低温等离子体汽油重整及对汽油机稀薄燃烧影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高车用发动机经济性与降低排放是目前社会所面临的两个重要课题,以往研究表明,如果采用氢气等辅助发动机燃烧,能够进一步扩大发动机的稀燃极限,使发动机在超过汽油可燃极限的空燃比下仍然能够稳定工作,发动机NOx排放水平非常低,然而这种技术的推广却受到车载氢源的限制。针对这种情况,本文提出了一种采用低温等离子体,借助发动机排气对汽油进行重整的方法,以制得富氢的混合气体辅助发动机实现混氢的稀薄燃烧,提高发动机经济性,同时在不依靠后处理的情况下,使发动机原机NOx排放满足目前排放法规要求。
     通过对系统的热力分析表明,利用发动机排气进行重整,具有比部分氧化重整更高的重整效率,将该重整系统用于辅助发动机稀薄燃烧时,不会对发动机的充气效率和最大功率产生太大影响。针对传统催化方法易中毒、体积大、响应慢等缺点,本文设计了一种利用冷等离子体进行汽油重整的装置,并提出了一种能够产生旋转滑动弧低温等离子体的方法,设计了一套等离子体试验电源。通过试验研究表明,利用该系统对汽油进行重整,当重整气体为发动机排气时,重整效率达到80%以上。
     将重整系统应用到稀薄燃烧发动机中的研究表明,随着重整比例的增大,发动机稀燃极限也逐渐增大,当发动机工作在可接受的发动机循环变动范围内时,NOx排放随稀燃极限的增大而降低。当重整比例30%时,发动机稀燃极限扩大到30左右,此时发动机NOx排放低于70ppm,低负荷时甚至低于40ppm;与发动机当量比工作时相比,NOx排放降低幅度达97%以上。虽然重整效率小于1,然而重整比例对于发动机经济性影响较小,在考察的工况范围内,发动机经济性提高约12~20%。另外,本文还对利用重整系统放出的热量对进气进行加热,研究表明,进气加热也能够起到扩大稀燃极限的作用,而且改善了发动机的经济性,NOx排放也随着发动机稀燃极限的增大而降低。
     本文建立了发动机准维燃烧模型,对采集的缸内压力信号进行分析,得到了MBR、燃烧速度ST、缸内温度、NOx排放等参数。通过对MBR、ST的分析表明,随着重整比例的增大,发动机的燃烧速度逐渐增大,因此发动机的燃烧稳定性得到增强,发动机稀燃极限随之提高。而随着发动机稀燃极限的增大,缸内温度历程以及最高温度都降低,甚至降到了1900K以下,在该温度下NOx生成速率降低,发动机NOx排放得到了很大的改善。
Development of low emission and low fuel consumption engine becomes more important because of running out of fossil fuels, air pollution and global warming up problems. Previous research has shown that using hydrogen to enhance combustion, the engine’s lean burn limits can be further expanded. Therefor engine can still work stably with higher air-fuel ratio than the flammability limits of gasoline, and very low NOx emission can be achieved. However this technique is restricted by the short of hydrogen facilities on vehicle. In light of this situation, this paper presents a solution to use the exhaust gas, by the aid of cold plasma, to reform part of the fuel to hydrogen-rich gas, to improve lean burn of gasoline engine, for that the engine’s efficiency can be increased and the plane engine’s NOx emission can meet current regulations without any after treatment.
     Thermodynamic analysis of the reforming system shows that the reforming efficiency with the engine exhaust is higher than partial oxidation reforming with pure air. For supporting engine’s lean burn combustion, reforming will not have a significant negative impact on volumetric efficiency and maximum power of the engine. Since the traditional catalytic reformer has many shortcomings as easy poisoning, bulky, and slow response, this paper designed a new type of plasma reformer, presented a method to produce rotating gliding arc plasma, and an experiment power system is also contrived. Experimental studies show that using this system to reform gasoline with exhaust gas, the achieved reforming efficiency is more than 80%.
