长距离输水工程的关键结构体系可靠度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实际工程中存在大量的不确定性,定量描述和把握不确定性对工程的影响,对保障工程的安全性具有重要的意义。长距离输水工程规模大、线路长,面对众多复杂的不确定环境因素影响,其安全性倍受关注。从宏观上看,长距离输水工程是一个主要由渠道和建筑物组成的串联体系,而串联体系中关键结构的安全性对整个体系的安全性具有重大影响。本文以南水北调中线工程为背景,研究长距离输水工程的关键结构体系可靠度问题。渡槽在南水北调中线工程建筑物中,规模相对较大、结构相对复杂;南水北调中线工程绝大部分渠段均采用明渠输水,线路总长中渠道所占比重大。因此,大型渡槽和渠道边坡的体系可靠性在一定程度上就反映了整个供水系统的可靠性,其体系可靠性评价是长距离输水系统安全分析需要解决的一个关键问题。由此,论文在可靠度计算的基本理论、渡槽的体系可靠度计算方法、渠道边坡稳定的体系可靠度计算方法等方面开展了深入的研究,取得以下主要研究成果:
     (1)将抽样点投影到失效面上,利用被分离变量的分布函数的解析解,结合剩余变量的重要抽样,提出了失效面上的重要抽样方法,给出了原始空间(X)和旋转后的标准正态空间(V)的实现方法。直接将抽样点取在失效面上,提高了抽样有效性和对非线性极限状态方程的适应能力;解析解的引入降低了抽样维数,提高了计算精度。理论推导和数值计算证明了该方法的适用性。
     (2)响应面方法是解决具有隐式极限状态方程的大型复杂结构可靠度分析问题的理想途径,极限状态函数重构方法的选择是其关键问题。文中引入人工智能新技术支持向量机(SVM)方法,结合可靠度分析的几何方法,建立了基于SVM的可靠度分析响应面方法,在此基础上进一步提出了改进的SVM可靠度分析响应面方法和SVM重要抽样方法。改进方法每加入一个新的验算点就可拟合出一个新的极限状态方程,所需的有限元计算工作量少,具有较快的收敛速度和较强的非线性拟合能力。
     (3)渡槽建筑物的上部槽身一旦开裂,容易因漏水影响建筑物的耐久性和安全性。有些情况下,正常使用极限状态可能成为渡槽结构设计的控制工况条件。文中建立了大型预应力渡槽槽身三维有限元模型,选择主要的受力构件作为分析对象,采用SVM方法重构极限状态方程,计算了主要受力构件的抗裂可靠度指标,分析了可靠度指标对变量的敏感性。采用体系可靠度界限方法,对构件失效相关性和体系可靠度进行分析,得到了渡槽抗裂体系可靠度的宽限和窄限解。同时,采用SVM方法拟合渡槽的静力位移反应,分析了渡槽的挠度可靠度。
     (4)基于随机场局部平均理论,提出了边坡二维滑弧和三维滑动面上土性参数局部平均的离散化计算方法。该方法与边坡稳定条分法的特点相适应,对滑动面的具体形状没有特别的限制,计算简便,可以有效考虑土性参数相关函数的具体形式对局部平均的影响。并且,基于该方法分析了土性参数空间相关结构对边坡稳定可靠度的影响。
     (5)考虑土性参数空间相关性,边坡三维可靠度指标随着滑坡宽度的加长,先减后增,存在一个最小值。论文结合算例对出现这一规律的原因进行了解释,为采用优化方法计算边坡三维可靠度指标提供了基础。文中给出了基于遗传算法的边坡三维可靠度分析方法,可以用于边坡三维稳定分析和三维空间滑坡形态预测。
     (6)基于Poisson随机过程理论,采用最小三维可靠指标对应的三维滑坡体宽度来划分定长边坡,推导和建立了一个新的定长边坡体系可靠度计算方法,运用该方法对南水北调中线工程渠道边坡实例进行了分析。
     (7)编制了SVM方法可靠度计算程序和遗传算法边坡稳定三维可靠度计算程序。
Many uncertainties are inherent in engineering practices. It is significant to quantify the influence of those uncertainties on safety of engineering projects. The long-distance water transfer project is of a large scale and a long route, and is affected by more complex uncertainties, so more attention is paid to its safety. In a point of macroview, the long-distance water transfer project is a series system which mainly consists of trenches and constructions, therefore safety of key structures of the series system has important influence on the safety of the whole system. System reliability of key structures of long-distance water transfer project is analysised based on the middle route of South-North Water Transfer Project (SNWTP). Aqueduct has a larger size and a more complex structure among the constructions of the middle route of SNWTP, and the water is transferred mainly by trenches, so the system safety of the large aqueducts and the slope stability of trenches reflect the safety level of the whole long-distance water transfer project at a certain extent. As a key problem of the system safety of long-distance water transfer projects, the system reliability analysis of the large aqueducts and the slope stability should be solved. In this paper, three aspects were studied: the fundamental theory of reliability analysis, the system reliability assessment method of aqueduct structures, the system reliability assessment method of slope stability of trenches. The major contents are summarized as follows:
    (1) A partly analytical complex Monte-Carlo method in structural failure hypersurface is proposed. Samples are mapped to the structural failure hypersurface by separating a random variable or an expression of the limit state function and evaluating the cumulative distribution function of it analytically, then the structural failure probability is estimated in combination with importance sampling method. Approaches for the original X-space and the rotated orthogonal normal V-space are presented respectively. Samples are mapped to the hyperplane of structural failure, so the availability of sampling is guaranteed and the proposed method is more suitable for highly nonlinear limit state functions. The dimension of sampling may be reduced and a more accurate and stable result is achieved in virtue of adopting analytical
    resolution. This method has been proved to be more efficient by theoretical analysis and numerical examples.
