基于直线电机的驱动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是以国家科研项目“直线驱动控制系统研究”为依托,把永磁同步直线电机作为研究对象,采用模糊控制、滑模变结构控制方法分别设计直线驱动控制系统速度控制器,并与传统PID速度控制器进行比较分析。同时,针对直线驱动中特有的一些问题,如摩擦力扰动、电机推力波动及系统模型参数摄动等不良因素,对两种控制器进行优化设计,削弱、抑制扰动因素的不良影响,实现对系统给定速度信号的快速、准确响应,提高系统的鲁棒性,从而达到设计指标要求。
     论文首先根据设计指标,对直线驱动执行元件—永磁同步直线电机具体参数和型号进行了选择,并通过直线电机工作原理、矢量控制基本原理的研究和分析,给出直线电机的运动方程,建立了永磁同步直线电机的d-q数学模型。在速度控制中,重点研究两种控制方法,设计了模糊速度控制器、滑模变结构速度控制器。
     在系统设计过程中,针对直线驱动中的摩擦力扰动,提出了干扰观测器的策略对其进行补偿和抑制,解决了模糊速度控制器对于恒定外力扰动存在静态误差的问题,提高了系统的动态性能和稳定性能。
     此外,为了解决永磁同步直线电机的推力波动问题及滑模变结构控制的“抖振”问题,本文引入一种基于负载推力观测器的滑模变结构控制策略,实现对推力波动的补偿,使推力电流跟随负载推力变化,从而大大削弱了推力纹波和系统的“抖振”,并减小了滑模控制的幅值,提高了系统的动态性能和稳定性。另外,滑模控制算法自身对系统外部扰动和参数摄动具有很强的鲁棒性,这也提高了系统的抗干扰能力。
     最后,对每种控制方案都在Matlab/Simulink7.7平台进行了仿真测试,并与传统PID控制方案进行对比分析,从而验证了两种方案的有效性。同时,完成了直线控制系统硬件和软件方案设计。
This dissertation is the research based on national scientific project of“linear drive control system”. In this dissertation, fuzzy control strategy and slide-mode variable structure control strategy are used to design the speed controller of the linear-driving control system, and the performance analyses are compared with traditional PID’s. At the same time, for some specific adverse issuses such as friction disturbance, motor force fluctuation and system parameters perturbation, the two types of controllers are optimized to weaken and suppress the adverse effects, so that the system could rapidly and accurately tradck to the command speed signal, and the robustness is improved.
     Firstly, according with design requirements, the related parameters and type of Permanent magnet synchronous linear motor(PMSLM) are selected. And through the analysis of the PMSLM principle and the decoupling technology of vector control algo-rithm, the motion equations of motor are given, and the d-q mathematical model is established. In the design of speed controller, two control methods are mainly studied to design the fuzzy speed controller and sliding mode variable structure controller(SMC).
     In the process of system design, considering the disadvantages of fuzzy controller which exists static speed error for a constant disturbance outside the system, a type of disturbance observer is applied to suppress the friction force disturbances, so that the dynamic performance and stability are improved.
     In addition, in order to solve the problems of motor thrust fluctuation and the chattering in SMC, an observer strategy based on the thrust load is proposed to realize the compensation of thrust fluctuation, make the load current to follow the changes. And it greatly weakened the thrust ripple and system speed chatting, reduces the amplitude of sliding mode control. At the same time, the dynamic performance and stability are also improved. For the system’s external disturbance and parameter perturbation, the sliding mode control also has strong robustness and increase the anti-jamming capability of the system.
     Finally, each control strategy is tested in Matlab/Simulink Simulation platform, and through comparative analysis with traditional PID control method, the results verified the effectiveness of the two strategies. In addition, the dissertation also completed the hardware and software design of the system.
