h型抗滑桩设计计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西部山区地质构造复杂、易诱发滑坡等地质灾害,加之基础设施建设,加剧了地质环境的脆弱性。本文针对该地区工程地质特点,以h型抗滑桩支挡结构为研究核心,力求研发出适宜于的我国西部山区滑坡及高边坡防治的新型结构,为滑坡与高边坡防治技术提供新的工程手段。本文从h型抗滑桩受力特点及工程适宜性入手,提出该新型结构的设计计算方法,并通过数值模拟、大型结构模型试验等方法,分析并验证h型抗滑桩的工作机理与结构性能。论文主要研究工作和取得的研究成果有如下几个方面:
     1、对h型抗滑桩受力机理及结构特性进行了研究。h型抗滑桩作为超静定结构和空间组合结构,在结构性能及工作形式上大幅度的优于属于静定结构的普通抗滑桩。在多变的外荷载作用下,h型抗滑桩能够自动调整结构本身的内力,使之适应复杂而又难以预计的荷载条件。h型抗滑桩具有良好的协同工作能力,其前、后排桩在共同抵抗滑坡推力的同时,可以通过调节结构几何尺寸,灵活的分配前、后排桩和连系梁的受荷状态与最大内力、弯矩、剪力的大小和分布规律,最大程度的发挥组合式结构的性能。
     2、分析并研究了h型抗滑桩地质条件应用适宜性。根据区域环境地质特征和工程地质条件及自身结构特点,提出h型抗滑桩结构的工程环境运用条件。h型抗滑桩适用于各类中、厚层大型滑坡及高边坡的治理,特别适用于滑坡推力大于2000kN/m的大推力滑坡和易滑地层的防治。相对于目前使用最广泛的预应力锚索抗滑桩,h型抗滑桩有效避免了预应力锚索的应力松弛、锈蚀和预应力锚索抗滑桩的使用受地质环境的限制的三大问题。同时,h型抗滑桩由于悬臂外伸段的构造特点,具有较强的“收坡”功能,非常适用于路堑高边坡支挡工程。
     3、对h型抗滑桩荷载分布规律和结构计算方法进行了探索。通过桩——土变形协调条件,构造计算模型,给出了前、后排桩与桩间土的相互作用力计算方法。同时,建立了基于三次超静定图乘法的计算方法。导出h型抗滑桩受荷段结构内力及位移计算公式,得到结构解析解。下部锚固段结构的计算采用弹(刚)性桩法和P-y曲线法,获得较准确的数值解。
     4、在结构计算的基础上,基于抗滑桩的一般设计原则,提出了h型抗滑桩的设计要求及设计内容,建立了h型抗滑桩基本设计流程。对h型抗滑桩结构承载力设计进行了研究。包括桩身双筋正截面受拉设计与校核、斜截面设计,构建了相应的设计步骤与算法。并给出了h型抗滑桩在配筋设计的相关要求。
     5、通过对h型抗滑桩有限元模型进行数值模拟,研究了h型抗滑桩结构整体变形规律和前排桩、后排桩、连系梁在滑坡推力作用下的应力分布状态。同时,对h型抗滑桩的各参数进行了影响性分析,获得了以下结论:(1)排距在2.5d≤Z≤4.5d时,前、后排桩桩顶位移处于一个低值区间,抗变形能力处于最优状态,此时前、后排桩的最大正负弯矩也处于一个较优状态,建议在工程设计中,在此区间选定排桩。(2)h型抗滑桩要产生有效的土拱效应,其合理的两榀桩的间距应为2.5b≤L≤3.5b,此时工程技术经济水平最佳。两榀桩的间距超过4d后,土拱效应显著下降,仅依靠桩与桩间土体的摩擦力来提供阻力。(3)随着桩间土压缩模量ES的增大,后排桩的最大正弯矩和最大负弯矩均随之变大,后排桩的桩顶最大位移逐渐减小。对于前排桩,随着桩间土压缩模量的增大,最大正弯矩和最大负弯矩则呈减小趋势,前排桩的桩顶最大位移亦逐渐减小。提高桩间土的变形模量,可以使其更为充分的在前排桩和后排桩之间传导土压力,以优化h型抗滑桩结构的受力性能。(4)计算显示,保持前、后排桩与连系梁的刚性连接是非常必要的,这样可有效避免桩身过大位移的发生并实现合理的前、后排桩正负弯矩的协调性,适当降低锚固段最大负弯矩的绝对值,充分保证h型抗滑桩结构的技术经济性。(5)悬臂段长度比的变化对h型抗滑桩工作性能影响较显著。悬臂段长度比控制在0.5-0.67,此时结构受力及变形状态较优。
     6、首次对h型抗滑桩和门架式抗滑桩进行结构模型试验,研究在不同荷载分布条件下其结构内力分布规律、整体变形规律和前排桩、后排桩、连系梁的应力——应变状态,得到以下结论:(1)h型抗滑桩和门架式抗滑桩作为组合式抗滑桩,在桩身整体刚度上,性能优势明显,受荷后结构整体变形小。前排桩和后排桩在同一高度上的桩身位移量基本相同,具有较优的结构协同工作能力。(2)h型抗滑桩和门架式抗滑桩的桩身应力——应变实测数据表明:后排桩与前排桩始终处于交变应力状态,在锚固段靠近滑面处的位置出现应力最大值,是此类抗滑桩的薄弱环节,但由于结构尺寸与荷载分布形式的不同,会对应力最大值出现的位置和数值有一定的影响。(3)在不同的荷载分布形式作用下,h型抗滑桩的内力状态是有所差别的。三角形荷载分布形式较矩形荷载分布会在后排桩锚固段产生更大的应力最大值,在前排桩使得应力最大值出现处更靠近滑动面位置。(4)在外荷载的作用下,h型抗滑桩桩身的应力——应变状态可明显的划分为3个阶段,对应着不同的性能特点,对桩身开裂有直接的关系。h型抗滑桩桩身开裂,具有较明显的抗弯构件的特征。(5)固定端支承下,前、后排桩所测试得到的桩身最大弯矩值均大于自由端支承。对于滑面处的位移值来讲,固定端支承条件下所测试的位移值较自由端支承小。
     7、研究了h型抗滑桩的施工工艺,对多种施工工序进行了比对分析,并对帽梁的制作等关键施工技术进行了探讨,建立了初步的h型抗滑桩的施工流程,以提高它的工程应用性和施工实践的可操作性。
