桩板式抗滑挡土墙的振动台试验和抗震机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于桩板式抗滑结构具有抗滑能力强、施工安全简便、速度快、工程量小等优点,因此被广泛应用于基覆和顺层边坡的滑坡治理中,从“5.12”汶川地震支挡结构的震害调查也发现,桩板式抗滑挡土墙具备优良的抗震性能,对于此结构,目前国内外在静力设计方面已进行了一些研究,然而对抗震机理的研究较少,对桩板式抗滑挡墙的抗震性能研究更少,致使至今仍缺少成熟的抗震设计计算方法,并使得这一经济合理的工程结构在抗震领域的运用上受到了很大的限制。鉴于此,本文以汶川地震公路、铁路支挡结构的震害调查为研究背景,设计完成了2个相似比为1:10的桩板式抗滑挡土墙支护边坡模型,以归一化处理后的卧龙台站地震波作为设计输入地震波,开展了大型振动台试验,并借助数值模拟和理论分析手段对其进行了拓展,该论文的研究成果将为深入揭示桩板式抗滑挡土墙的抗震机理、完善结构工作机制研究和改善抗震设计方法提供有力的理论依据和参考。该论文取得的主要成果和结论如下:
     (1)大型振动台模型试验相似比设计
     结合地震调查情况,选取典型震害工点,进行了2个模型的大型振动台试验研究。根据模型试验的相似性要求,制定了本试验的相似关系设计基本原则,并根据量纲分析法完成了模型的相似比设计,推导了试验所涉及物理量的相似常数,确定了模型相似材料和物理力学参数,选取了台面输入加载方案。此外,对试验过程中挡土结构和边坡模型的制作进行了详细介绍,为同类试验提供了有价值的参考。
     (2)桩板式抗滑挡土墙加固边坡的地震响应特性
     利用从上述2个结构模型试验中测得的地震土压力、位移、加速度和锚索轴力的时程数据,分别进行详细、系统的分析,得出了桩板式抗滑挡土墙在不同地震动参数作用下桩身内力、结构变形、锚索轴力与剪应力的动态响应规律,并认识了加固边坡中的加速度响应特性和地震波传播规律。
     (3)桩板式抗滑挡土墙的数值分析
     利用FLAC3D有限差分法建立了结构一土一锚相互作用的三维模型,把归一化处理后的汶川卧龙波、Kobe波和E1Centro波等实测地震记录用作激励,完成了多个工况的动力时程反应计算。针对影响结构地震响应的输入地震动参数、岩土材料参数和结构设计参数分别进行了参数影响分析,得出了结构在不同参数下的地震响应规律。此外,数值分析工作也贯穿到桩板式抗滑挡土墙加固边坡的抗震机理研究和设计方法的验证等各个章节。
     (4)桩板式抗滑挡土墙加固边坡的抗震机理
     结合模型试验、数值分析和理论分析的研究成果,应用数学和力学方法,研究了地震作用下桩板式抗滑挡土墙加固边坡的变形规律,得到了加固边坡在地震下具有不同位移特性的分区特征,并从桩前后土体与结构运动不一致的角度揭示了结构一土动力耦合作用的工作机制,此外,通过MTS试验分析了锚固体系在破坏过程的不同阶段界面粘结力的变化情况和加载周期对极限承载力的影响,提出了锚固体系的位移控制原则。
     (5)桩板式抗滑挡土墙的抗震设计方法
     结合振动台试验、数值分析成果,对桩板式抗滑挡土墙的拟静力设计法提出了修正建议,考虑到锚索安装会引起桩后土体应力重分布的效果,推导了预应力锚索桩板式抗滑挡土墙的抗震设计方法。此外,鉴于地震动特性和结构本身特性对抗震性能的影响,运用Pushover能力谱法,提出了桩板式抗滑挡土墙的频谱设计方法,并提出了考虑近断层脉冲效应的R因子折减估算模型,在此基础上,结合性能设计思想,考虑了刚性桩与柔性桩抗震性能的差异性,提出了桩板式抗滑挡土墙的“三级设防”标准。上述修正建议和新的设计方法均通过振动台试验和数值分析的手段进行了验证。
Due to the advantages of stablizing ability, safe, fast and simple construction, etc., the anti-sliding sheet pile retaining wall has widely applied to prevent landslide of slopes with overlaps and layers. From the investigation of retaining structure damage in the "5.12" Wenchuan earthquake, it was found that the anti-sliding sheet pile retaining wall has excellent seismic performance. However, domestic and foreign research mainly focus on static design, lack understanding of seismic mechanism, and there are few researches on seismic performance of the anti-sliding sheet pile retaining wall, therefore seismic design calculation method is not well developed. The situation restricts the application and development of the economic and reasonable structure in the field of seismic engineering. In view of this, based on the investigation of damaged retaining structures from highway and railways in the Wenchuan earthquake, large scale shaking table tests were performed, in which two structure models of anti-sliding sheet pile retaining wall for stabilizing slope were designed and completed with similitude ratio1:10, scaled acceleration time history of the Wolong station is used as an input motion. In addition, numerical simulation and theoretical analysis were used to expand the achievements. To further reveal seismic mechanism, complement structure work function and improve seismic design of anti-sliding sheet pile retaining wall, the research results propose powerful theory basis and reference. The main achievements and conclusions are summarized as follows:
     (1) Similitude ratio design of large scale shaking table tests
     Based on the situation of investigation, two typical worksites were chosen to perform large scale shaking table test. According to the model test (with similitude requirements), basic principles of similitude relationships were determined, similitude model design was completed with the method of dimension analysis, similitude constants involved in the tests were deduced, model materials and physico-mechanical parameters were confirmed, and loading program of shaking table was determined. In addition, the processes of making the modeled retaining structures and slopes were introduced in details, which will provide valuable references for the similar test.