    (2) Response Surface Method (RSM) can deal with the issue with implicit performance functions well for its famous accuracy and good efficiency. The key problem of RSM is the reconstruction of the response surface. The amount of sample set used to reconstruct the response surface usually is small. According to the excellent learning and generalization ability of support vector machine (SVM) even with small samples, the response surface of the structure is reconstructed by SVM, and then a new RSM based on SVM for structural reliability analysis is proposed. Furthermore, an improved RSM based on SVM is developed. A new response surface and a new design point are achieved by adding the old design point to sample set in iterative process of the improved method, so no any result of FEM calculation is abnegated and the amount of FEM calculations is reduced dramatically. It is proved by examples that the calculation efficiencies and accuracy can been increased by proposed methods.
    (3) Cracks of aqueduct structures could decrease the durability and safety of the aqueduct. Sometimes, the serviceability limit state may be as the control condition in design. A three-dimensional finite element model of a large prestressed aqueduct is constructed to calculate the maximal tensile stresses of selected mainly components, and reliabilities of crack resistance of the selected main components are calculated by SVM response surface method and the corresponding sensitivity analyses are performed. Then the correlation coefficients between failure modes are evaluated and system reliability of crack resistance is computed by wide bounds method and Ditlevsen bounds method. At last, the deflection reliability of aqueduct is calculated by SVM response surface method.
    (4) Based on local average method of random field, Discrete spatial average variance functions of soil parameter over two-dimensional slip arc and three-dimensional slip surface are developed. The proposed methods are simple and suitable to characteristics of slices method of slope stability analysis, and can take the effect of spatial correlation of soil parameters on reliability of slope stability into consideration efficiently. Influence of spatial relative distance of soil parameters on the reliability of slope stability is investigated.
    (5) Actually there should be a critical three-dimensional slip surfaces which give the highest failure probability if spatial variabilities of soil parameters are taken into consideration. The existent reasons of the minimal three-dimensional reliability index and the corresponding critical slip surface are investigated and illustrated by examples. This makes it possible to get three-dimensional reliability index of soil slope by means of optimization techniques. Therefore, a model of spatial variability of soil parameters is adopted and Genetic Algorithm (GA) method is used to search for the reliability index directly, then three-dimensional reliability analysis method for slope stability, based on GA method, is proposed. The minimal three-dimensional reliability index and the corresponding three-dimensional slip surface are achieved by the proposed method.
    (6) A new system reliability method of a given length slope is proposed based on Poisson stochastic process theory and by measuring the whole length of the slope with the width of three-dimensional failing soil mass. The system reliability of an example trench slope of middle route of SWTP is assessed.
    (7) Computer program for SVM reliability analysis method and program for three-dimensional reliability analysis of slope are developed in this paper.
    This research work is sponsored by Technical Innovation Fund of the Ministry of Water Resources of PRC.
引文
[1-1] 赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000.12.
    [1-2] 吴世伟.结构可靠度分析[M].北京:人民交通出版社,1990.
    [1-3] H-S.ANG A.,H.Tang W. Probability concepts in engineering planning and design (VolumeⅡ—decision, risk, and reliability) [M]. New York:Wiley Press,1990.
    [1-4] 王光远.工程软设计理论[M].北京:科学出版社,1992.
    [1-5] 贾超.基于可靠度的结构风险分析及其在南水北调工程中的应用研究[D].南京:河海大学博士学位论文,2003.
    [1-6] 许光成,张晓林,段晓惠,李端有,杨兴林.丹江口大坝防渗效果的评价[J].水电自动化与大坝监测,2003,27(4):48-51.
    [1-7] 徐跃之,陕亮,谢小玲.丹江口大坝加高深孔应力研究[J].人民长江,2006,37(8):51-53.
    [1-8] 徐永键,李安然.丹江口水库渗透环境及诱震效应的初步分析[J].西北地震学报,1989,11(4):101-104.
    [1-9] 吴媚玲,姚耀武.重力坝的应力稳定与可靠性[M].北京:中国科学技术出版社,1990.
    [1-10] 朱伯芳,张国新,徐麟祥,杨树明.解决重力坝加高时温度应力的新思路和技术[J].水力发电,2003,29(11):26-30.
    [1-11] 吴杰芳,彭定.南水北调中线工程穿黄隧道抗震性能研究[J].工程力学,2000,2(A02):544-550.
    [1-12] 魏建国,刘爱军.洺河渡槽隔震结构模态分析[J].河北农业大学学报,2002,25(4):149-151.
    [1-13] 胡兰.渡槽抗震分析[J].水利水电快报,2003,24(23):21-22,27.
    [1-14] 张爱晖.渡槽结构在罕遇地震作用下的抗震性能分析[J].水利水电技术,2005,36(3):38-40.
    [1-15] 李广诚,严福章.南水北调工程概况及其主要工程地质问题[J].工程地质学报,2004,12(4):354-360.
    [1-16] 黄曙东,戴立操,张力.核安全——基于人因失误率预测法改进的事故后人因可靠性分析技术[J].安全与环境学报,2005,5(6):115-117.
    [1-17] 王高阳,唐文勇,张圣坤.人因综合安全评估(FSA)方法在海洋结构物事故中的应用研究[J].海洋工程,2005,23(4):77-84.
    [1-18] 王洪德,高玮.基于人的认知可靠性(HCR)模型的人因操作失误研究[J].中国安全科学学报,2006,16(7):51-56.
    [1-19] 陈国芳,黄建明.人因评价的定量化研究[J].工业安全与环保,2003,29(2):45-46.
    [1-20] 张力,黄曙东.人因可靠性分析方法[J].中国安全科学学报,2001,11(3):6-16.