     With applying this reforming system to one lean burn engine, experimental study shows that the lean limit of engine is gradually increased when the reforming proportion is increased, and the NOx emission is sharply lowered. When 30% fuel is reformed to hydrogen rich gas, NOx emissions is lower than 70ppm, and even can be below 40ppm at low load conditions. NOx reduction rate is higher than 97% when compared with stoichiometric working conditions. Although reforming efficiency is lower than one, reforming part of fuel will not have much influence on engine efficiency. In the examined working conditions, the engine efficiency is increased by about 12~20%. In addition, this paper discusses using of the heat of the reforming system for heating intake air. The results show that, gas heating can also play a role in expanding the lean burn limit, and the engine efficiency is also improved. With the lean limits is increased, NOx emissions is getting lower.
     This paper establishes a quasi-dimensional combustion engine model. By analyzing the cylinder pressure, the mass burn ratio, flame speed, cylinder temperature, and NOx emissions can be predicted. The result of MBR and flame speed indicates that when the proportion of reforming is increased, the flame speed is gradually increasing, so the stability of combustion is enhanced, and the lean limit is also increased. With the engine’s lean limit increasing, the temperature is dropped and the maximum cylinder temperature is decreased to a very low level. At some conditions temperature is even below 1900K, and NOx formation rate is greatly lowered.
引文
[1] Committee on the Effectiveness and Impact of Corporate Average Fuel Economy (CAFé) Standards, Effectiveness and impact of of Corporate Average Fuel Economy (CAFé) Standards, National Academy Press, 2001
    [2] 谢绍东,张远航,唐孝炎(北京大学),我国城市地区机动车污染现状与趋势,环境科学研究,Vol.13(4),2000
    [3] International Arctic Research Center, Impact of a Warming Arctic-Arctic Climate Impact Assessment, Cambridge University Press, 2004
    [4] Roland Kemmler, Anton Waltner, Christof,Current Status and Prospects for Gasoline Engine Emission Control Technology – Paving the Way for Minimal Emissions,SAE Paper 2000-01-0856, 2000
    [5] 大众汽车(中国)投资有限公司,European Union Council Directive,2001.7
    [6] Kimiyoshi Nishizawa,Sukenori Momoshima,Masaki Koga,etc. Development of New Technologies Targeting Zero Emissions for Gasoline Engines,SAE Paper 2000-01-0890, 2001
    [7] 黄永和,国外汽车油耗发展动态,汽车情报,1997 年第 6 期,4~7
    [8] 王莉,准均质稀薄燃烧发动机的建模与控制:[博士学位论文],天津;天津大学,2003
    [9] 史绍熙,苏万华,内燃机燃烧研究中的几个前沿问题,内燃机学报,1990,8(2):1-8
    [10] 苏万华等,新一代内燃机燃烧理论和石油燃料替代途径的基础研究,国家“973”重点基础研究发展规划项目建议书,2001
    [11] F. Millo,C. V. Ferraro,L. Pilo,A Numerical Contribution to the Improvement of Individual Cylinder AFR Control in a 4 Cylinder S.I. Engine,SAE Paper 2001-01-1009, 2001
    [12] F. Zhao, M.-C. Lai, D. L. Harrington,Automotive spark-ignited direct-injection gasoline engines,Progress in Energy and Combustion Science,1999,25(5):437-562
    [13] D. E. Webster,25 years of catalytic automotive pollution control:a collaborative effort,Topics in Catalysis,2001,16(1):33-38
    [14] M.S. Brogan, D. Swallow, R.J. Brisley,A New Approach to Meeting FutureEuropean Emissions Standards with the Orbital Direct Injection Gasoline Engine,SAE Paper 2000-01-2913, 2000