     (2) Seismic response characteristics of stabilized slopes with anti-sliding sheet pile retaining wall
     According to the measured time histories of seismic earth pressure, displacement, acceleration and anchor axial force from above two structural model tests, detailed and system analysis were performed. Through the analysis, the dynamic response characteristics of internal force of the pile, deformation of the structure, and axial force and shear stress of the cable under the action of different ground motions were obtained, and acceleration response characteristics and seismic wave propagation laws in stabilized slope were known.
     (3) Numerical analysis of anti-sliding sheet pile retaing wall
     According to the finite difference method, the software FLAC3D was chosen, a three dimensional model with considering structure-soil-anchor interaction was established. Through normalization, acceleration time histories of the Wolong, Kobe and El Centro records were used to excite the shaking table, and the dynamic time history response calculation of multiple modes were completed. According to the main influence of seismic response to structure, the ground motion parameters of input wave, geotechnical material parameters and structure design parameters were focused on studying influence analysis of parameters respectively, seismic response characteristics with different parameters were obtained. In addition, numerical analysis is through other chapters of seismic mechanism research in stabilized slope with anti-sliding sheet pile retaining wall and validation of seismic design method.
     (4) Seismic mechanism of stabilized slope with anti-sliding sheet pile
     Through research of model tests, numerical and theoretical analysis, with the methods of mathematics and mechanics, the deformation law of stabilized slope with sheet pile retaining wall under seismic effect was studied, the zoning characteristics with different displacements were obtained, and the structure-soil dynamic coupling mechanism was revealed focusing on the inconsistent movement of structure and soil around pile, In addition, the change characteristics of cohesive force of anchorage system in different stages of interface failure process and the influence of loading period to ultimate bearing capacity were studied through the MTS test analysis. The displacement control principle of anchorage system was put forward.
     (5) Seismic design method of anti-sliding sheet pile retaining wall
     For sheet pile retaining wall, revised suggestions on pseudo static design was put forward through shaking table tests and numerical analysis. For prestressed anchor sheet pile retaining wall, considering the soil stress redistribution behind pile from anchor installation, a seismic design method was derived. In view of the influence of the ground motion and structural characteristics to seismic performance, the seismic design method with spectrum for sheet pile retaining wall and the R factor reduction estimation model considering near fault pulse effect were put forward, by using Pushover capacity spectrum method. Based on this, combined with performance design thought, the "three level fortification" standard for anti-sliding sheet pile retaining wall was established, which considered the differences of seismic performance from rigid pile and soft pile. The above revised suggestions and new seismic design methods were all verified through the shaking table tests and numerical analysis.
引文
[1]李荣建.土坡中抗滑桩抗震加固机理研究[博士学位论文D].北京:清华大学,2008:1-13.
    [2]李海光.新型支挡结构设计与工程实例[M].北京:人民交通出版社,2004.
    [3]铁道部第二勘测设计院.抗滑桩设计与计算[M].中国铁道出版,1983.
    [4]Keefer D.K. Landslides caused by earthquake [J].Bulletin of Geological society of America, 1989(95):406-421.
    [5]Rordriguez C.E., Bommer J.J. Chandler R.J. Earthquake-induced land slides:1980-1997 [J]. Soil Dynamics and Earthquake Engineering.1999(18):325-346.
    [6]张建经,冯君,肖世国,刘昌清.支挡结构抗震设计的两个关键技术问题[J].西南交通大学学报.2009,44(3):321-326.