     8、以重庆奉节~巫溪高速公路大坪滑坡治理工程为依托工程,通过对两种不同的抗滑支挡设计方案进行对比,从结构受力状态、滑坡稳定度、桩侧应力、工程造价等各指标加以分析,评价h型抗滑桩的技术经济合理性。
High mountain mainly located in West China with complex geologicalcondition and it easily induced Geological hazards, such as landslides. In recent years,infrastructure construction increased the vulnerability of geological environment inthis area. According to the engineering geological characteristics, this paper put the htype of anti-sliding piles as core research and make it as a new structure for landslideand high slope control. From the mechanical characteristics and constructionsuitability of h type of anti-sliding piles, this article puts forward the calculationmethod of the new structure, and through numerical simulation, large structure modeltest, analysis and confirm its working mechanism and structure performance. Themain research and conclusions are listed as follows:
     1、This paper make research of the stress mechanism and structure character of htype of anti-sliding piles. As ths statically indeterminate structure and spatial structure,h type of anti-sliding piles is better than ordinary anti-slide pile which belongs to thestatic structure in the structure performance and work form. In the changing the load,h type of anti-sliding piles could automatically adjust the structural internal force andhave collaborative work ability. When the former pile and the back pile resistthrusting force together, we could distribute internal force, moment, shear between theformer pile, the back pile and the beam by adjusting structure geometry size in orderto play combined structure performance in greatest degree.
     2、This paper then analyze the Geological suitability of h type of anti-slidingpiles. According to the regional environmental geological characteristics andstructural characteristics, puts forward its engineering environment conditions. h typeof anti-sliding piles is suitable for all kinds of medium and large landslides and thehigh slope, especially suitable for landslide thrust greater than2000kN/m and slidestrata. Compared with the current of the most widely used prestress anchored anti-slide pile, h type of anti-sliding piles avoid to its problems such as the stressrelaxation, rust and limited conditions use. The cantilever structure characteristics hasstrong " reduce slope" function, which is suitable for cutting slope block project.