    [1-21] Mosleh A., Chang Y. H. Model-based human reliability analysis: prospects and requirements[J]. Reliability Engineering & System Safety, 2004,83(2):241-253.
    [1-22] Christian J.,Ladd C.,Baecher G. Reliability applied to slope stability analysis[J]. Journal of Geotechnical Engineering Division, ASCE, 1994,120(12) :2180-2207.
    [1-23] Andrews J., Moss T. Reliability and Risk Assessment[M]. New York: ASME Press,2002.
    [1-24] 王建华.跨流域调水工程输水渠坡稳定的风险分析[D].杭州:浙江大学硕士学位论文,2005,2.
    [1-25] 杨立信.国外调水工程[M].北京:中国水利水电出版社,2003,8.
    [1-26] 贡金鑫,仲伟秋,赵国藩.工程结构可靠性基本理论的发展与应用(1)[J].建筑结构学报,2002,23(4):2-9.
    [1-27] Hasofer A M L. N. C. Extract invariant second-moment[J]. Journal of Engineering Mechanics Division. ASCE, 1974,100(1): 111-121.
    [1-28] Rackwitz R., Fiessler B. Structural reliability under combined random load sequences[J]. Computers and Structures, 1978,(9):489-494.
    [1-29] Hohenbichler M.,Rackwitz R. Non-normal dependent vectors in Strucutral Safety[J]. Journal Engineering Mechanics Division. ASCE, 1981,107(EM6).
    [1-30] 赵国藩,王恒栋.广义随机空间内的结构可靠度实用分析方法[J].土木工程学报,1996,29(4):47-51.
    [1-31] 徐军,郑颖人.有理多项式技术在工程结构可靠度分析中的应用[J].计算力学学报,2001,18(4):488-491.
    [1-32] Chowdhury R. N., Xu D. W. Rational polynomial technique in slope-reliability analysis[J]. Journal of Geotechnical Engineering Division, ASCE,1993,119(12):1910-1928.
    [1-33] 李继祥,谢桂华.计算结构可靠度的JC法改进方法[J].武汉工业学院学报,2004,23(1):48-50.
    [1-34] 陈安龙,于雷,郑云龙.基于Rosenblatt变换的一阶可靠度分析方法[J].大连理工大学学报,2000,40(6):741-743.
    [1-35] Fiessler B., Neumarm H.-J.,Rackwitz R. Quadratic limit states in structural reliability[J]. J Eng Mech Div ASCE, 1979,105(EM4):661-676.
    [1-36] Breitung K. Asymptotic approximations for multinormal integrals[J]. Journal Engineering Mechanics Division. ASCE,1984,110(3):357-366.
    [1-37] Tvedt L. Distribution of quadratic forms in normal space-application to structural reliability[J]. J Eng Mech Div ASCE,1990,116(6): 1183-1197.
    [1-38] Breitung K. Asymptotic approximations for probability integrals[J]. Probabilistic Engineering Mechanics, 1989,4(4): 187-190.
    [1-39] Rackwitz R. Reliability analysis--a review and some perspectives[J]. Structural S afety,2001,23 (4):365-395.
    [1-40] Der Kiureghian A., De Stefano M. Efficient algorithm for second-order reliability analysis[J]. J Engrg Mech, ASCE, 1991,117(12):2904-2923.
    [1-41] Zhao Y.-G, Ono T. New Approximations for SORM: Part 1[J]. Journal of Engineering Mechanics, 1999,125(1):79-85.
    [1-42] Zhao Y.-G,Ono T. New Approximations for SORM: Part 2[J]. Journal of Engineering Mechanics, 1999,125(1):86-93.
    [1-43] 张新培,葛燕.结构可靠度的当量正态PFSORM算法[J].应用力学学报,2002,19(2):85-87.
    [1-44] 李云贵,赵国藩.广义随机空间内的结构可靠度渐近分析方法[J].水利学报,1994,(8):36-41.
    [1-45] Der Kiureghian A.,Dakessian T. Multiple design points in first and second-order reliability[J]. Structural Safety, 1998,20(1):37-49.
    [1-46] Zhao Y.-G, Ono T. A general procedure for first/second-order reliabilitymethod (FORM/SORM)[J]. Structural Safety, 1999,21 (2):95-112.
    [1-47] Tichy M. First-order third-moment reliability method[J]. Structural Safety, 1994,16(3): 189-200.
    [1-48] Zhao Y.-G, Ono T. Third-moment standardization for structural reliability analysis[J], journal of structual engineering, 2000,126(6):724-732.
    [1-49] Zhao Y.-G., Ono T. Moment methods for structural reliability[J]. Structural Safety, 2001, 23(1):47-75.
    [1-50] 李云贵,赵国藩.结构可靠度的四阶矩分析法[J].大连理工大学学报,1992,32(4):455-459.
    [1-51] 佟晓利,赵国藩.改进的Rosenblueth方法及其在结构可靠度分析中的应用[J].大连理工大学学报,1997,37(3):316-32.
    [1-52] Engelund S., Rackwitz R. A benchmark study on importance sampling techniques in structural reliability[J]. Structural Safety, 1993,12(4):255-276.
    [1-53] Melchers R. E. Importance sampling in structural systems[J]. Structural Safety, 1989,6(1):3-10.
    [1-54] Hohenbichler R., Rackwitz R. Improvement of second-order reliability estimates by importance sampling[J]. Journal of Engineering Mechanics,1988,114(12):2195-2199.
    [1-55] Bucher C. G. Adaptive sampling--an iterative fast Monte Carlo procedure[J]. Structural Safety, 1988,5(2): 119-126.