    [7]姚令侃,冯俊德,杨明.汶川地震路基震害分析及对抗震规范改进的启示[J].西南交通大学学报.2009,44(3):301-311.
    [8]周德培,张建经,汤涌.汶川地震中道路边坡工程震害分析[J].岩石力学与工程学报.2010,29(3):565-576.
    [9]Jian Zhang, Honglue Qu, Yi Liao, Yaoxian Ma. Seismic damage of earth structures of road engineering in the 2008 Wenchuan earthquake [J]. Environment Earth Science,2012,65: 987-993.
    [10]曲宏略,张建经.地基条件对挡土墙地震土压力影响的振动台试验研究[J].岩土工程学报,2012,34(7):1227-1233.
    [11]交通运输建设科技丛书.汶川地震公路震害调查[M].人民交通出版社,2011.
    [12]Eurocode 8:Design of structures for earthquake resistance Part 5:Foundations, retaining structures and geotechnical aspects[S].1998.
    [13]Satoh H, Ohbo N, Yoshizako K. Dynamic test on behavior of pile during lateral ground flow[C]. Centrifuge,1998:327-332.
    [14]Abdoun T, Dobry R. Pile response to lateral spreads:centrifuge modeling[J]. Journal of Geotechnical and Geoenvironmental engineering.2003,129(10):869-878.
    [15]Takahashi A, Takemura J, KawaguchiY,et al. Stability of piled pier subjected to lateral flow of soils during earthquake[C]. In:Kimura, Kusakabe, Takemura, eds. Centrifuge 98. Rotterdam,1998:365-370.
    [16]陶云辉.地震条件下桩板结构受力分析[硕士学位论文D].成都:西南交通大学,2008.
    [17]魏宏.玉蒙铁路路堤桩板墙振动台模型试验研究[硕士学位论D].成都:西南交通大学,2010.
    [18]卢济威,王海松.山地建筑设计[M].北京:中国建筑工业出版社.2005.
    [19]鲁绍宁.抗滑桩失效模式和安全评价指标研究[硕士学位论D].重庆:重庆交通大学,2010.
    [20]张克绪,谢君斐.土动力学.北京:地震出版社,1989.
    [21]Duncan J. M., Clough G. W. and Ebeling R. M.. Behavior and design of gravity earth retaining structures[C]. Proceedings, ASCE Specialty Conference on Design and Performance of Earth Retaining Structures, Special Technical Publication 25, Cornel University, Ithaca, New York,1990:251-277.
    [22]谢定义.土动力学[M].西安:西安交通大学,2011.
    [23]Ashok, Chugh K. A unified Procedure for Earth Pressure Calculations[C]. Third International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. St.Louis,1995,4:1179-1182.
    [24]张建民.任意侧向任意位移状态下土压力的评价方法[C].第五届全国土动力学学术会议论文集.大连理工大学出版社,1998年6月25至27日.
    [25]陈学良,陶夏新.粘性土挡土墙地震土压力解析解[C].现代地震工程进展.南京:东南大学出版社,2002:218-224.
    [26]Seed H.B, WhitemanR.V. Design of Earth Retaining Structures for Dynamic loads[J]. Lateral Stresses in the Ground and Design of Earth Retaining Structures. ASCE,1970: 103-147.
    [27]沈珠江,陆培炎.评当前岩土工程实践中的保守倾向[J].岩土工程学报.1997,19(4):115-118.
    [28]中华人民共和国交通部.JTJ 004-89公路工程抗震设计规范[S].北京:人民交通出版社.
    [29]中华人民共和国铁道部.GB 50111-2006铁路工程抗震设计规范[S].北京:中国计划出版社.
    [30]日本铁道综合技术研究所日本铁道构造物设计标准[S]1998.
    [31]J. Koseki, F. Tatsuoka, Y. Munaf, M. Tateyama and K. Kojima. A Modified Procedure to Evaluate Seismic Active Earth Pressure Considering Effects of Strain Localization in Backfill Soil [J]. Soils and Foundation.1998:209-216, Special issue.
    [32]Newmark N. M. Effect of earthquakes on dams and embankments [J]. Geotechnique. 1965,15(2):139-159.
    [33]Taylor.Larry.R, Pantmax, Dellingeras. Seismic Stablity Analysis for Geosynthetic Clay Liner Landfill Cover Placement on Steep Slope[M].1995:196-221.
    [34]Z.Cai and R.J.Bathurst. Deterministic sliding block methods for estimating seismic displacements of earth structures [J]. Soil Dynamics and Earthquake Engineering.1996(15): 255-268.