     3、Explore to the structure calculation method of h type of anti-sliding piles. Foraccurate structure calculation, we not only need to determine thrusting force formbetween the former pile and the back pile, but also need to make sure the thrustingforce distribution situation. In this paper, we have make sure all thrusting force of thestructure by establishing calculation model, then provides calculating load distributionstate of h type of anti-sliding piles. Based on the numerical method of structuralmechanics, we get the analytical solution for upper structure, and get the analyticalsolution for bottom structure by P-y curve method or elastic (rigid) pile method.
     4、Based on the general design principle, puts forward the design requirementand design content of the h type of anti-sliding piles, and established the basic designprocess. Then research the bearing capacity of structure design, include normalsection tension design and checking, and oblique section design, and establish thecorresponding calculation steps and algorithm. By structure design principle andstructural characteristics, we study the related requirements of reinforcement design.
     5、Through numerical simulation of h type of anti-sliding piles by finite elementmodel, we research the structural deformation law and stress distribution state, thenanalyze the parameter on influence analysis, come to some conclusion:(1) When rowdistances is2.5d≤Z≤4.5d, the resistance to deformation ability of the former pile andthe back pile are best and the moments of them are also in superior condition. Itsuggest us to selected row distances in this interval for engineering design.(2) Toproduce effective soil arching effect, the spacing between piles is2.5b≤L≤3.5b, thistime engineering technology economic level is best. But when4b≤L, soil archingeffect will drop, only rely on friction between the soil to provide resistance.(3) Withincrease of the soil compression modulus ES, the bending moments of the back pilerise, and the bending moments of the former pile decrease. Improving the soilmodulus, can make it more fully transmit pressure between former pile and back pile,and optimize h type of anti-sliding piles force performance.(4) The computationalresults show that keep the structure rigid connection is very important. Not only caneffectively avoid large displacement, but also can realize coordination of the positivebending moment between former pile and back pile, and decrease the negative bending moment in bottom structure.(5) The change of the cantilever lengthproportion impact on performance significantly for h type of anti-sliding piles,when0.5-0.67, Structure has better performance.
     6、Through the portal double row piles and h type of anti-slide piles structuremodel test, research structural internal force distribution and deformation law andStress-strain state in different load conditions, come to some conclusion:(1) The portaldouble row piles and h type of anti-slide piles as the combined structures, haveperformance advantages in rigidity, The structural deformation are small and basicallythe same displacement between the former pile and the back pile which has superiorcollaborative ability.(2) Measured data show that the former pile and the back pilealways in alternating stress state. For bottom structure, they appear maximum stressnear the slide surface, which are weak links. Due to the different of structure size andload distribution form, the placement and numerical of maximum stress have a certaineffect.(3) In different load distribution, h type of anti-slide piles internal force state isdifference. Triangular load will produce more stress value in the back pile thanuniformly distributed load, and triangular load will make maximum stress appearednear the slide surface for the former pile than uniformly distributed load.(4) Thestress-strain state can be obvious divided into three process corresponding to differentperformance characteristics and are directly related to cracking with h type ofanti-slide piles. The structure cracking of h type of anti-slide piles has obviousbending component characteristics.(5) The former pile and the back pile have largerbending moments under fixed supporting than under free supporting. For slide surfacedisplacement, it is smaller under fixed supporting than under free supporting.
     7、This paper research the construction technology and construction process of htype of anti-slide piles, and discuss some key construction technology. Then establisha preliminary construction process for h type of anti-slide piles in order to improve itsengineering application.
     8、Based on the Chongqing dapin landslide project, compared with two designsfrom stress state, slope stability, pile stress and engineering cost to effective provethat h type of anti-slide piles have technical and economic advantages.