    [1-56] Au S. K., Beck J. L. A new adaptive importance sampling scheme for reliability calculations [J]. Structural Safety, 1999,21 (2): 135-158.
    [1-57] Ditlevsen O., Melchers R. E., Gluver H. General multi-dimensional probability integration by directional simulation[J]. Computers & Structures, 1990,36(2):355-368.
    [1-58] 金伟良.结构可靠度数值模拟的新方法[J].建筑结构学报,1996,17(3):63-72.
    [1-59] Jin W.-L. Importance sampling method in V-space[J]. China ocean engineering, 1997,11 (2): 127-150.
    [1-60] 董聪,郭晓华.基于广义遗传算法的自适应重要抽样理论[J].计算机科学,2000,27(4):1-4.
    [1-61] 吴斌,欧进萍,张纪刚.结构动力可靠度的重要抽样法[J].计算力学学报,2001,18(4):478-482.
    [1-62] Olsson A., Sandberg G., Dahlblom O. On Latin hypercube sampling for structural reliability analysis[J]. Structural Safety, 2003,25(1):47-68.
    [1-63] 伍朝晖,赵国藩.数论方法在结构体系可靠度计算中的应用[J].大连理工 大学学报,1998,38(1):92-96.
    [1-64] Wong F. S. Slope reliability and response surface method[J]. J Geotech Eng, ASCE,1985,111(1):32-53.
    [1-65] Bucher C. G., Bourgund U. A fast and efficient response surface approach for structural reliability problems[J]. Structural Safety, 1990,7(1):57-66.
    [1-66] Rajashekhar M. R., Ellingwood B. R. A new look at the response surface approach for reliability analysis[J]. Structural Safety, 1993,12(3):205-220.
    [1-67] Kim S.-H.,Na S.-W. Response surface method using vector projected sampling points [J]. Structural Safety, 1997,19(1):3-19.
    [1-68] Lee S. H.,Kwak B. M. Response surface augmented moment method for efficient reliability analysis[J]. Structural Safety,2006,28(3):261-272.
    [1-69] Wong S. M.,Hobbs R. E.,Onof C. An adaptive response surface method for reliability analysis of structures with multiple loading sequences[J]. Structural Safety,2005,27(4):287-308.
    [1-70] Kaymaz I., McMahon C. A. A response surface method based on weighted regression for structural reliability analysis[J]. Probabilistic Engineering Mechanics, 2005, 20(1): 11-17.
    [1-71] Martin T. H.,Howard B. D.,Mark H. B. Neural network design[M]. China mahine press, CITIC publishing house,2002.
    [1-72] Hosni Elhewy A., Mesbahi E.,Pu Y. Reliability analysis of structures using neural network method[J]. Probabilistic Engineering Mechanics, 2006,21(1):44-53.
    [1-73] Deng J., Gu D.,Li X.,Yue Z. Q. Structural reliability analysis for implicit performance functions using artificial neural network[J]. Structural Safety,2005,27(1):25-48.
    [1-74] Gomes H. M.,Awruch A. M. Comparison of response surface and neural network with other methods for structural reliability analysis[J]. Structural Safety,2004,26(1):49-67.
    [1-75] 佟晓利,赵国藩.一种与结构可靠度分析几何法相结合的响应面法[J].土木工程学报,1997,30(4):51-58.
    [1-76] 武清玺,卓家寿.结构可靠度分析的变f序列响应面法及其应用[J].河海大学学报:自然科学版,2001,29(2):75-78.
    [1-77] 桂劲松.结构可靠度分析的改进BP神经网络响应面法[J].应用力学学报,2005,22(1):127-130.
    [1-78] 桂劲松,康海贵.结构可靠度分析的全局响应面法研究[J].建筑结构学报,2004,25(4):100-105.
    [1-79] 桂劲松,康海贵.结构可靠度分析的智能计算法[J].中国造船,2005,46(2):28-34.
    [1-80] Vapnik V. The Nature of Statistical Learning Theory[M]. NewYork: Springerpublication,1995.
    [1-81] 袁雪霞.建筑施工模板支撑体系可靠性研究[D].杭州:浙江大学博士学位论文,2006.
    [1-82] Comell C. A. Bounds on the Reliability of Structrural Systems[J]. J. Struct. Div., ASCE, 1969,93(1):171-200.
    [1-83] Moses F., Kinser E. Analysis of Structural Reliability[J]. J. Struct. Div., ASCE, 1967,93:147-164.
    [1-84] Ditlevsen O. Narrow reliabibity bounds for structural systems[J]. Journal of Structural Mechanics, 1979,7(4):453-472.
    [1-85] Ang A.-S.,Ma H. F. the reliability of structural systems[A], in Proceeding of intenational conference on structural safety and reliability, 1981. Trondhein.
    [1-86] Enevoldsen I., Sarensen J. Optimization algorithms for calculation of the joint design point in parallel systems[J]. Structural Optimization, 1992,(4): 121-127.
    [1-87] Nie J., Ellingwood B. R. A new directional simulation method for system reliability. Part Ⅱ: application of neural networks[J]. Probabilistic Engineering Mechanics,2004,19(4) :437-447.
    [1-88] 中华人民共和国国家标准:工程结构可靠度设计统一标准.北京:中国计划出版社.1992
    [1-89] 中华人民共和国国家标准:水利水电工程结构可靠度设计统一标准.北京:中国计划出版社,1994
    [1-90] 武清玺,刘阿多.隧洞结构截面与体系可靠度计算[J].河海大学学报:自然科学版,1996,24(2):56-61.
    [1-91] 武清玺,王保田.拱坝坝肩整体稳定可靠度分析方法探讨[J].河海大学学报:自然科学版,1995,23(3):26-32.
    [1-92] 武清玺,吴世伟.基于有限元法的重力坝可靠度分析[J].水利学报,1990,(1):58-64.