    [35]王思敬.岩石边坡动态稳定性的初步探讨[J].地质科学,1977(04).
    [36]王思敬,张菊明.边坡岩体滑动稳定的动力学分析[J].地质科学,1982(4).
    [37]王思敬,薛守义.岩体边坡楔形体动力学分析[J].地质科学.1992(2):177-182.
    [38]张建经,韩鹏飞.重力式挡墙基于位移的抗震设计方法研究—大型振动台模型试验研究[J].岩土工程学报.2012,32(3):416-423.
    [39]Ito T, Matsui T. Methods to estimate lateral force acting on stabilizing piles[J].Soil and foundations.1975,15(4):43-59.
    [40]李仁平.软土地基中被动桩与土体的相互作用及其工程应用[博士学位论文D].杭州:浙江大学,2001.
    [41]张友良,陈从新,夏元友.杆件有限单元法在抗滑桩设计中的应用研究[J].中国地质灾害与防治学报.2001(1):37-40.
    [42]Yegian M K, Marciano EA, Ghahraman V G. Earthquake induced permanent defor Mations[J]. Probabilistic approach.J Geotech Engrg, ASCE.1991,117(1):35-50.
    [43]Halatchev. Rossen. A Probabilistic Stability Analysis of Embarkments and Slopes [C]. Proceedings of the 11th international Conference on Ground Conrtrol in Mining Jul7-10 1992.
    [44]Tahtamoni.W.W, A.H.A.S., Reliability Analysis of Three-dimensional Dynamic Slope Stability and Earthquake indeed Permanent Displacement[J]. Soil Dynamics and Earthquake Engineering.2000.19(2):91-114.
    [45]黄腾威.地震作用下土坡长期稳定可靠度分析[J].福建建设科技.2003,(2):8-11.
    [46]Terzaghi K. Mechanisms of landslides, Engineering Geology (Berkey) Volume, Geological Society of America,1950.
    [47]Seed, H. B. Considerations in the earthquake-resistant design of earth and rockfill dams[J]. Geotechnique.1979.29(3):215-263.
    [48]Bray, J. D., Rathje, E. M., Augello, A. J., and Merry, S. M. Simplified seismic design procedures for geosynthetic-lined, solidwaste landfills[J]. Geosynthet. Int.1998,5(1-2), 203-255.
    [49]Bray J. D., Travasarou T. Simplified procedure for estimating earthquake induced deviatoric slope displacements[J]. Journal of Geotechnique and Geoenvironmental Engineering, ASCE.2007,133(4):381-392.
    [50]Blake T. F., Hollingsworth R. A., Stewart J. P. Recommended procedures for implementation of DMG Special Publication 117 guidelines for analyzing and mitigating landslide hazards in California[M]. Southern California Earthquake Center, Los Angeles, 2002.
    [51]Xinpo Li, Siming He, and Yong Wu. (2010). Seismic Displacement of Slopes Reinforced with Piles[J]. Journal of Geotechnique and Geoenvironmental Engineering ASCE.2010, 136(6):880-884.
    [52]罗渝,何思明,欧阳朝军,吴永.地震作用下桩锚组合结构加固边坡稳定性分析[J].四川大学学报(工程科学版).2010,42(supp.1):93-99.
    [53]Clough R W, Chopra A K. Earthquake stress analysis in earth dams[J]. J.Engrg Mech, ASCE 1966.92, EM2 197-211.
    [54]薄景山,徐国栋,景立平.土边坡地震反应及其动力稳定性分析[J].地震工程与工程振动.2001,21(2):116-120.
    [55]吴兆营,薄景山,刘红帅.岩体边坡地震稳定性动安全系数分析方法[J].防灾减灾工程学报.2004,24(3):228-241.
    [56]张彦,任志华,徐则民,许云华.高填土路堤边坡地震动力分布系数探讨[J].广东公路交通.2005,(02).
    [57]汪鹏程,朱大勇,孙玲玲.地震波作用下桩—锚支护切方直立土坡的动力响应分析[J].工业建筑.2011,41(12):88-91.
    [58]Cundall.P.A. A Computer Model for Simulating Progressive Large Scale Movements in Blocky Rock Systems[C]. Proc. Sypm. Rock Fracture (ISRM) Nancy.1971, paper Ⅱ-8.
    [59]Rajinder Bhasin, Kaare Hqeg. Parametric study for a large cavern in jointed rock using a distinct element model[J]. International Journal of Mechanics&MiningSciences.1998, 35(1):17-29.
    [60]王泳嘉.离散元法及其在岩石力学中的应用[J].金属矿山:13-18.