    [15] JinCai Zheng, Dexin Liu, David L. Miller et al,The Effect of Active Species in Internal EGR on Pre-ignition Reactivity and on Reducing UHC and CO Emissions in Homogeneous Charge Engines,SAE Paper 2003-01-1831, 2003
    [16] J. Stokes, et al,Improving the NOx/Fuel Economy Trade-off for Gasoline Engines with the CCVS Combustion System,SAE Paper 940482, 1994
    [17] 冯洪庆,刘德新,刘书亮等,车用汽油机稀燃催化器 NOx 排放控制技术,汽车技术,2003(8):20~24
    [18] Shi Shaoxi. Recent Progress in Combustion Technologies for Automotive Engines. 燃烧科学与技术,2001,7(1):1-15
    [19] Rudolf H. Stanglmaier,Charles E. Roberts. Homogeneous Charge Compression Ignition (HCCI):Benefits,Compromises,and Future Engine Applications. SAE Paper 1999-01-3682,1999
    [20] Paul E. Kapus and Peter Poetscher , ULEV and Fuel Economy – A Contradiction?,SAE Paper 2000-01-1209,2000
    [21] Kevin Jost,Spark-ignition engine trends,automotive engineering international,SAE Technical Paper 1-110-1-26, 2002:26~39
    [22] Paul E. Kapus, Dirk Denger and Trevor Holl, Intelligent Simplification-Ways Towards Improved Fuel Economy. SAE Paper 2002-01-0236,2002
    [23] 王建昕,傅立新,黎维彬,汽车排气污染治理及催化转化器,北京:化学工业出版社,2000.5
    [24] Magnus Sjoberg, Lars-Olof Edling, Torbjorn Eliassen et al,GDI HCCI:Effects of Injection Timing and Air Swirl on Fuel Stratification,Combustion and Emissions Formation,SAE Paper 2002-01-0106, 2002
    [25] C. Arcoumanis, A.C. Enotiadis, J.H. Whitelaw, Frequency Analysis of Tumble and Swirl in Motored Engines. Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering, 1991, 205(3):177-184
    [26] Herbert Heitland, G. Rinne, and M. Willmann et al. IC Engines for 100 Miles/Gallon Cars. SAE Paper 2001-01-0258,2001
    [27] 李勤,现代内燃机排气污染物的测量与控制,北京:机械工业出版社,1998
    [28] 肖浩栋,二气门电控 TJ376Q 汽油机稀混合气燃烧过程研究:[博士学位论文],天津;天津大学,2000
    [29] C.Arcoumainis,et al,Frequency Analysis of Swirl and Tumble in Motor Engines. Port D,ImechE,1991
    [30] 李玉峰,四气门汽油机缸内滚流运动及其对燃烧过程的影响的研究:[博士学位论文],天津;天津大学,1994
    [31] 刘书亮,汽油机气缸内滚流强度的预测,内燃机学报,1998,16(2):161~167
    [32] 刘书亮,宋飞舟,汽油机滚流模拟试验和滚流进气道的试验研究,内燃机工程,1995,16(4):1~9
    [33] Alain Floch, Jean Van Frank, and Afif Ahmed,Comparison of the Effects of Intake-Generated Swirl and Tumble on Turbulence Characteristics in a 4-Valve Engine. SAE Paper 952457, 1995
    [34] T. Inoue, S. Matsushita, K. Nakanishi et al., Toyota lean combustion system - The third generation, SAE Paper 930873, 1993
    [35] Shigeo Furuno, Satoshi Iguchi, Kiyohiko Oishi, et al,The Effects of ‘Inclination Angle of Swirl Axis’ on Turbulence Characteristics in a 4-Valve Lean-Burn Engine with SCV,SAE Paper 902139, 1990
    [36] Kaoru Horie,Kazutoshi Nishizawa,et al. The Development of a High Fuel Economy and High Performance Four-Valve Lean Burn Engine. SAE Paper 920455, 1992
    [37] Yuhiko Kiyota, Katsuo Akishino, Hiromitsu Ando,Concept of Lean Combustion by Barrel-Stratification,SAE Paper 920678, 1992
    [38] Kuwahara, K. and Watanabe, T.,Optimization of In-cylinder Flow and Mixing for a Center Spark Four Valve Engine Employing the Concept of Barrel Stratification,SAE Paper 940986, 1994