    [1-93] 武清玺,俞晓正.混凝土面板堆石坝可靠度计算方法研究[J].岩土工程学报,2004,26(4):468-472.
    [1-94] 王卫标,武清玺,金伟良,卓家寿.三维问题的随机界面元法[J].力学学 报,2003,35(1):105-109.
    [1-95] 封伯吴,张俊芝.基于模糊可靠度概念的拱坝优化[J].水利学报,2000,(4):40-45.
    [1-96] 张俊芝,李桂青.服役重力坝系统可靠度及概率寿命探讨[J].水利学报,2000,(4):40-45.
    [1-97] 张俊芝,王立.基于可靠度的提防工程加高加固决策模[J].工程力学,1999,2(a02):661-665.
    [1-98] 夏富洲,姬晓辉,刘川顺.渡槽槽身结构抗裂可靠度分析[J].中国农村水利水电,2000,(3):14-16.
    [1-99] 李正农,刘华,袁文阳,孟吉复.洺河渡槽抗震可靠度分析[J].中国农村水利水电,2000,(11):29-31.
    [1-100] 李正农,吴红华,楼梦麟.渡槽结构抗风可靠度分析方法[J].武汉理工大学学报,2002,24(9):48-51.
    [1-101] 贾超,刘宁,陈进,程卫帅.南水北调中线工程渡槽结构风险分析[J].水力发电,2003,29(7):25-29.
    [1-102] 程卫帅,贾超,陈进.矩形渡槽槽身可靠度的敏感性分析[J].水力发电,2004,30(3):36-39.
    [1-103] 雷杰,金伟良,张爱晖.下承式桁架拱渡槽的结构可靠度分析[J].水利水电科技进展,2005,25(1):37-40.
    [1-104] 王盛,吴剑国,张爱晖.渡槽结构系统可靠度分析[J].中国农村水利水电,2005,(2):72-75.
    [1-105] Lumb P. Safety factors and the probability distribution of soil strength[J]. Canadian Geotechnical Journal, 1970, 7(3):225-241.
    [1-106] Soulie M.,Montes P., Silvestri V. Modeling spatial variability of soil parameters[J]. Canadian Geotechnical Joumal, 1990, 27:617-630.
    [1-107] PHOON K.-K.,KULHAWY F. Evaluation of geotechnical property variability[J]. Canadian geotechnical journal, 1999,36(4):625-639.
    [1-108] Phoon K., Kulhawy F. H. Characterization of geotechnical variability[J]. Canadian Geotechnical Journal, 1999,36(4):612-624.
    [1-109] Tobutt D. Monte Carlo simulation methods for slope stability[J]. Computer & Geosciences, 1982,8(2):199-208.
    [1-110] Husein Malkawi A. I.,Hassan W. F.,Abdulla F. A. Uncertainty and reliability analysis applied to slope stability[J]. Structural Safety,2000,22(2): 161-187.
    [1-111] Low B. K.,Tang W. H. Probabilistic slope analysis using Janbu's generalized procedure of slices[J]. Computers and Geotechnics, 1997, 21(2): 121-142.
    [1-112] El-Rarely H., Morgenstern N. R. Probabilistic slope stability analysis for practice[J]. Canadian Geotechnical Journal,2002,39:665-683.
    [1-113] Giasi C. I., Masi P.,Cherubini C. Probabilistic and fuzzy reliability analysis of a sample slope near Aliano[J]. Engineering Geology, 2003, 67(3-4):391-402.
    [1-114] Dodagoudar G. R., Venkatachalam G. Reliability analysis of slopes using fuzzy sets theory[J]. Computers and Geotechnics,2000,27:101-115.
    [1-115] 陈祖煜,陈立宏,孙平.非线性强度指标边坡稳定安全系数取值标准的研究[J].水力发电,2004,30(2):17-20.
    [1-116] 陈祖煜.土质边坡稳定分析——原理、方法、程序[M].北京:中国水利电力出版社,2003.
    [1-117] 郑荣跃,梧松.基于Spencer法的边坡稳定性可靠度指标分析[J].岩土力学,2006,27(1):147-150,154.
    [1-118] 蒋建群,徐辉.边坡稳定模糊随机可靠度评价及其应用[J].水力发电学报,2006,25(4):126-130.
    [1-119] CHEN Z. Y. Random trials used in determining global minimum factors of safety of slopes[J]. Canadian Geotechnical Journal,1992,29:225-233.
    [1-120] Greco V. R. Efficient Monte Carlo technique for locating critical slip surface[J]. Journal of Geotechnical Engineering Fracture Mechanics, 1996,122(7): 517-525.
    [1-121] 张鲁渝,张建民.基于Monte Carlo技术的临界滑面搜索算法的实现及改进[J].岩土工程学报,2006,28(7):857-862.
    [1-122] 何则干,陈胜宏.遗传模拟退火算法在边坡稳定分析中的应用[J].岩土力学,2004,25(2):316-319.
    [1-123] 陈昌富,龚晓南,王贻荪.自适应蚁群算法及其在边坡工程中的应用[J].浙江大学学报:工学版,2003,37(5):566-569.
    [1-124] Ahrned M.,Thomas F. Search algorithm for minimum reliability index of earth slopes[J]. Journal of Geotechnieal and Geoenvironmental Engineering,1999,125(4):301-308.
    [1-125] Oka Y.,Wu T. System reliability of slope stability[J]. Journal of Geotechnical Engineering, ASCE, 1990,116(8): 1185-1189.
    [1-126] Chowdhury R., Xu D. Geotechnical system reliability of slopes[J]. Reliability engneering and system safety, 1995,47:141-151.