    [61]李世海,高波,燕琳.三峡永久船闸高边坡开挖三维离散元数值模拟[J].岩土力学.2002.23(3):272-277.
    [62]陶连金,苏生瑞,张倬元.节理岩体边坡的动力稳定性分析[J].工程地质学报.2001,9(1):32-38.
    [63]Chen C Y, Martin G R. Soil-structure interaction for landslide stabilizing piles.Computers and Geotechnics[J].2002,9(5):363-38.
    [64]Martin G R, Chen C Y. Response of piles due to lateral slope movement[J]. Computers & Structures.2005,83(8-9):588-598.
    [65]卢昌松.路肩式预应力锚索桩板墙数值模拟分析[J].路基工程.2009,3:110-112.
    [66]Koseki, J. Back analysis of soil retaining walls for railway embankment damaged by the 1995 hyogoken-nambu earthquake [C]. The 1995 Hyogoken-nanbu Earthquake Investigation into Damage to Civil Engineering Structures-Committee of Earthquake Engineering, Japan Society of Civil Engineers, pp.101-104.
    [67]Keefer D.K.Statistical analysis of an earthquake-induce landslide distribution-the 1989 Loma Prieta, California event[J]. Engineering Geology.2000,58(1):231-249.
    [68]G. Gazetas. Seismic behaviour of flexible retaining systems subjected to short-duration moderately strong excitation[J]. Soil Dynamics and Earthquake Engineering.2004(24): 537-550.
    [69]Iai S. Rigid and flexible retaining walls during kobe earthquake[C]. Proc.Of the Forth International Conference on case histories in Geotechnical Engineering. St.Louis, MO, CD-ROM, SOA-4,1998.
    [70]Ching-Chuan Huang. Investigations of soil retaining structures damaged during the chi-chi (taiwan)earthquake[J]. Journal of the Chinese Institute Of Engineers,2000(23):417-428.
    [71]Clough R W, Pirtz D. Earthquake resistance of rock fill dams[J]. Journal of the Soil Mechanics and Foundations Division, ASCE. Vol.89, No.1,1963.
    [72]Wu Z G, Han G C, Zhang D F. Dynamic model test studies of pile supported piers [C]. Proc Second Int Offshore Polar Eng Conf.1992:371-375.
    [73]Wartman J, RiemerM F, BrayJ D. Newmark analysis of a shaking table slope stability experiment[C]. Proc, Geotechniacl Earthquake Engineering and Soil Dynamics III,, ASCE, Geotechnical Special Publication No.75.Seattle,1998.
    [74]王存玉,王思敬.地震条件下二滩水库岸坡稳定性研究[C].岩体工程地质力学问题(七).北京:科学出版社,1987.
    [75]翟阳,韩国城.边坡对土坝稳定影响的振动台模型试验研究[J].烟台大学学报(自然科学与工程技术版).1996(4).
    [76]徐光兴,姚令侃,高召宁,李朝红.边坡动力特性与动力啊应的大型振动台模型试验研究[J].岩石力学与工程学报.2008,27(3):624-632.
    [77]Schofield A N. Dynamic and earthquake geotechnical centrifuge modeling[C]. Proc. Int. Conf. Recent Adv. Geotech. Earthquake Engng Soil Dyn.1981,Rolla 3:1081-1100.
    [78]Kutter B L, James R G. Dynamic centrifuge model tests on clay embankments[J]. Geotechnique.1989,39(1):91-106.
    [79]Roessig N, LiliSitar, Nicholas. Centrifuge model studies of the seismic response of reinforced soil slopes [J]. Journal of Geotechnical and Geoenvironmental Engineering. 2006,132(3):388-400.
    [80]于玉贞,邓丽军,李荣建.砂土边坡地震动力响应离心模型试验[J].清华大学学报(自然科学版).2007,47(6):789-792.
    [81]杨明,姚令侃,王广军.昔格达地层滑坡抗滑桩加固离心模型试验研究[J].公路.2006,11:1-5.
    [82]李荣建,于玉贞,吕禾,李广信.饱和砂土地基上抗滑桩加固边坡的动力离心模型试验研究[J].岩土力学.2009,30(4):897-902.
    [83]王娴明.建筑结构试验[M].北京:清华大学出版社,1988.
    [84]Prasad S K, Towhata Ⅰ, Chandradhara G P, et al. Shaking table tests in earthquake geotechnical engineering [J]. Current Science,2004,87(10):1398-1404.
    [85]皇民,刘马群,高波.隧道地震动力模型相似准则和参数设计[J].交通科技与经济,2011(2):63-66.