引文
[1]张倬元,王士天,王兰生,工程地质分析原理(第二版)[M],北京地质出版社,1994
    [2]王恭先,中国滑坡防治研究综述,兰州滑坡泥石流学术研讨会文集[A],兰州:兰州大学出版社,1998
    [3] Hoek, E.&Bray, J.W., Rock Slope Engineering, IMM.1981
    [4] Zaruba, Q. Mencl, V., Landslides and Their Control.1982
    [5] Duncan, J.M.&Wright, S.G., Soil Strength and Slope Stability, John Wiley&Sons.2005
    [6] Cornforth, D.H., Landslides in Practice, John Wiley&Sons.2005
    [7] Abramson, L.W., Lee, T.S., Sharma, S.,&Boyce, G.M., Slope Stability and Stabilization Methods, JohnWiley&Sons.1996
    [8] Bromhead, E.N., The Stability of Slopes, Blackie Academic&Professional,1986
    [9] Goodman, R.E., Methods of Geological Engineering in Discontinuous Rocks,1976
    [10]卢蠢槱,浅论易滑地层[J],山地研究,1988,6(2),120-123
    [11]李远耀,殷坤龙,柴波等,三峡库区滑带土抗剪强度参数的统计规律研究[J]岩土力学,2008,29(5)
    [12]黄润秋,徐则民,西南典型城市环境地质问题与城市规划[J],中国地质,2007,34(5):894-906
    [13]黄润秋,黄达,宋肖冰,卸荷条件下三峡地下厂房大型联合块体稳定性的三维数值模拟分析[J]地学前沿2007,14(2):268-275
    [14]许强,黄润秋,殷跃平等2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J],工程地质学报2009,17(4)
    [15]刘天翔,许强,黄润秋,三峡库区塌岸预测评价方法初步研究[J]成都理工大学学报(自然科学版)2006,33(1):77-83
    [16]王广德,葛华,刘汉超,重庆市万州区塌岸模式及影响因素分析[J],中国地质灾害与防治学报2008,19(3)
    [17]吉锋,葛华,刘汉超,三峡库区重庆市万州区塌岸现状调查[J],山地学报2007(2)
    [18]秦凯旭,石豫川,刘汉超,三峡库区某滑坡体成因机制分析与稳定性评价[J],水土保持研究2006(5)
    [19]葛华,刘汉超,万州草街子双堰塘滑坡稳定性影响因素敏感性分析[J]中国地质灾害与防治学报2003,14(2)
    [20]黄润秋,林峰,陈德基等,岩质高边坡卸荷带形成及其工程性状研究[J],工程地质学报2001,09(3):227-232
    [21]李玉生,重庆市三峡库区若干重大地质灾害隐患[J].中国地质灾害与防治学报,2010,21(01):133-135
    [22]范泽英,武水高速公路白云隧道地质勘察技术及应用[J],地下空间与工程学报,2008,4(6):1116-1127
    [23]牛建中,熊开治,重庆市武隆县巷口镇河坝危岩带稳定性研究[J],山西建筑,2010,36(1)130:-132
    [24]柴贺军.阎宗岭.贾学明.土石混填路基修筑技术[M].人民交通出版社.2009
    [25]柴贺军,李海平,王俊杰,山区公路斜坡地形路基病害类型及处治方法[J],公路交通技术2008(6):1-10
    [26]冯五一,唐胜传,柴贺军,三峡库区巴东组地层超长桩桩侧摩阻力的自平衡试验[J],交通标准化2008,178(6):54-58
    [27]李远耀,殷坤龙,柴波等,三峡库区滑带土抗剪强度参数的统计规律研究[J]岩土力学,2008,29(5)
    [28]吴益平,余宏明,胡艳新,巴东新城区紫红色泥岩工程地质性质研究[J]岩土力学,2006,2797)1201-1208
    [29]余宏明,胡艳欣,张纯根,三峡库区巴东地区紫红色泥岩的崩解特性研究[J].,地质科技情报2002,21(4):77~79
    [30]殷跃平,胡瑞林,三峡库区巴东组(T2b)紫红色泥岩工程地质特征研究[J].工程地质学报,2004,12(2):126~127
    [31]地质矿产部编写组,长江三峡工程库岸稳定性研究[M],北京:地质出版社,1988.
    [32]李守定,李晓,张年学,三峡库区侏罗系易滑地层沉积特征及其对岩石物理力学性质的影响[J]工程地质学报,2004,12(04)385-389
    [33]高振中.长江三峡地区沉积演化研究[M].北京:地质出版社,1999.