    [2-1] 吴世伟.结构可靠度分析[M].北京:人民交通出版社,1990.
    [2-2] 董聪.现代结构系统可靠性理论及其应用[M].北京:科学出版社,2001.3.
    [2-3] Maes M. A., Breitung K., Dupuis D. J. Asymptotic importance sampling[J]. Structural Safety, 1993,12(3): 167-186.
    [2-4] Engelund S., Rackwitz R. A benchmark study on importance sampling techniques in structural reliability[J]. Structural Safety,1993,12(4):255-276.
    [2-5] Moarefzadeh M. R., Melchers R. E. Directional importance sampling for ill-proportioned spaces[J]. Structural Safety, 1999,21 (1): 1-22.
    [2-6] Dey A., Mahadevan S. Ductile structural system reliability analysis using adaptive importance sampling[J]. Structural Safety, 1998,20(2): 137-154.
    [2-7] Melchers R. E. Importance sampling in structural systems[J]. Structural Safety,1989,6(1):3-10.
    [2-8] Jin W.-L. Importance sampling method in V-space[J]. China ocean engineering, 1997,11 (2): 127-150.
    [2-9] Au S. K., Beck J. L. Important sampling in high dimensions[J]. Structural Safety,2003,25(2): 139-163.
    [2-10] Jin W.-L., Luz E. Improving importance sampling method in structural reliability[J]. Nuclear Engineering and Design, 1994,147(3):393-401.
    [2-11] Au S. K., Beck J. L. A new adaptive importance sampling scheme for reliability calculations[J]. Structural Safety, 1999,21 (2): 135-158.
    [2-12] 吴斌,欧进萍,张纪刚.结构动力可靠度的重要抽样法[J].计算力学学报,2001,18(4):478-482.
    [2-13] 贡金鑫,何世钦,赵国藩.结构可靠度模拟的方向重要抽样法[J].计算力学学报,2003,20(6):655-661.
    [2-14] 金伟良.结构可靠度数值模拟的新方法[J].建筑结构学报,1996,17(3):63-72.
    [2-15] Eamon C. D.,Thompson M., Liu Z. Evaluation of accuracy and efficiency of some simulation and sampling methods in structural reliability analysis[J]. Structural Safety, 2005, 27(4):356-392.
    [2-16] 秦权,林道锦,梅刚.结构可靠度随机有限元——理论及工程运用[M].北京:清华大学出版社,2006.9.
    [2-17] Breitung K. Asymptotic approximations for multinormal integrals[J]. Journal Engineering Mechanics Division. ASCE, 1984,110(3):357-366.
    [2-18] Polidori D. C., BECK J. L. New Approximations for Reliability Integrals[J]. Journal Engineering Mechanics, ASCE, 1999,125(4) :466-475.
    [2-19] 王光远.工程结构与系统抗震优化设计的实用方法[M].北京:中国建筑工业出版设,1999,10.
    [2-20] Olsson A., Sandberg G., Dahlblom O. On Latin hypercube sampling for structural reliability analysis[J]. Structural Safety,2003,25(1):47-68.
    [3-1] Bucher C. G., Bourgund U. A fast and efficient response surface approach for structural reliability problems[J]. Structural Safety, 1990,7(1):57-66.
    [3-2] Rajashekhar M. R., Ellingwood B. R. A new look at the response surface approach for reliability analysis[J]. Structural Safety, 1993,12(3):205-220.
    [3-3] 桂劲松,康海贵.计算结构可靠度的RBF神经网络响应面法[J].海洋工程,2004,22(3):81-85.
    [3-4] 桂劲松.结构可靠度分析的改进BP神经网络响应面法[J].应用力学学报,2005,22(1):127-130.
    [3-5] 桂劲松,康海贵.结构可靠度分析的全局响应面法研究[J].建筑结构学报,2004,25(4):100-105.
    [3-6] 徐军,郑颖人.响应面重构的若干方法研究及其在可靠度分析中的应用[J].计算力学学报,2002,19(2):217-221,244.
    [3-7] 阎宏生,胡云昌.基于神经网络响应面的结构可靠性分析方法研究[J].海洋工程,2002,20(2):1-6.
    [3-8] Vapnik V. The Nature of Statistical Learning Theory[M]. NewYork: Springer publication,1995.
    [3-9] 袁雪霞.建筑施工模板支撑体系可靠性研究[D].杭州:浙江大学博士学位论文,2006.
    [3-10] Rocco C. M., Moreno J. Fast Monte Carlo reliability evaluation using support vector machine[J]. Reliability Engineering and System Safety, 2002, 76(3):237-243.
    [3-11] 陆有忠,杨有负,张会林.边坡工程可靠性的支持向量机估计[J].岩石力学与工程学报,2005,24(1):149-153.
    [3-12] Wong F. S. Slope reliability and response surface method[J]. J Geotech Eng, ASCE,1985,111(1):32-53.
    [3-13] Kim S.-H.,Na S.-W. Response surface method using vector projected sampling points [J]. Structural Safety, 1997,19(1):3-19.
    [3-14] Martin T. Hagan H. B. D., Mark H. Beale. Neural network design[M]. China mahine press, CITIC publishing house,2002.
    [3-15] C. Platt J., Sequential minimal optimization: a fast Algorithm for training support vector machines. 1998, Microsoft research technical report
    [3-16] Gary W. F.,Steve L. Efficient SVM regression training with SMO [J]. Machine learning, 2002, 46(271-290).
    [3-17] 佟晓利,赵国藩.一种与结构可靠度分析几何法相结合的响应面法[J].土木工程学报,1997,30(4):51-58.
    [3-18] 俞亭超,柳景青,张土乔.改进支持向量机的管网状态模型[J].浙江大学学报:工学版,2005,39(6):858—862.