    [86]董金玉,杨国香,伍法权,祁生文.地震作用下顺层岩质边坡动力响应和破坏模式大型振动台试验研究[J].岩土力学,2011,32(10):2977-2982.
    [87]蒋良潍,姚令侃,王建.基于振动性态和破坏相似的边坡振动台模型实验相似律[J].交通科学与工程,2009,25(2):1-7.
    [88]LIN M L, WANG K L. Seismic slope behavior in a large-scale shaking table model test[J]. Engineering Geology.2006,86(2/3):118-130.
    [89]刘小丽,邓建辉,李广涛.滑带土强度特性研究现状[J].岩土力学.2004,25(11):1849-1854.
    [90]周平根.滑带土强度参数的估算方法[J].水文工程地质.1998,(6):30-32.
    [91]陈新民,沈建,魏平等.下蜀土边坡地震稳定性的大型振动台试验研究(Ⅱ)-试验结果及分析[J].防灾减灾工程学报.2010,30(6):587-594.
    [92]宋胜武.汶川大地震工程震害调查分析与研究[M].北京:科学出版社,2009.
    [93]NOZU A, ICHII K, and SUGANO T. Seismic design of port structures [J]. Journal of Japan Association for Earthquake Engineering.2004,4(3):195-208.
    [94]SILLER T J, CHRISTIANO P, and BIELAK J. Seismic response of tied-back retaining walls[J]. Earthquake Engineering and Structure Dynamics.1991,20(7):605-620.
    [95]Richards R Jr., Elms D G. Seismic passive resistance of tied-back walls [J]. Journal of Geotechnical Engineering 1992,118(7):996-1011.
    [96]曾德荣,李霖.抗滑桩锚索联合体系特性研究[J].重庆交通学院学报,2001,20(2):79-82.
    [97]曾云华,郑明新.预应力锚索抗滑桩的受力模型试验[J].华东交通大学学报.2003,20(2):15-18.
    [98]周德培,王建松.预应力锚索桩内力的一种计算方法[J].岩石力学与工程学报.2002,21(2):247-250.
    [99]戴自航,沈蒲生,彭振斌.预应力锚固抗滑桩内力计算有限差分法研究[J].岩石力学与工程学报.2003,22(3):407-413.
    [100]Wang Y.Z.2000. Distribution of earth pressure on a retaining wall[J]. Geotechnique.50: 83-88.
    [101]蒋楚生.路肩(堤)式预应力锚索桩板墙柔性支挡结构的土压力分布新探索[J].铁道工程学报.2007,4(4):24-28.
    [102]王德兵.对预应力锚索抗滑桩受力机理的初步探讨[硕士学位论文D].重庆:重庆大学,2006.
    [103]李庆海,潘樾富,蒋楚生.高烈度地震区路基支挡结构的改进及创新[C].汶川大地震工程震害调查分析与研究.北京:科学出版社,2008.
    [104]蒋良潍,黄润秋,蒋忠信,许强.锚索桩的主动支护作用及桩身初始内力分析[J].岩土力学.2007,28(11):2319-2324.
    [105]Samuel R. Christie. Seismic design methods for anchored sheet pile bulkheads[C]. Proceedings of The Twelfth Triannual International Conference, Jacksonville, Florida, 2010.
    [106]Endi Zhai. A Comparison study of engineering approaches for seismic evaluation of anchored sheet pile walls [C]. Proceeding of 7th International Conference on Lifeline Earthquake Engineering, Oakland, California,2009.
    [107]蒋忠信.拉力型锚索锚固段剪应力分布的高斯曲线模式[J].岩土工程学报.2011,23(6):696-699.
    [108]肖世国,周德培.非全长粘结型锚索锚固段长度的一种确定方法[J].岩石力学与工程学报.2004,23(9):1530-1534.
    [109]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002.
    [110]刘春茂,董捷,边成鑫.悬臂式抗滑桩设计参数对其工作性能的影响分析[J].重庆建筑大学学报,2008,30(2):66-70.
    [111]尤春安.锚固系统应力传递机理理论及应用研究[博士学位论文D].泰安:山东科技大学,2004.
    [112]徐年丰,牟春霞,王利.预应力岩锚内锚段作用机理与计算方法探讨[J].长江科学院院报.2002,19(3):45-48.
    [113]何思明.预应力锚索作用机理研究[博士学位论文D].成都:西南交通大学,2004.
    [114]蒋忠信.预应力锚索最佳倾角的技术经济分析[J].路基工程.1995(5):10-12.
    [115]战玉宝,毕宣可,尤春安.预应力锚索锚固段应力分布影响因素分析[J].土木工程学报,2007,40(6):49-53.
