辉光放电等离子体的产生及其反应活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辉光放电等离子体是一种新型的高级氧化技术,具有装置简单、放电电压低、处理效果好和能量效率高的特点。在辉光放电过程中能产生各种活性物质如OH、H、H2O2,其中OH、H2O2具有强氧化性,可以有效降解水溶液中的有机污染物,特别适用于有机废水的处理。本论文主要考察接触式、液下式和隔膜式三种辉光放电反应器产生等离子体过程中的Ⅰ-Ⅴ特征曲线、活性物质H2O2的浓度和以酸性橙(AO)为目标污染物时的脱色效果。
     本论文系统考察多电极接触辉光放电反应器的优势,利用接触辉光放电电解装置考察多电极对Ⅰ-Ⅴ曲线、H202浓度以及AO脱色效果的影响。结果表明:在2.0g/L的Na2SO4溶液中单电极与多电极对应的临界电压(VD)基本相同,均在490V左右;阳极液中的H2O2浓度和AO脱色率都随着反应时间和阳极数目的增加而升高,且随着阳极数目的增多,相应地能量效率也越来越高;利用不锈钢丝替代铂丝,改进原有的多电极接触辉光放电反应器,AO的脱色率明显加快,为以不锈钢丝为阳极的能量效率均比以铂丝为阳极时高;对于较高浓度的AO溶液,多电极接触辉光放电实验装置也有较好的处理效果。
     利用液下辉光放电实验装置考察溶液初始电导率和电解质的影响,优化阳极位置、阴极材质和尺寸等实验条件,以及研究多电极对Ⅰ-Ⅴ曲线、H2O2浓度和AO脱色效果的影响。结果表明:临界电压VD随溶液电导率增高而降低,放电处理20min后溶液中H202浓度随溶液电导率升高而增大;当溶液初始电导率相同时,VD受电解质组分的影响较小;阳极水平插入时H2O2的浓度最大,AO的脱色率最高;阴极材质和尺寸对临界电压的影响不大;发现单电极与多电极对应的临界电压基本相同,均在500V左右;阳极液中的H2O2浓度和AO脱色率都随着反应时间和阳极数目的增加而升高,而且随着阳极数目的增多,相应的能量效率也越来越高;对于较高浓度的AO溶液,多电极液下辉光放电实验装置也有较高的脱色效率;随着阳极数目的增加,COD和TOC的去除率都明显增大。
     利用隔膜辉光放电实验装置优化孔径、电压等实验参数,考察溶液初始电导率对Ⅰ-Ⅴ曲线的影响,及电解质对H2O2浓度和AO脱色效果的影响。结果表明:H2O2浓度和AO脱色率均随着孔径的增大而升高;当溶液初始电导率相同时,相同电解质组分中H2O2的浓度越高相应溶液中AO的脱色率也就越高,电解质组分对H2O2的浓度和AO的脱色率有一定影响,在NaCl溶液中,辉光放电反应过程中H2O2的浓度较低,但AO的脱色率最高。
Glow discharge plasma (GDP) is a novel advanced oxidation technology, since many species such as OH, H, H2O2are produced in the discharge process. These radicals can diffuse in the surrounding liquid and be used for the removal of dissolved compounds. Especially, OH, with higher oxidation potential, can break the molecular bonds of organic pollutants. This makes GDP particularly suitable for decontamination. In addition, GDP has many advantages, such as simpler equipment, lower applied voltage and higher energy efficiency. In order to study the onset and active species of GDP, this paper investigated Ⅰ-Ⅴ characteristic curve, concentration of H2O2and discoloration efficiency of Acid Orange (AO) with three kinds of glow discharge reactors.
     This paper systematically investigated the onset multi-anode contact glow discharge electrolysis (m-CGDE). It was found that the critical voltage of m-CGDE was same to that of single anode. The concentration of H2O2in the anolyte and discoloration rates of AO increased with the increase of treatment time and anode number. It was also demonstrated that improved m-CGDE reactor efficiently accelerated the discoloration process of AO by replacing platinum wire with stainless steel wire. For higher concentration AO solution, m-CGDE also showed higher discoloration efficiency.
     In addition, this paper investigated the onset of underwater glow discharge. The experimental conditions such as the position of the anode, cathode material and size, voltage were optimized. The results showed that VD decreased with the increasing conductivity of solution. Different electrolytes had insignificant effect on VD. It was found that the critical voltage of multi-anode glow discharge electrolysis (m-GDE) was same to that of single anode. The concentration of H2O2in the anolyte and discoloration rates of AO increased with the increase of treatment time and anode number. For higher concentration AO solution, m-GDE also showed higher discoloration efficiency. COD and TOC removal rate increased with an increase of anode number.