    [3-19] 赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000,12.
    [4-1] 赵国藩.高等钢筋混凝土结构学[M].北京:机械工业出版社,2005.9.
    [4-2] 中华人民共和国国家标准:混凝土结构设计规范(GB50040-2002).北京:中国计划出版社,2002.
    [4-3] 梁兴文,王社良,李晓文.混凝土结构设计原理[M].北京:科学出版社,2003,8.
    [4-4] 中华人民共和国电力行业标准:水工混凝土结构设计规范(DL/T5057-1996).北京:中国计划出版社,1997.
    [4-5] 宋玉普.新型预应力混凝土结构[M].北京:机械工业出版社,2006,1.
    [4-6] 赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000,12.
    [4-7] 夏富洲,姬晓辉,刘川顺.渡槽槽身结构抗裂可靠度分析[J].中国农村水利水电,2000(3):14-16.
    [4-8] 李正农,吴红华,楼梦麟.渡槽结构抗风可靠度分析方法[J].武汉理工大学学报,2002,24(9):48-51.
    [4-9] 王盛,吴剑国,张爱晖.渡槽结构系统可靠度分析[J].中国农村水利水电,2005(2):72-75.
    [4-10] 程卫帅,贾超,陈进.矩形渡槽槽身可靠度的敏感性分析[J].水力发电,2004,30(3):36-39.
    [4-11] 贾超,刘宁,陈进,程卫帅.澧河段梁式渡槽桩承载力极限状态可靠度分析[J].水利水运工程学报,2004(1):53-56.
    [4-12] 贾超,刘宁,陈进,程卫帅.南水北调中线工程渡槽结构风险分析[J].水力发电,2003,29(7):25-29.
    [4-13] 雷杰,金伟良,张爱晖.下承式桁架拱渡槽的结构可靠度分析[J].水利水电科技进展,2005,25(1):37-40.
    [4-14] 赵文华,陈德亮,颜其照,管枫年.渡槽[M].北京:水利电力出版社,1984.
    [4-15] 竺慧珠,陈德亮,管枫年.渡槽[M].北京:中国水利水电出版社,2005,5.
    [4-16] 江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005,3.
    [4-17] 赵平,刘作秋,陈文义,李树瑶.大型渡槽上、下部整体三维有限元动力分 析[J].华北水利水电学院学报,1997,8(1):36-38.
    [4-18] 彭华,孟勇,游春华.大型上承式桁架拱渡槽的三维有限元分析[J].2005,38(5):45-49.
    [4-19] 高小翠,彭琳.大型预应力混凝土箱式渡槽有限元分析[J].中国农村水利水电,2003,(5):53-55.
    [4-20] 赵瑜,赵平.大型预应力混凝土箱形渡槽结构三维有限元分析[J].长江科学院院报,1999,16(2):17-20.
    [4-21] 吴京,孟少平.预应力混凝土极限抗弯承载力计算的等效荷载法[J].工业建筑,1999,29(9):24-28.
    [4-22] 周威,郑文忠.预应力等效荷载计算的通用方法及其简化[J].哈尔滨工业大学学报,2005,37(1):49-51,83.
    [4-23] 赵文华,陈德亮,颜其照,管枫年.渡槽[M].北京:水利电力出版社,1989,7.
    [4-24] 南水北调中线工程规划.武汉:水利部长江水利委员会,2001,10.
    [4-25] 沙河渡槽规划、设计资料.郑州:河南省水利勘测设计有限公司,2006.
    [4-26] AL-harthy A. S., Frangopol D. M. Reliability-Based Design of Prestressed Concrete Beams[J]. Journal of structural engineering, ASCE 1994, 120(11):3156-3177.
    [4-27] AL-harthy A. S., Frangopol D. M. Reliability assessment of ptrestressed concret beams[J]. Journal of structural engineering, ASCE 1994,120(1): 180-199.
    [4-28] AL-harthy A. S., Frangopol D. M. intergrating sysytem reliability and optimization in prestressed concrete design[J], computers & structures 1997,64(1):729-735.
    [4-29] 中华人民共和国国家标准:水利水电工程结构可靠度设计统一标准.北京:中国计划出版社,1994
    [4-30] 秦权,林道锦,梅刚.结构可靠度随机有限元——理论及工程运用[M].北京:清华大学出版社,2006,9
    [4-31] 中华人民共和国国家标准:建筑结构可靠度设计统一标准.北京:中国计划出版社,2001.
    [5-1] 徐建平,胡厚田.边坡岩体物理力学参数的统计特征研究[J].岩石力学与工程学报,1999,18(4):382-386.
    [5-2] 李猛,王复明,乐金朝.相关变量下边坡稳定可靠度的蒙特卡罗模拟[J].河南科学,2004,22(1):76-79.
    [5-3] Phoon K., Kulhawy F. H. Characterization of geotechnical variability[J]. Canadian Geotechnical Journal, 1999,36(4):612-624.
    [5-4] Vanmarcke E. H. Probabilistic modeling of soil profiles [J]. Journal of Geotechnical Engineering, ASCE, 1977,103 (11): 1227-1246.
    [5-5] El-Ramly H., Morgenstem N. R. Probabilistic slope stability analysis for practice[J]. Canadian Geotechnical Journal,2002,39:665-683.
    [5-6] 刘润,闫澍旺.渤海湾地基土随机场特性及可靠度分析[J].岩土工程学报,2004,26(4):464-467.
    [5-7] 白顺果,张鸿儒,黄春霞.考虑土性参数空间变异性的地基承载力可靠性分析[J].北方交通大学学报,2004,28(1):32-34,73.
    [5-8] 李亮,张丙强.c,φ相关性对边坡整体稳定性的影响[J].铁道科学与工程学报,2004,1(1):62-68.