    [39] Geoffrey Cathcart and Christian Zavier,Fundamental Characteristics of an Air-Assisted Direct Injection Combustion System as Applied to 4-Stroke Automotive Gasoline Engines,SAE Paper 2000-01-0256, 2000
    [40] 王燕军, 王建昕, 帅石金等,汽油机稀薄燃烧研究的新进展——从 GDI 到HCCI,汽车技术,2002(8):1~5
    [41] M. Tabata, T. Yamanoto, T. Fukube, Improving NOx and fuel economy for mixture injected SI engine with EGR, SAE Paper 950684, 1995
    [42] M. Tabata, M. Kataoka, M. Fujimoto, et al., In-Cylinder Fuel Distribution, Flow Field, and Combustion Characteristics of a Mixture Injected SI Engine. SAE Paper 950104, 1995
    [43] 魏象仪,内燃机燃烧学,大连:大连理工大学出版社,1992
    [44] L.A. Gussak, High chemical activity of incomplete combustion products and amethod of prechamber torch ignition for avalanche activation of combustion in internal combustion en gines, SAE Paper 750890, 1975
    [45] L.A. Gussak, The role of chemical activity and turbulence intensity in prechamber-torch organization of combustion of a stationary flow of a fuel-air mixture, SAE Paper 830592, 1983
    [46] L.A. Gussak, V.P. Karpov, and Y.V. Tikhonov, The application of lag process in prechamber engines, SAE Paper 790692, 1979
    [47] N. Glasson, G.A. Lumsden, R. Dingli et.al, Development of the HAJI system for a multi-cylinder spark ignition engine, SAE Paper 961104, 1996
    [48] G. Lumsden, H.C. Watson, Optimum Control of an S.I. engine with a λ= 5 capability, SAE Paper 950689, 1995
    [49] G. Lumsden, H.C. Watson, HAJI operation in a hydrogen-only mode for emission control at cold start, SAE Paper 950412, 1995
    [50] Watson, The Future for High Efficiency Low Emissions Engines, Proceedings of the Fourth Asian Pacific International Symposium on Combustion and Energy Utilization,1997.11
    [51] C.K. Law, F.N. Egolfopoulos, A Unified Chain-Thermal Theory of Fundamental Flammability Limits, Twenty-Fourth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, 1992 : 137~144
    [52] P.F. Flynn, G.L. Hunter, L.A. Farrell, et al. The Inevitability of Engine-Out Nox Emissions from Spark-Ignition and Diesel Engines,Twenty Eighth International Symposium on Combustion, Edinburgh, Scotland, 2000
    [53] P.F. Flynn, G.L. Hunter, R.P. Durrett, et al. Minimum Engine Flame Temperature Impacts on Diesel and Spark-Ignition Engine NOx Production,SAE Paper 2000-01-1177, 2000
    [54] J.B. Heywood, Internal Combustion Engine Fundamentals, New York: Mc Graw-Hill, 1989
    [55] A. Oakley, H. Zhao and N. Ladommatos, Experimental Studies on Controlled Auto-ignition (CAI) Combustion of Gasoline in a 4-Stroke Engine. SAE Paper 2001-01-1030, 2001
    [56] H. Zhao, J. Li, T. Ma et al., Performance and Analysis of a 4-Stroke Multi-Cylinder Gasoline Engine with CAI Combustion. SAE Paper 2002-01-0420, 2002
    [57] T. Aoyama, Y. Hattori, and J. Mizuta, An Experimental Study onPremixed-Charge Compression Ignition Gasoline Engine, SAE Paper 960081, 1996
    [58] A.A. Quader, What Limits Lean Operation in Spark Ignition Engines: Flame Initiation or Propagation?, SAE Paper 760760,1976
    [59] J. Houseman, and F.W. Hoehn,, A Two-Charge Engine Concept: Hydrogen Enrichment, SAE Paper 741169, 1974
    [60] N. Apostolescu and R. Chiriac, A Study of Combustion of Hydrogen-Enriched Gasoline in a Spark Ignition Engine. SAE Paper 960603, 1996
