [43]张道勇,潘响亮,穆桂金.辉光放电降解酸性红染料废水[J].水处理技术.2008,7(34):55-57.
    [44]王晓艳,胡中爱,高锦章等.接触辉光放电等离子体处理染料废水[J].石化技术与应用.2001,6(19):401-404.
    [45]胡祺吴,王黎明,黄兴华等.高压脉冲放电降解染料废水的实验研究[J].清华大学学报(自然科学版).2002,9(42):1148-1150.
    [46]王慧娟,李杰,全燮.高压脉冲放电等离子体处理酸性橙Ⅱ染料废水的实验研究[J].北京理工人学学报.2005,1(25):222-225.
    [47]张波,杨峰,王成敏等.高压脉冲放电处理KN-B染料废水的试验[J].江苏大学学报(自然科学版).2009,4(30):410-414.
    [48]叶其政,万辉,雷燕.放电等离子体水处理中的若干问题[J].高电压技术,2003,29(4):32-34.
    [49]刘亚纳,严建华,等.滑动弧等离子体在废水处理应用中的研究进展[J].高电压技术,2007,33(2):159-162.
    [50]刘惠,杜长明,米琼等.高压滑动弧放电等离子体降解酸性橙Ⅱ的研究[J].沈阳农业大学学报.2010,41(2):214-217.
    [51]严建华,刘亚纳,李晓东等.不同气氛下气液两相滑动弧放电降解甲基紫[J].浙江大学学报(工学版).2009,5(43):931-936.
    [52]赵化侨.等离子体化学与工艺[M].合肥:中国科学技术大学出版社,1993.
    [53]王良,唐晓亮,邱高等.常压DBD等离子体对高分子纤维材料改性应用[J].新技术新工艺.2005,6:61-62
    [54]王良,唐晓亮,严治仁等.介质阻挡放电参数诊断及对材料表面改性的研究[J].上海纺织科技.2005,6(33):16-18.
    [55]杨长河,余秋梅,等.介质阻挡放电处理含喹啉废水实验[J].高电压技术,2010,36(9):2316-2323.
    [56]黄芳敏,王红林,严宗诚等.介质阻挡放电等离子体对亚甲基蓝的降解[J].环境科学与技术.2010,2(33):35-38.
    [57]刘建伟.氮杂环化合物介质阻挡放电降解的实验研究及机理初探[D].南昌大学.2010.
    [58]宁永成.有机化合物机构鉴定与有机波谱学[M].北京:科学出版社,2001.
    [59]唐恢同.有机化合物的光谱鉴定[M].北京:北京大学出版社,1992.
    [60]Lee D,Hong SH,Paek KH,et al. Adsorbability enhancement of activated carbon by die lectric barrier discharge Plasma treatment[J].Surface and Coatings Technology.2005,200 (7):2277-2282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700