    [5-9] Semi Yucemen M., Al-Homoud A. S. Probabilistic three-dimensional stability analysis of slopes[J]. Structural Safety, 1990,9(1): 1-20.
    [5-10] Auvinet G., Gonzalez J. L. Three-dimensional reliability analysis of earth slopes[J]. Computers and Geotechnics,2000,26(3-4):247-261.
    [5-11] 梧松,吴玉山.土质边坡三维可靠度分析[J].岩土力学2003,24(2):284-287.
    [5-12] 陈虬,刘先斌.随机有限元法[M].成都:西南交通大学出版社,1993,11.
    [5-13] 金伟良.工程荷载组合理论与应用[M].北京:机械工业出版社,2006,3.
    [5-14] 马振华,刘坤林,陆璇.现代应用数学手册—概率统计与随机过程卷[M].北京:清华大学出版设,2000,7.
    [5-15] 武清玺.结构可靠性分析及随机有限元法—理论、方法、工程运用及程序设计[M].北京:机械工业出版社,2005,3.
    [5-16] 林元烈.应用随机过程[M].北京:清华大学出版社,2002,11.
    [5-17] 闫澍旺,邓卫东.土性剖面随机场模型的平稳性和各态历经性验证[J].岩土工程学报,1995,17(3):1-9.
    [5-18] 周小文,包承纲.土性随机过程线性模型与相关函数[J].长江科学院院报,1996,13(4):32-36.
    [5-19] 潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:水利出版社,1980.
    [5-20] Husein Malkawi A. I., Hassan W. E, Abdulla F. A. Uncertainty and reliability analysis applied to slope stability[J]. Structural Safety,2000,22(2): 161-187.
    [5-21] 钱家欢.土力学[M].南京:河海大学出版社,1988.
    [5-22] 佟晓利,赵国藩.一种与结构可靠度分析几何法相结合的响应面法[J].土木工程学报,1997,30(4):51-58.
    [5-23] Bhattacharya G., Jana D., Ojha S., Chakraborty S. Direct search for minimum reliability index of earth slopes[J]. Computers and Geotechnics,2003, 30(6):455-462.
    [5-24] 陈祖煜.土质边坡稳定分析——原理、方法、程序[M].北京:中国水利电力出版社,2003.
    [5-25] 谢谟文,蔡美峰.信息边坡工程学的理论与实践[M].北京:科学出版社,2005,2.
    [6-1] 谢谟文,蔡美峰.信息边坡工程学的理论与实践[M].北京:科学出版社,2005,2.
    [6-2] Auvinet G., Gonzalez J. L. Three-dimensional reliability analysis of earth slopes[J]. Computers and Geotechnics, 2000, 26(3-4):247-261.
    [6-3] Hungr O. An extension of Bishop's simplified method of slope stability analysis to three dimesions[J]. Geotechnique, 1987,37(1): 113-117.
    [6-4] Soulie M., Montes P., Silvestri V. Modeling spatial variability of soil parameters[J]. Canadian Geotechnical Journal, 1990,27:617-630.
    [6-5] Vanmarcke E. H. Probabilistic modeling of soil profiles [J]. Journal of Geotechnical Engineering, ASCE, 1977,103(11):1227-1246.
    [6-6] El-Rarely H.,Morgenstern N. R. Probabilistic slope stability analysis for practice[J]. Canadian Geotechnical Journal,2002,39:665-683.
    [6-7] Semih Yucemen M., Al-Homoud A. S. Probabilistic three-dimensional stability analysis of slopes[J]. Structural Safety, 1990,9(1): 1-20.
    [6-8] 梧松,吴玉山.土质边坡三维可靠度分析[J].岩土力学,2003,24(2):284-287.
    [6-9] Mitchell, Melanie. An introduction to genetic algorithms[M]. Cambridge, Mass: MIT Press, 1996.
    [6-10] 陈昌富,王贻荪,邹银生.边坡可靠性分析分步混合遗传算法[J].土木工程学报,2003,,36(2):72-76.
    [6-11] 陈祖煜.土质边坡稳定分析——原理、方法、程序[M].北京:中国水利电力出版社,2003.
    [6-12] Ahmed M.,Thomas F. Search algorithm for minimum reliability index of earth slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999,125(4):301-308.
    [6-13] Haukaas T., Kiureghian A. D. Strategies for finding the design point in non-linear finite element reliability analysis[J]. Probabilistic Engineering Mechanics,2006, 21(2): 133-147.
    [6-14] Bhattacharya G., Jana D., Ojha S., Chakraborty S. Direct search for minimum reliability index of earth slopes[J]. Computers and Geotechnics, 2003, 30(6):455-462.
    [6-15] 王光远.工程结构与系统抗震优化设计的实用方法[M].北京:中国建筑工业出版设,1999,10.
    [6-16] 施光林,史维祥.遗传算法及其研究与应用新进展[J].科技导报,1997,(4):35-37.
    [6-17] 姚文俊.遗传算法及其研究进展[J].计算机与数字工程,2004,32(4):41-43
    [6-18] 王健,王建华.标准遗传算法的研究进展[J].华东船舶工业学院学报, 2000,114(13):28-34.
    [6-19] 武清玺.结构可靠性分析几随机有限元法—理论、方法、工程运用及程序设计[M].北京:机械工业出版社,2005,3.
    [6-20] 王家臣.边坡工程随机分析原理[M].北京:煤炭工业出版社,1996.
    [6-21] 林元烈.应用随机过程[M].北京:清华大学出版设,2002,11.
    [6-22] 王建华.跨流流域调水工程输水渠坡稳定的风险分析[D].杭州:浙江大学硕士学位论文,2005,2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700