    [61] T. D. Andrea, P.F. Henshaw, D.S.-K. Ting, The addition of hydrogen to a gasoline-fuelled SI engine, International Journal of Hydrogen Energy, 2004, 29(14): 1541~1552
    [62] J.D. Li, L.S. Guo, and T.S. Du, Formation and restraint of toxic emissions in hydrogen-gasoline mixture fueled engines, Int. J. Hydrogen Energy, 1998, 23(10): 971~975
    [63] G. Fontana, E. Galloni, E. Jannelli, et al. Performance and Fuel Consumption Estimation of a Hydrogen Enriched Gasoline Engine at Part-Load Operation, SAE Paper 2002-01-2196, 2002
    [64] S. Furuhama, K. Yamane and I. Yamaguchi, Combustion Improvement in a Hydrogen Fueled Engine", Int. J. of Hydrogen Energy, 1977, 2(3): 205~209
    [65] T.D. Andrea, The addition of hydrogen and oxygen to a gasoline-fuelled SI engine to enhance combustion and reduce emissions.[Master thesis], Canada: Windsor university, 2003
    [66] D.M. Arthur, Using Hydrogen to Extend the EGR Limit of SI Engines, [Master Thesis] Canada: Alberta University, 2005
    [67] J. Houseman and D.J. Cerini, On-Board Hydrogen Generator for a Partial Hydrogen Injection Internal Combustion Engine, SAE Paper 740600, 1974
    [68] Y. Jamal, and M.L. Wyszynski, On-Board Generation of Hydrogen-Rich Gaseous Fuels – A Review, International Journal of Hydrogen Energy, 1994, 19(7): 557~572
    [69] L. Bromberg, D.R. Cohn, A. Rabinovich, et al. Emissions reductions using hydrogen from plasmatron fuel converters. International Journal of Hydrogen Energy, 2001, 26(10):1115~1121
    [70] J.E. Kirwan, A.A. Quader and M.J. Grieve, Advanced Engine Management Using On-Board Gasoline Partial Oxidation Reforming for Meeting Super-ULEV(SULEV) Emissions Standards SAE Paper 1999-01-2927, 1999
    [71] A.A. Quader, J.E. Kirwan and M.J. Grieve, Engine Performance and Emissions Near the Dilute Limit with Hydrogen Enrichment Using an On-Board Reforming Strategy. SAE Paper 2003-01-1356, 2003
    [72] A. Tsolakis and A. Megaritis, Exhaust Gas Fuel Reforming for Diesel Engines – A Way to Reduce Smoke and NOX Emissions Simultaneously. SAE Paper 2004-01-1844, 2004
    [73] E. Tully, and J.B. Heywood, Lean-Burn Characteristics of a Gasoline Engine Enriched with Hydrogen from a Plasmatron Fuel Reformer. SAE Paper 2003-01-0630, 2003
    [74] T. Allgeier, M. Klenk and T. Landenfeld, Advanced Emission and Fuel Economy Concept Using Combined Injection of Gasoline and Hydrogen in SI-Engines. SAE Paper 2004-01-1270, 2004
    [75] E. Conte, K. Boulouchos, Influence of Hydrogen rich-gas addition on combustion, pollutant formation and efficiency of an IC-SI Engine. SAE Paper 2004-01-0972, 2004
    [76] J.A. Smith, and J.J. Bartley, Stoichiometric Operation of a Gas Engine Utilizing Synthesis Gas and EGR for NOx Control. Journal of Engineering for Gas Turbines and Power, 2000, 122(4): 617~623
    [77] 崔可润,高孝洪,氢在内燃机中的应用和发展,车辆与动力技术,l994(2):24~30
    [78] 杨振中,王丽君,熊树生,氢经济时代的车用 H2 燃料发动机的研究与展望,车用发动机,2005, 156(2): 1~5
    [79] 程振彪,世界燃料电池汽车技术的发展前景,汽车技术,2003, (23):28~30
    [80] T. Paulmier, L. Fulcheri, Use of non-thermal plasma for hydrocarbon reforming, Chemical Engineering Journal, 2005, 106(1): 59~71
    [81] S. Specchia, A. Cutillo, G. Saracco, et al. Hydrogen production by reforming of HC fuels: comparative analysis. Proceedings International Hydrogen Energy Congress and Exhibition IHEC 2005 Istanbul, Turkey, 13-15 July, 2005