引文
1叶云岳.国内外直线电机的发展与应用综述.电器工业中小电机专辑, 2003, (1): 12-16
    2王伟进.直线电机的发展与概述.微电机, 2004, (37): 45~50
    3吴始栋.电磁飞机弹射系统EMALS.中外船舶科技, 2006, (1): 30~33
    4叶云岳.直线电机原理与应用.北京:机械工业出版社, 2002, (6): 9~14
    5上官璇峰.直线电机纵向边端效应分析.焦作工学院学报, 1997, 16(6): 42~45
    6仇翔,俞力.永磁同步电机控制策略综述.微特电机, 2005, (10): 39~43
    7 Q. P. Ha, D.C. Rye. Fuzzy moving sliding mode control with application to robotic manipulators. Automatica, 1999, 15(35): 607~616
    8 John Y Hung, Weibing Gao, James C Hung. Varible Structure Control: a Survey[J]. IEEE Trans.Ind. Electron, 1993, 40(1): 143~149
    9范海明,陈宏礼等.基于Smith预估器的直线电机控制系统.应用科技, 2002, (5): 27~30
    10郭庆鼎,郭威,周悦.交流永磁直线同步电机伺服系统的预见前馈补偿.电机与控制学报, 1999, (9): 172~175
    11 GoodePV, ChowMY. Using a neural/fuzzy system to extractheuristic knowledge of incipient faults in induction motors PartI: Methodology. IEEE Trans. Ind. Electron, 1995, 42: 121~138
    12 C.H. Tien-Chi, S.U. Tsong-Terng. Model refernce neural network controller for induction motor speed control. IEEE Trans. Energy Conversion, 2002, 17(2): 953~960
    13 Guo Qing ding, Luo Rui fu. Robust Fuzzy Variable Structure Control of PMLSM Servo System. Proc. IEEE Trans. Ind. Electron, 1999, 41(2): 129~134
    14付子义,张华,张霞.垂直运动永磁直线同步电机的Fuzzy-PID控制研究.工矿自动化, 2004, (4): 10~13
    15 Wang Gou-Jen, Fong Chuan-Tzueng, ChangKang J. Neural Network Based Self-Tuning PI Controller for Precise Motion Control of PMAC Motors. IEEE Trans. Ind. Electron, 1995, 42: 121~138
    16吴安顺.最新实用交流调整系统.机械工业出版社, 1998. 8: 207~218
    17孙宗云,基于DSP的永磁同步电机伺服系统控制.浙江工业大学博士论文. 2006: 13~17
    19杨霞,任敏.专家系统PID交流伺服系统的研究.燕山大学学报, 2002, 26(2): 176~178
    20张代林.永磁同步直线电机伺服系统的控制策略和实验研究.华中科技大学博士论文, 2007: 44~48
    21 G. T. Johnson, R. D. Lorenz. Experimental identification friction and its compensation in precise, position controlled mechanisms. IEEE Trans. Ind. Application, 1992, 28: 1392~1398
    22 H. C. Tseng, V. H. Hwang. Servo controller tuning with fuzzy logic. IEEE Trans. Contr. Syst. Tenhno, 1993, (1): 262~269
    23丛爽.神经网络、模糊系统及其在运动控制中的应用.合肥:中国科学技术大学出版社, 2001: 57~68
    24叶云岳,陆凯元.直线电机的PID控制与模糊控制.电工技术学报, 2001, 16(3): 11~15
    25 G. Otten, T. J. Vries, Amerongen Jetal. Linear motor motion control using a learning feed forward controller. IEEE/ASME Transactions on Mechatronics, 1997, 2(3): 161~70
    26王丰尧.滑模变结构控制.北京:机械工业出版社, 1998
    27孙宜标,郭庆鼎,石丽梅.直线式交流伺服系统滑模变结构控制.沈阳工业大学学报, 1997, (6): 6~9
    28孙宜标,郭庆鼎等.基于模糊自学习的交流直线伺服系统滑模变结构控制.电工技术学报, 2001, 16(1): 52~56
    29仇翔.基于神经网络优化的永磁同步直线电机滑模控制研究.沈阳工业大学硕士论文, 2005, 12: 20~23
    30 M. H. Cernat, C. M. Vasile. Sliding mode control of interior permanent magnet synchronous motors. CIEP, 2000, 10: 435~442
    31 H. Joachim, S. B. Lothar. Identification and compensation of torque ripple in high-precision permanent magnet motor drives. IEEE Trans. Ind. Eletron, 1996, 43(2): 309~320
    32 Q. D. Guo, R. F. Luo, L. M. Wang. Robust fuzzy variable structure control of PMLSM servo system. IEEE Trans. Ind. Electron., 1997, 108(3): 365~370
    33 T. M. Jahns. Motion control with permanent-magnet AC machines. Proc. IEEE, 1994, 82(8): 1241~1252
    34 Q. P. Ha, Q. H. Nguyen. Fuzzy sliding mode controllers with applications. IEEE transactions on Industrial Electronics, 2001, 2(48): 308~315
    35 B. P. Amuliu, A. L.Keyhani, M. M. John. Sensorless sliding mode control of induction motors using operating condition dependent models. IEEE Transactions on Energy Conversion, 2003, 6(18): 1389~1396
    36 Fei jun S, Samuel M. Design of sliding mode fuzzy controllers for an autonomous underwater vehicle without system model. Florida Atlantic University, 1999, 17: 203~211
    37 G. D. Andreescu. Two sliding mode based observers for sensorless control of PMSM drives. Electric Power Components and Systems, 2002, 7(30): 121~133
    38 S. K. Chung, J. S. Lee. Robust speed control of brushless direct-drive motor using integral variable structure control. IEEE Proc-Electr. Power appl, 1995, 142(6): 362~366
    39高为炳.变结构控制的理论与设计方法.北京科学出版社, 1998
    40 U. Cem. Sliding mode measurement feedback control for antilock braking systems. IEEE Transactions on Control System Technology, 1999, 23(4): 268~174
    41 K. K. Tan, T. H. Lee, H. F. Dou, S. J. Chin. PWM Modeling and Application to Disturbance Observer-Based Precision Motion Control. IEEE Trans. Magnetics, 2000, 8: 1669~1674
    42仇翔等.基于扰动补偿的永磁机滑模控制.电气传动自动化, 2008, (30): 14~18
    43王晓明,王玲.电机的DSP控制.北京航空航天大学出版社, 2004,7: 120~162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700