    [34]铁路路基支挡结构设计规范(TB10025-2006J127-2006).[S],中华人民共和国铁道部,2006
    [35]王恭先,抗滑支挡建筑物的发展方向,[A]滑坡文集(第12集),北京,中国铁道出版社,1998,60-64,
    [36]王恭先,日本的滑坡防治技术,滑坡文集(第7集)[A]北京:中国铁道出版社,1990,63-69
    [37]申润植,李妥得,杨顺焕译[M],滑坡整治理论和工程实践,北京:中国铁道出版社,1996
    [38]王恭先,滑坡防治工程措施的国内外现状[J],中国地质灾害与防治学报,1998(1)
    [39] L.K.Ginxburg.Effective of antilandslide retaining Landslides, Proceedings of the seventh internationalstructures.symposium landslidest,1996.
    [40} D.A.Bruce, Dan Juran, Slope Stabilization on by micropile reinforcement. Landslides,1996.
    [41]章勇武,马惠民,山区高速公路滑坡与高边坡病害防治技术实践[M]人民交通出版社,2007
    [42]马惠民等,山区高速公路高边坡病害防治实例[M]人民交通出版社,2006
    [43]闽顺南,徐凤鹤.施溶溪椅式桩墙的研究[A].滑坡文集(第三集),1990:143-151.
    [44]铁路路基支挡结构设计规范(TB10025-2001J127-2001).北京:中国铁道出版社,2002.
    [45]程知言,裘慰伦,张可能.双排桩支护结构设计计算方法探讨[J].地质与勘探,2001(2):88一90.
    [46]顾晓鲁,浅鸿绪,刘惠珊,汪时敏.地基与基础(第三版)[M)。北京:中国建筑工业出版社,2003.
    [47] Mindlin R. Force at a point in the interior of a semi-infinite solid. Physics1936, No.S.
    [48] Brows B.B.著,西南交通大学隧道及地下铁道专业情报组译,侧向受力桩的技术现状.抗滑桩译文选[M].成都:铁道部第二堪察设计院科研所,1977.
    [49] Baguelin F, Frank R, Said Y H.著,汪锡民译.关于桩侧向反力机理的理论研究.抗滑桩译文选第八辑,铁道部第二堪察设计院研究所,1979.
    [50] Duncan,J.MAnalysis of soil movement around a deep excavation[J]..Journal. of soil Mech And Found.ASCE,1970,96(5)
    [51] Heyman L. Measurement of the influene of lateral earth pressure on pile foundation. Proc.6th ICSMFE.Montreal.1965,257-260
    [52] Nicu N D, Antes D R, Kessler R S. Field measurements on instrumented piles under an overpass abutment.Highway Research Record.1971,88-92.
    [53] Oteo C S. Discussion to Poulos, JSMFD. ASCE.1974,365-372
    [54] Stewart D P, Jewell R J, Randolph M F. Design of piled bridge abutments on soft clay for loading fromlateral soil movements. Geotechnique.1994,44(2):176-179
    [55] Oteo C S. Horizontally loaded piles-deformation influnce. Proc,9th ICSMFE. Tokyo.1997:121-129
    [56] Mana A I.Finite element analysis of deep excavation behavior[D],Stanford University,1997
    [57]房营光,莫海鸿.深基坑工程施工过程动态反演与变形预测的半解析分析[J].岩石力学与工程学报,2002,21(10):1562-1567
    [58]何颐华,杨斌,金宝森.双排护坡桩试验与计算的研究[J」.建筑结构学报,1996(2):43-49
    [59].余志成,施文华,深基坑支护设计与施工[M],北京:中国建筑工业出版社,1997
    [60].龚晓南,深基坑工程设计施工手册[M],北京:中国建筑工业出版社,1998.