    [116]曲宏略,张建经.地震作用下预应力锚索锚固段应力分布规律研究[J].土木建筑与环境工程.2010,32,sup(2):337-338.
    [117]于玉贞,邓丽军.抗滑桩加固边坡地震响应离心模型试验[J].岩土工程学报,2007,29(9):1320-1323.
    [118]王丽萍,张嘎,张建民,李焯芬.抗滑桩加固黏性土坡变形规律的离心模型试验研究[J].岩土工程学报.2009,31(7):1076-1081.
    [119]李荣建,于玉贞,李广信.土质边坡中部与顶部抗滑桩动力响应和边坡变形比较[J].山地学报.2010,28(2):135-140.
    [120]许强,刘汉香,邹威,范宣梅,陈建君.斜坡加速度动力响应特性的大型振动台试验研究[J].岩石力学与工程学报.2010,29(12):2420-2428.
    [121]郑颖人,叶海林,黄润秋.地震边坡破坏机制及其破裂面的分析探讨[J].岩石力学与工程学报.2009,28(8):1714-1723.
    [122]张友良,冯夏庭,范建海等.抗滑桩与滑坡体相互作用的研究[J].岩石力学与工程学报.2002,21(6):839-842.
    [123]蒋楚生.路堤(肩)式预应力锚索桩板墙结构设计理论及工程应用研究[博士学位论文D].成都:西南交通大学,2006.
    [124]何思明,李新坡.预应力锚杆作用机制研究[J].岩石力学与工程学报.2006,25(9):1876-1880.
    [125]尤春安,高明,张利民,战玉宝,王金辉.锚固体应力分布的试验研究[J].岩土力学.2004,25(S1):63-66.
    [126]王博,白国良,李坚,吴淑海,刘超.钢筋与再生混凝土粘结应力分布的试验研究及理论分析[J].工业建筑.2012,42(4):10-14.
    [127]尤春安,战玉宝.预应力锚索锚固段界面滑移的细观力学分析[J].岩石力学与工程学报.2009,28(10):1976-1985.
    [128]尤春安.全长粘结式锚杆的受力分析[J].岩石力学与工程学报.2000,19(3):339-341.
    [129]孙峰,孔纪名,蔡强,阿发友,崔云.在地震作用下碎石土滑坡抗滑桩的抗震加固作用机理研究[J].工业安全与环保.2012,38(8):1-4.
    [130]乔玉荣.预应力锚索桩板墙支挡结构在深路堑防护中的应用[J].铁道标准设计,2010(5):20-24.
    [131]Terzaghi K, Peck R B. Soil mechanics in engineering practice[M].2nd edition. New York: John Wiley & Sons 1967.
    [132]Poulos H G. Design of reinforcing piles to increase slope stability[J]. Canadian Geotechnical Journal.1995,32(5):808-818.
    [133]刘小丽,张占民,周德培.预应力锚索抗滑桩的改进计算方法[J].岩石力学与工程学报.2004,23(15):2568-2572.
    [134]刘小丽.新型桩锚结构设计计算理论研究[博士学位论文D].成都:西南交通大学,2003:87-107.
    [135]毋应利.预应力锚索桩板墙内力实测与分析[硕士学位论文D].北京:中国矿业大学,2005.
    [136]万军利.预应力锚索桩板墙应用研究[硕士学位论D].北京:铁道科学研究院,2007:19-40.
    [137]李荣峰.抗滑桩设计计算方法研究[[硕士学位论D]西安:长安大学,2006.
    [138]李宇,朱唏,杨庆山.考虑土-结构相互作用的能力谱法在铁路桥梁中的应用[J].铁道学报.2011,33(5):110-114.
    [139]日本道路協会.道路橘示方害V耐震设计编[M].東京:丸善株式会社出版事業部,2002.
    [140]Applied Technology Council. ATC-40 Seismic Evaluation and Retrofit of Concrete Buildings [R]. Redwood City:Applied Technology Council,1996.
    [141]Federal Emergency Management Agency.FEMA356 Prestandard and Commentary for the Seismic Rehabilitation of Buildings[R]. Washington D C:FEMA,2000.
    [142]Freeman Sigmund A. Evaluations of Existing Buildings for Seismic Risk-A Case Study of Puget Sound Naval Shipyard Bremerton[C]. Washington Proceedings of the U.S. National Conference on Earthquake Engineers. EERI, Berkeley,1975:113-122.
    [143]何小安.基于能力谱法的土-桩-结构相互作用分析[硕士学位论文D].上海:同济大学,2007:7-16.
    [144]Fajfar P. Capacity spectrum method based on inelastic demand spectra[J]. Earthquake Engineering and Structure Dynamics,1999,23:979-993.