     Finally, this paper investigated the onset and active activity of diaphragm glow discharge (DGD). It was found that Ⅰ-Ⅴ characteristic was similar to that of CGDE. IThe concentration of H2O2in the anolyte and discoloration rates of AO increased with the increase of hole's diameter. The discoloration rates of AO increased with the increase of the concentration of H2O2in the same electrolyte. Different electrolytes had effect on the concentration of H2O2in the anolyte and discoloration rates of AO, especially the NaCl solution.
引文
电等离子体只是处于实验室研究阶段,在今后的研究中还需要进一步探索。参考文献
    [1]国家环境保护局.2010中国环境状况公报[J].环境保护,2011,(6):30-32.
    [2]陈德强.高级氧化法处理难降解有机废水研究进展[J].环境保护科学,2005,31(132):20-230.
    [3]郭和民.浅析高级氧化技术及在污水处理中的应用[J].环保技术,2011(3):80-83.
    [4]江传春,肖蓉蓉,杨平.高级氧化技术在水处理中的研究进展[J].水处理技术,2011,37(7):12-17.
    [5]陈伯通,罗建中,刘芳.低温等离子体氧化法及其在有机废水中的应用[J].工业水处理,2006,26(12):5-8.
    [6]杨丹凤.低温等离子体技术及其应用研究进展[J].中国公共卫生,2002,18(1):107-108.
    [7]刘芳,黄海涛,黄绍松,等.电晕放电等离子体杀菌的实验研究[J].工业安全与环保.2009,35(8):1-4.
    [8] Michael J, Kirkpatrick, Bruce R. Locke. Hydrogen, oxygen, and hydrogen peroxide formationin aqueous phase pulsed corona electrical discharge[J]. Ind. Eng. Chem. Res.2005,44,4243-4248.
    [9] M. Dors, E. Metel, J, Mizeraczyk. Phenol Degradation in water by pulsed streamer coronadischarge and fenton reaction[J]. International Journal of Plasma Environmental Science&Technology,2007,1(1):76-81.
    [10] Wen Yuezhong, Liu Huijun, Liu Weiping, et al. Degradation of organic contaminants in waterby pulsed corona discharge[J]. Plasma Chemistry and Plasma Processing,2005,5(2):137-146.
    [11]李胜利,李劲等.用高压脉冲放电等离子体处理印染废水的研究[J].中国环境科学,1996,16(1):73-76.
    [12]靳承铀.介质阻挡放电反应器在水处理中的实验研究[D].大连:大连理工大学,2003.
    [13]马跃,张冠军,许桂敏,等.介质阻挡放电等离子体射流装置的实验研究[J].高压电器,2010,46(7):36-40.
    [14]史恒超,王文春,杨德正,等.介质阻挡放电中OH自由基对甲醛脱除的影响[J].物理化学学报,2011,27(8),1979-1984.
    [15]高丽,李骁勇,陈杰瑢,等.大气压介质阻挡放电降解4-氯酚废水的试验研究[J].水处理技术.2011,37(1):62-65.
    [16] Wang X, Rong M, Liu D. Structural optimization of multi-needle to plane electrodes fordielectric barrier discharge[C].200817th International Conference on Gas Discharges andtheir Applications (GD2009),2009.
    [17]王正芳,王卫平,郑正,等.介质阻挡放电与活性炭纤维协同去除水中的3,4-二氯苯胺[J].环境化学,2011,30(5):1000-1005.
    [18]张丽,孙冰,等.脉冲放电等离子体技术处理偶氮染料废水[J].大连海事大学学报,2007,33(2):67-70.
    [19]陈银生,张新胜,常胜,等.脉冲放电等离子体降解废水中有机物的作用机理探索[J].环境科学学报,2005,25(1):113-116.
    [20]兰生,杨嘉祥,蒋杰灵.脉冲放电处理苯酚废水降解过程的分析[J].环境科学学报,2009,29(6):1209-1214.
    [21] Zhang Li, Sun Bing, Zhu Xiaomei. Organic dye removal from aqueous solution by pulseddischarge on the pinhole[J]. Journal of Electrostatics,2009(67):62–66.
    [22]董冰岩,谢文涓,唐敏康,等.线板脉冲放电对罗丹明B脱色的实验研究[J].高压电技术,2008,34(8):1672-1676.