    [61].龚晓南,土工计算机分析[M]北京:中国建筑工业出版社,2000
    [62]杨雪强,刘祖德.深基坑支护的空间效应[J].岩土工程学报,1998,20(2):102-109
    [63]汤翔宇,蔡袁强等:双排桩式围护结构的有限元分析[M]太连理工太学出版杜,1995
    [64]黄强.深基坑支护设计技术[M].北京:中国建材工业出版社,2000
    [65] LU Peiyi, YANG Jing, Finite element analysis of double-row piles in consideration ofdimensionaleffect[J].Journal of Tianjin University,2006,39(8):65–71.(in Chinese))
    [66] CUI Hong-huan; ZHANG Li-qun; ZHAO Guo-jing, Numerical simulation of deep foundation pitexcavation with double-row piles [J]Rock and Soil Mechanics,2006,27(4):662–666
    [67] CAI Yuan-qiang,RUAN Lian-fa,WU Shi-ming, et al.Finite element analysis and application ofdeepexcavation with re aining structure of double-row piles in soft clay[J].Journal of BuildingStructure,1999,20(4):65-71.
    [68]蔡袁强,赵永倩,吴世明等.软土地基深基坑中双排桩式围护结构有限元分析[J]..浙江大学学报(工学版)1997.20(4):65-71.
    [69]王湛,刘冰花.双排桩计算方法探讨[J].东北地震研究.2001,17(2)64-68
    [70] YING Hongwei,CHU Zhenhuan, FINITE ELEMENT ANALYSIS OF DEEP EXCAVATION WITHBRACED RETAINING STRUCTURE OF DOUBLE-ROW PILES,2007,(S2)
    [71]戴智敏,阳凯凯.深基坑双排桩支护结构体系受力分析与计算[J]..信阳师范学院学报(自然科学版).2001.15
    [72]万智,王贻荪,李刚.双排支护结构的分析与计算[J]..湖南大学学报(自然科学版).2001.28(5),116-131
    [73]平扬,白世伟.深基坑双排桩空间协同计算理论及位移反分析[J].土木工程学报.2001.34(2):79-83.
    [74]平扬,关于“基坑支护桩结构优化设计”的讨论[J]..岩土工程学报.2001.34(5):646-647
    [75]曹均坚,平扬,朱长歧等.考虑圈梁作用的深基坑双排桩支护计算方法研究[J]..岩石力学与工程学报.1999.18(6):709-712
    [76]曹俊坚.深基坑双排桩支护计算理论与桩顶位移反馈计算方法研究[D].武汉:中国科学院武汉岩土力学研究所,1999.
    [77]黄凯,深基坑圈梁与支护桩的相互作用分析[J].岩石力学与工程学报2003,22(3):481-486
    [78]王旭,晏鄂川,埋入式双排桩—土体系桩间内力分配的模拟[J],煤田地质与勘探2006,34(4),57-60
    [79] ZHOU Cui-ying,LIU Zuo-qiu, A new mode for calculation of portal double row anti-sliding piles [J]Rockand Soil Mechanics,2005,26(03):441-449
    [80]蒋楚生,椅式抗滑桩的内力计算[J],路基工程,2004,112(1),57-59
    [81] Liu J L, W ang J L, Influence of layout style on soil arching effect of double-row anti-slide piles[J]. Journalof the Graduate School of the ChineseAcademy ofSciences,2010,27(3):364-369
    [82] YANG Bo, ZHENG Ying-ren Two-row anti-slide piles in three kinds of typical landslide computations andstress rule analysis [J],Rock and Soil Mechanics,,2010,(S1):237-244,
    [83]徐风鹤,王金生,罗依溪抗滑刚架桩的设计与施工[A]滑坡文集[C],北京:中国铁道出版社,1988
    [84]赵海玲,h形抗滑桩变形性状的研究[D],四川大学硕士论文,2005
    [85]赵海玲,彭盛恩,王启智.滑坡成因机制分析及治理措施[J].铁道建筑,2004(9)
    [86]中国建筑西南勘察研究院,宜宾五粮液集团纸箱厂2a滑坡勘查报告,2002
    [87] XIAO Shi-guo,Approximate theoretical solution of distribution modes of landslide thrust on anti-slidingpiles in soil-like slopes or landslides[J],Chinese Journal of Geotechnical Engineering,2010,32(1):120-123
    [88] XIAO Shi-guo,Analytical method for h-type combined anti-sliding pile retaining landslide or excavatedslope and its application to practical projects[J], Rock and Soil Mechanics,2010,31(7)2146-2152
    [89]肖世国,椅型组合抗滑桩治理大推力滑坡的力学机制和计算理论研究[J],前沿动态,2009,(1):28-29
    [90] Hassiotis S, Design method for stabilization of slope with pile[J]. Journal of GeotechnicalEngineering,1997,315-324
    [91]史佩栋.实用桩基工程手册[M],北京:中国建筑工业出版社,1999.