    [145]XUE Q. A direct displacement-based seismic design procedure of inelastic structures[J]. Engineering Structures.2001,23:1453-1460.
    [146]Newmark N M, Hall W J. Earthquake spectra and design[M]. Berkeley:Earthquake Engineering Research Institute,1982.
    [147]赵冠远,阎贵平.一种基于能力谱法的位移抗震设计方法[J].中国铁道科学.2002,23(3):64-67.
    [148]李鹏,易伟建.多水准位移能力谱抗震设计方法[J].湖南大学学报(自然科学版),2007,34(10):6-9.
    [149]林家胜,唐必刚Chopra改进能力谱法在桥梁结构抗震性能研究上的应用[J].桥隧工程.2010,8:202-206.
    [150]李颖,贡金鑫,吴澎.高桩码头抗震性能的Pushover分析[J].水利水运工程学报.2010,12(4):74-80.
    [151]吉小萍,董军Pushover能力谱方法的基本原理及应用[J].四川建筑科学研究.2009,35(3):148-151.
    [152]曲宏略,张建经.桩板式抗滑挡墙地震响应的振动台试验研究[J].岩土力学.(录用)
    [153]刘立军,贾明明.能力谱法在建筑结构抗震性能评定中的应用[J].建筑结构,2011,41(s1):242-244.
    [154]Chopra A K, Goel R K. Capacity-demand-diagram methods for estimating seismic deformation of inelastic structures:SDOF systems[R]. Pacific Earthquake Engineering Research Center. University of California Berkeley,1999.
    [155]Newmark N.M. and Hall WJ. Seismic design criteria for nuclear reactor facilities[R] Report No.46, Building Practice for Disaster Mitigation, National Bureau of Standards, U.S. Department of Commerce,1973,209-236.
    [156]Vidic T., Fajfar P. and Fischinger M.. Consistent inelastic Design Spectra:Strength and Displacement, Earthqauke Engng. Struct. Dyn 23 (1994), pp.507-521.
    [157]Qu Honglue, J. Zhang, J.X. Zhao. Strength reduction factor (R factor) against near-fault ground motion[J]. Earthquake engineering and engineering vibration,2011,10(2): 195-209.
    [158]秦家长,罗奇峰.应用ATC-40能力谱法评估结构目标位移[J].地震工程与工程振动,2006,26(6):64-70.
    [159]Structural Engineering Association of California Vision 200 Committee, Performance based seismic engineer ing of buildings [M], April 3,1995.
    [160]International Navigation Association. Seismic design guidelines for port structures[S]. Tokyo:A.A. Balkema Publishers.
    [161]A.A. Nassar and H. Krawinkler, Seismic demands for SDOD and MDOF systems, Report No.95, The John A. Blume Earthquake Engineering Center, Stanford University, California, USA,1991.
    [162]I. Cuesta and M. Aschheim, Inelastic response spectra using conventional and pulse R-factors, J. of Structural Engineering 129 (2001) (9), ASCE, pp.1013-1020.
    [163]I. Cuesta and M.A. Aschhei, Isoductile strengths and strength reduction factors of elasto-plastic SDOF systems subjected to simple waveforms, Earthquake Eng. Struct. Dyn 30 (2001), pp.1043-1057.
    [164]Ⅰ. Cuesta, M.A. Aschheim and P. Fajfar, Simplified R-factor Relationships for Strong Ground Motions, Earthquake Spectra 19 (2003) (1), pp.25-45.
    [165]P.G. Somerville, N.F. Smith, R.W. Graves and N.A. Abrahamson, Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity, Seismilogical Research Letters 68 (1997) (1), pp.199-222.
    [166]J.D. Bray and A. Rodriguez-Marek, Characterization of forward-directivity ground motions in the near-fault region, Soil Dynamics and Earthquake Engineering 24 (2004), pp. 815-828.
    [167]New Zealand Loading Standards, Structural Design Actions Part 5:Earthquake actions-New Zealand, NZS1170.5:2004.
    [168]W.D. Zhuo and L.C. Fan. Study on strength reduetion factors used for seismic design of structures[J]. Earthquake Engineering and Engineering Vibration.2001,21(1):84-88.
    [169]C.H. Zhai and L.L. Xie. Study on strength reduction factors considering the effect of classification of design earthquake [J]. ACTA SEISMOLOGICA SINICA.2006,28(3): 284-294.
    [170]J.L. Gillie, A.R. Marek, C. McDaniel, Strength reduction factors for near-fault forward-directivity ground motions[J]. Engineering Structures.2010(32):273-285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700