    [23]刘亚纳,严建华,等.滑动弧等离子体在废水处理应用中的研究进展[J].高电压技术,2007,33(2):159-162.
    [24]刘芳,黄海涛,黄绍松,等.高压滑动弧放电等离子体降解AOⅡ的研究[J].沈阳农业大学学报.2010,4(12):214-217.
    [25] L. A. Kuz’micheva, Yu. V. Titova, A. I. Maksimov. Investigation of atmospheric-pressuregliding discharge action on an electrolyte solution[J]. Surface Engineering and AppliedElectrochemistry,2008,44(2):106-109.
    [26] Liu Yana, Tian Hui, Si Anheng. Gliding arc discharge for decolorization and biodegradabilityof azo dyes and printing and dyeing wastewater[J]. Plasma Chemistry and Plasma Processing,2012, DOI:10.1007/s11090-012-9360-5.
    [27]李晓东,杜长明,严建华,等.气液滑动弧等离子体降解高浓度有机废水的研究[J].工程热物理学报,2006,27(2):237-239.
    [28]金钦汉.微波化学[M].北京:科学出版社,1999.
    [29]孙萍.微波技术在环保领域的应用[J].化工环保,2002,22(2):53-55.
    [30] A Hickling, G RNewns. Glow discharge electrilysis: Part V the contact glow dischargeelectrolysis of liquid ammonia [J]. Chem Soc,1961,5:186-190.
    [31] S K Sengupta, R Singh, A K Srivastva. A study on the origin of nonfaradaic behavior ofanodic contact glow discharge electrolysis[J]. Electrochemical Soc,1998,145:2209-2213.
    [32] S K Sengupta, R Singh, A K Srivastva. A study on the nonfaradaic yields of anodic contactglow discharge electrolysis using cerous ion as the scavenger: An estimate of primary yieldof OH radicals[J]. Indian Jourmal of Chemistry,1998,37A:558-560.
    [33] A Hickling, M D Ingram. Glow-discharge electrolysis[J]. Trans Faraday Soc,1964,60:783-792.
    [34] T Anthony, L G David, D I Malcolm. Electron spin resonance detection of spin-trappedradicals formed during the glow-discharge electrolysis of aqueous solution[J]. J C S FaradayI,1980,76:648-653.
    [35] K S Singh, R S Rajeshwa, K S Ashok. Chemical effects of anodic contact glow dischargeelectrolysis in aqueous formic acid solution: formation of oxalic acid [J]. Indian Jourmal ofChemistry,1995,34A:459-461.
    [36] Wang Lei. Aqueous organic dye discoloration induced by contact glow dischargeelectrolysis[J]. Journal of Hazardous Materials.2009,171(1):577-581.
    [37] Gao J, Hu Z, Wang X, Hou J, et al. Oxidative degradation of acridine Orange induced byplasma with contact glow discharge electrolysis[J]. Thin Solid Films,2001,390:154-158.
    [38] Liu Yongjun, Jiang Xuanzhen. Phenol degradation by a nonpulsed diaphragm glow dischargein an aqueous solution[J]. Environ. Sci. Technol.2005,39:8512-8517.
    [39] Jinzhnag Gao,Lumei pu, et al. Oxidative degradation of nitrophenols in aqueous solutioninduced by plasma with submersed glow dischagre electorlysis[J]. Plasma Processes&Polymesr,2004, l(2):171-176.
    [40] Jin Xinglong, Wang Xiaoyan, Yue Junjie, et al. The effect of electrolyte constituents oncontact glow discharge electrolysis[J]. Electrochimica Acta2010,56(2):925-928.
    [41] Gao Jinzhang, Wang Aixiang, Fu Yan, et al. Analysis of energetic species caused by contactglow discharge electrolysis in aqueous solution[J]. Plasma Science and Technology,2008,10(1):30-38.
    [42] Tezuka M, Iwasaki M. Oxidative degradation of phenols by contact glow dischargeelectrolysis[J]. Denki Kagaku1997,65:1057-1058.
    [43] Tezuka M, Iwasaki M. Plasma Induced degradation of chlorophenols in an aqueoussolution[J]. Thin Solid Films,1998,316:123-126.
    [44] Tezuka M, Iwasaki M. Liquid-phase reactions induced by gaseous plasma: decomposition ofbenzoic acids in aqueous solution[J]. Plasmas Ions.1999, l:23-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700