    [92]吴恒立,计算推力桩的综合刚度原理和双参数法[M],北京:人民交通出版社,2000
    [93]戴自航,水平梯形分布荷载桩双参数法的数值解[J],岩石力学与工程学报,2004,23(15):2632一2638
    [94]周春梅,殷坤龙,双参数法在抗滑桩设计中的运用IJ]武汉理工大学学报,2004,26(10):38一41
    [95]中华人民共和国建设部,建筑基坑支护技术规程(JGJ120-1999)北京:中国建筑工业出版社,1999.
    [96]铁道部第二勘察设计院,抗滑桩设计与计算[M],北京:中国铁道出版社,1983.
    [97]中华人民共和国建设部。建筑边坡工程技术规范(GB50330-2002),北京,中国建筑工业出版社,2002
    [98]殷跃平主编,长江三峡工程库区滑坡防治工程设计与施工技术规程[M],地质出版社,2001
    [99] Wang S.T. Reese L.C.Fouse J.L.Use of drilled shafts in stabilizing a slope.In Stability and Performance ofslopes and Embankments-II.Edited by R.B.Seedand R.W.Boulanger.American Society of CivilEngineers.1992:1317-1331.
    [100] Viggian G. Ultimate lateral force on piles used to stabilize landslides.Proceedings11th InternationalConference on Soil Mechanics and FoundationEngineering.Stockholm.1981:554-561.
    [101] Poulos H.G. Lee C.Y,Hull T.S..Effect of seafloor instability on offshore pile foundations.CanadianGeotechnical Journal.199128(5):729-738.
    [102] Commer,H.Creeping slope in a stiff clay.Proceedings Special Session No.9th International Conference onSoil mechanics and Foundation Engineering.Tokyo.1977:113~119.
    [103]郑颖人,赵尚毅,邓卫东,抗滑桩设计的两个问题[J]公路交通科技,2005(6)
    [104]郑颖人,赵尚毅,用有限元强度折减法求滑坡支挡结构的内力.岩石力学与工程学报,2004(20)
    [105]包世华,结构力学[M],北京:高等教育出版社,1994
    [106]李章政,熊峰,结构力学[M],四川:四川大学出版社,2000
    [107] Bao SHH, Structural Mechanics [M], Wuhan university of technology,2005
    [108]马惠民等,山区高速公路高边坡病害防治实例[M],北京:人民交通出版社,2006
    [109]黄润秋,岩石高边坡稳定性[M],北京:地质出版社,2004
    [110]李海光等,新型支挡结构设计与工程实践[M],北京:人民交通出版社,2003
    [111]赵明阶等,边坡工程处治计算[M],北京:人民交通出版社,2003
    [112] Sangseom Jeong,Byungchul Kim,Jinoh Won,Jinhyung Lee.Uncoupled analysis of stabilizing piles inweathered slopes.Computers and Geotechnics.30(2003):671-682.
    [113]杨航宇,公路边坡防护与治理[M],北京::人民交通出版社.2002
    [114] GTGD30-2004,公路路基设计规范[S].中华人民共和国交通部,2004
    [115] Tomio Ito,Tamotsu Matsui,Won Pyo Hang.Design method for Stabilizing piles against landslide-one rowof piles[J].Soils and Foundations.1981.21(1):21-32
    [116] Cai F, Ugai K. Numerical analysis of the reinforced with piles.Soils Found2000:40(1):stability of a slope66-69.
    [117] Terzaghi K.Theoretical Soil Mechanics[M].New York:John Wiley&Son,1993.
    [118]陈洪凯,高等土力学[M],北京:中国科学文化出版社,2002
    [119] William F. Riley, Leroy D. Sturges,,Mechanics of Materials [M] Wiley-Blackwell,2005
    [120] Wyllie D C. Foundation on Rock[M].London: Chapman and Hall,1992.