    [82] S. Ahmed , M. Krumpelt, Hydrogen from hydrocarbon fuels for fuel cells. International Journal of Hydrogen Energy, 2001, 26(4): 291~301
    [83] 亓爱笃,王树东,洪学伦等,车载燃料电池移动制氢机浅议,天然气化工,2001,26(6): 39~43
    [84] Y. Jamal, T. Wagner, and M.L. Wyszynski, Exhaust Gas Reforming of Gasolineat Moderate Temperatures, Int. J. Hydrogen Energy. 1996, 24 (6):507~519
    [85] A. Tsolakis, A. Megaritis, Catalytic exhaust gas fuel reforming for diesel engines-effects of water addition on hydrogen production and fuel conversion efficiency. International Journal of Hydrogen Energy, 2004, 29(13): 1409-1419
    [86] S. Peucheret, M.L.Wyszynski, and R.S. Lehrle, et al. Use of catalytic reforming to aid natural gas HCCI combustion in engines: experimental and modelling results of open-loop fuel reforming. International Journal of Hydrogen Energy, 2005, 30(15):1583~1594
    [87] 李慧青,邹吉军,刘昌俊,等离子体法制氢的研究进展,化学进展,2005,17(1):69~77
    [88] 菅井秀郎编著,张海波, 张丹译,等离子体电子工程学,北京:科学出版社,2002
    [89] 赵化侨,等离子体化学与工艺,合肥:中国科学技术大学出版社,1993
    [90] 陈杰瑢,低温等离子体化学及其应用,北京:科学出版社,2001
    [91] M.I Boulos, Thermal plasma processing, IEEE Transactions on Plasma Science, 1991, 19(6): 1078~1089
    [92] B. Eliasson, U. Kogelschatz, Nonequilibrium volume plasma chemical processing, IEEE Transactions on Plasma Science, 1991, 19(6): 1063~1077
    [93] J.W. Coburn, Surface processing with partially ionized plasma, IEEE Transactions on Plasma Science, 1991, 19(6): 1048~1062
    [94] P. Fauchais, A. Vardde, Thermal plasmas, IEEE Transactions on Plasma Science, 1997, 25(6): 1258~1280
    [95] J.S. Chang, P.A. Lawless, T. Yamamoto, Corona discharge process, IEEE Transactions on Plasma Science, 1991, 19(6): 1152~1166
    [96] M.I. Boulos, The inductively coupled R.F. (radio frequency) plasma, Pure& Appl. Chem., 1985, 57(9): 1321~1352
    [97] A. Rabinovich, D.R. Cohn and L. Bromberg, Plasmatron internal combustion engine system for vehicle pollution reduction. Int J. Vehicle Design, 1995, 15(3): 234~242
    [98] L. Bromberg, D.R.Cohn, A. Rabinovich, et al., Compact Plasmatron-Boosted Hydrogen Generation Technology for Vehicular Applications, International Journal of Hydrogen Energy, 1990, 24(4): 341~350
    [99] A. Czernichowski, GlidArc Assisted Preparation of the Synthesis Gas from Natural and Waste Hydrocarbons Gases. Oil & Gas Science and Technology,2001, 56 (2): 181~198
    [100] A. Czernichowski, M. Czernichowski, and K. Wesolowska, Glidarc-Assisted Production of Synthesis Gas from Biogas, 1st European Hydrogen Energy Conference, September 2-5, 2003, Grenoble, France, poster and full paper (CP1 63) in CD Conference Proceedings, 10 pp.
    [101] A. Czernichowski, M. Czernichowski, and P. Czernichowski, Glidarc-Assisted Reforming of Gasoline and Diesel Oils into Synthesis Gas, 1st European Hydrogen Energy Conference, September 2-5, 2003, Grenoble, France, poster and full paper (CP1 64) in CD Conference Proceedings, 7 pp.
    [102] A. Czernichowski, M. Czernichowski, and P. Czernichowski, Glidarc-Assisted Production of Synthesis Gas from Natural Gas, 1st European Hydrogen Energy Conference, September 2-5, 2003, Grenoble, France, poster and full paper (CP1 65) in CD Conference Proceedings, 7 pp.