    [121]徐芝纶,弹性力学[M],北京:高等教育出版社,1992
    [122]王光钦,弹性力学[M],成都:西南交通大学出版社,2002
    [123] Karl T. Theoretical soil mechanics[M].NewYork: John Wiley&Sons,199?.
    [124]中国建筑科学研究院.建筑桩基技术规范(JGJ94-94)[S].北京:人民交通出版社,1994
    [125] Lzmon C,Reese K.Laterally loaded piles:program documentation[J].Journal of the GeotechnicalEngineering,ASCE,1977,103(4)
    [126] Casagrande L.Comments on conventional design of retaining structures[J].Journal of GeotechnicalEngineering,ASCE,1973,121(9):629~635
    [127] MCCLELLAND B,FOCHT J A.Soil modulus of laterally loaded piles[J].Transactions of the AmericanSociety of Civil Engineers,1958,(123)
    [128] MATLOCK H.Correlation for design of laterally loaded piles in soft clay[C]//Proc.2nd OffshoreTechnology Conference.1982.
    [129] REESE L C,COX W R,KOOP F D.Analysis of laterally loaded piles in sand[C]//Proc.6th OffshoreTechnology Conference.1983.
    [130]]STEVEN J B M,AUDIBERT J M E.Re-examination of p-y curve formations[C]//Proc.11th OffshoreTechnology Conference.1987.
    [131] GB(50010-2010),混凝土结构设计规范[S],中华人民共和国住房和城乡建设部,2010
    [132] GB(5009-2001),建筑结构荷载规范[S],中华人民共和国住房和城乡建设部,2001
    [133]江见琼,混凝土结构工程学[M].北京:中国建筑工业出版社,2006
    [134]张誉,混凝土结构基本原理[M].北京:中国建筑工业出版社,2000
    [135]王铁成,混凝土结构设计原理[M].天津:天津大学出版社,2002
    [136]孙家乐,张钦喜,深基坑空间组合支护桩设计与工程应用[J]工业建筑,1995,25(9),9-14
    [137] Oteo C S. Horizontally loaded piles-deformation influnce. Proc,9th ICSMFE. Tokyo.1997:284-289.
    [138]程知言,裘慰伦,张可能.双排桩支护结构设计计算方法探讨[J].地质与勘探,2001(2):87-91.
    [139]黄强.护坡桩空间受力简化计算[J]..建筑结构,!995(3)
    [140]朱伯芳,有限单元原理与应用[M],北京:水利电力出版社,2008
    [141]龚曙光,ANSYS基础应用及范例解析[M],北京:机械工业出版社,2005
    [142] Liang R, Zeng S. Numerical study on soil archingmechanism in drilled shafts for slope stabilization[J].Soil and Foundation,2002,42(2):83-92.
    [143]贺建清,张家生,弹性抗滑桩设计中问题的探讨[J],岩石力学与工程学报.1999,18(5):496-501.
    [144] Chen C Y, MartainG R. Soil-structure interaction for landslide stabilizing piles[J]. Computer andGeotechnics,2002,29(5):363-386.
    [145] LeungC F, Lim JK, Shen R F,etal. Behaviors ofpile groups subject to excavation-induced soilmovement[J]. Journal of Geotechnical and Geoenviromental Engineering,2003,129(1):58-65.
    [146] Jing, L., Numerical Methods in Rock Mechanics, Int. J. Rock Mech..&Min.Sci.,2002,(39):409~427.
    [147] Handy.R.L The areh in soil arehing.Journal of the Geoteehnical Engineering Division,1985(3)
    [148] Vermeer PA, Punlor A, Ruse N. Arching effects behind a soldier pile wall. Computers and Geotechnics,2001,28(6):379-396
    [149]王成华,陈永波,抗滑桩间土拱力学特性与最大桩间距分析[J].山地学报.2001,19(6):
    [150]汤梵,双排桩基坑支护结构桩间土流失问题分析[J],工程建设与设计,2007(02):66-69
    [151]张庆军,浅论挖孔桩桩帽设计[J],建筑技术,2004(03):35-37
    [152]铁路路基施工规范(TB10202-2002.北京:中国铁道出版社,2002.
    [153] GB50204-2002,混凝土结构工程施工质量验收规范[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700