    [103] Green Car Congress,ArvinMeritor/MIT Plasma Fuel Reformer, 2004.6.11, www.greencarcongress.com/2004/06/arvinmeritor_cl.html
    [104] 冯洪庆,465汽油机稀薄燃烧及NOx排放催化控制研究:[博士学位论文],天津:天津大学,2003
    [105] S.I. Sandler著,吴志高译,化学与工程热力学,北京:化学工业出版社,1985
    [106] 王艳辉,汽油氧化重整制氢反应过程研究,[博士学位论文],大连:中国科学院大连化学物理研究所,2001
    [107] S.H. Chart, H.M. Wang, Thermodynamic and kinetic modelling of an auto-thermal methanol reformer, Journal of Power Sources, 2004, 126(1):8~15
    [108] J.R. Haines, C.C. Tsai, Graphite Sublimation Tests for the Muon Collider / Neutrino Factory Target Development Program. Report prepared for the U.S. Department of Energy, ORNL/TM-2002/27
    [109] R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids. 4th Edition, New York: McGraw-Hill Book Company, 1987: 665~677
    [110] 梁正熙,魏玉珍,化学化工中的数值法,北京:科学出版社,1989
    [111] A. Fridman, A. Chirokov and A. Gutsol, Non-thermal atmospheric pressure discharges. J. Phys. D: Appl. Phys. 2005, 38(2): R1~R24
    [112] A. Czemichowski, Gliding arc applications to engineering and environment control, Pure&Appl. Chem., 1994, 66(6): 1301~1310
    [113] 严建华,杜长明,B.G. Cheron等,滑动弧等离子体技术用于环境治理领域的研究进展,热力发电,2005, 34(5):1~6
    [114] Alexander Fridman, Sergei Nester, Lawrence A. Kennedy, Gliding arc gas discharge. Progress in Energy and Combustion Science 25 (1999): 211–231
    [115] A.I. Pressman著,王志强译,开关电源设计,北京:电子工业出版社,2005
    [116] 孙承志,万山明,黄声华等,介质阻挡放电用高频逆变电源的研制,高电压技术,2003, 29(10):16~17
    [117] Marty Brown著,徐德鸿译,开关电源设计指南,北京:机械工业出版社,2004
    [118] 陈道炼,DC-AC逆变技术及其应用,北京:机械工业出版社,2003
    [119] International Rectifier, IR2110 datasheet, http://www.irf.com/
    [120] 于吉超,稀薄燃烧汽油机电控系统设计与NOx排放控制研究,[硕士学位论文],天津:天津大学,2004
    [121] Siemens AG,C167 Derivatives,User’s Manual 03.96 Version 2.0
    [122] 解茂昭,内燃机计算燃烧学,大连:大连理工大学出版社,1995
    [123] 刘永长,内燃机工作过程模拟,武汉:华中理工大学出版社,1996
    [124] 刘异俊,内燃机燃烧模型,北京:机械工业出版社,1987
    [125] 朱访君,吴坚,内燃机工作过程数值计算及其优化,北京:国防工业出版社,1997
    [126] 张池平,,施云慧,计算方法,北京:科学出版社,2002
    [127] J.W. Fox, W.K. Cheng, J.B. Heywood, A Model for Predicting Residual Gas Fraction in Spark-Ignition Engines, SAE Paper 931025, 1993
    [128] 杨振中,氢燃料发动机燃烧与优化控制,[博士学位论文],浙江大学,2001
    [129] C.R. Ferguson, A.T. Kirkpatrick, Internal combustion engines : applied thermosciences, Singapore : John Wiley & Sons, Inc., 2001.
    [130] 陶海萍,点燃式发动机LPG工作过程数值模拟及应用实验研究[硕士学位论文],北京:北京工业大学,2004
    [131] 蒋德明,内燃机燃烧与排放学,西安:西安交通大学出版社,2001
    [132] 周龙保,内燃机学,北京:机械工业出版社,1999
    [133] R.F. Stebar, F.B. Parks, Emission Control With Lean Operation Using Hydrogen-Supplemented Fuel, SAE Paper 740187, 1974

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700