基于指数趋近律的滑模变结构控制在电液位置伺服系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电液位置伺服系统作为控制领域中一个重要的组成部分,具有控制精度高,响应速度快,便于调节的特点,同时又能控制大惯性实现大功率输出,因而在工业控制领域得到广泛的应用。随着电液伺服技术的发展和应用领域的逐步推广,对电液伺服系统的控制要求越来越高,在诸多影响电液伺服系统的控制精度的因素中,控制策略的选择非常关键。因此研究性能良好且算法不太复杂的控制方法是提高电液位置伺服系统控制精度的一项重要措施。
     由于实际电液位置伺服系统中,存在外界干扰力、液压油泄漏、油液品质、油温等不确定因素,使得电液位置伺服系统是一种典型的非线性系统,动态特性十分复杂,很难建立系统的精确数学模型,因而采用传统的基于线性系统的的控制方法设计的控制器的适应性和抗干扰能力差,难以得到好的控制效果。而实际系统要求稳态误差小、快速性好、鲁棒性强,这就给控制系统的设计带来了很大的困难。为了克服这些不利因素,满足系统要求,本文将滑模变结构控制策略应用于电液伺服控制系统中,来消除非线性对系统控制性能的影响,并采用指数趋近律的抖动消除法,有效减弱了系统的抖振现象,并改善了趋近阶段的运动品质。
     本文以阀控缸位置伺服系统为研究对象,通过对电液伺服系统的理论分析,建立了液压系统的数学模型,计算出了系统的有关参数。利用Matlab软件中的动态仿真工具Simulink,构造了电液伺服系统仿真模型,采用s函数来描述控制器和被控对象。分别采用了PID与滑模变结构控制方法对电液位置伺服控制系统进行了对比仿真和结果分析。利用AMEsim和Simulink各自优点的联合仿真技术能更加准确的模拟实际系统的工作状态,因而本文对系统又进行了AMEsim和Matlab/Simulink联合仿真分析。仿真实验结果证明,不管是Matlab环境下的Simulink仿真还是AMEsim/Simulink联合仿真,在系统参数变化和施加外干扰力的情况下,与PID控制相比,滑模变结构控制具有更好的动态特性,对被控对象的结构和参数变化以及外干扰力,具有很强的鲁棒性和自适应能力,取得了较高的位置伺服控制精度。本文还分析了指数趋近律的参数和滑模控制器的参数变化对系统性能的影响。Simulink仿真和AMEsim/Simulink联合仿真均证明采用滑模变结构控制策略,系统具有抗参数摄动能力强,动态特性良好,鲁棒性强以及算法简单易于微机实现等优点。因此趋近律滑模变结构控制在电液伺服系统中的应用可以有效提高系统的抗干扰能力,提高控制精度,在实际工程中有广泛的应有价值。
Electro-hydraulic position servo control system as an important component of the control and high precision, fast response, easy to adjust the characteristics of large inertia control at the same time to achieve high power output, which has been in the field of industrial control a wide range of applications. With the electro-hydraulic servo technology applications development and the gradual promotion of electro-hydraulic servo control systems have become increasingly demanding in a lot of impact on the control precision electro-hydraulic servo system of the factors, the choice of control strategy is critical. The study not too good and complex control algorithm is to improve the electro-hydraulic position servo system to control an important measure for accuracy.
     As the actual electro-hydraulic position servo system, the existence of outside interference, and hydraulic oil leakage, oil quality, oil and other uncertainties, the electro-hydraulic position servo system is a typical nonlinear system, the complexity of the dynamic characteristics , it is difficult to establish a precise mathematical model of the system, thus using the traditional system based on linear control method of adaptive controller design and poor anti-interference ability, it is difficult to get good control.
     The actual system requirements for steady-state error small, fast and good robustness, which to the control system design has led to great difficulties. In order to overcome these negative factors, to meet the system requirements, this article will be sliding mode variable structure control strategy applied to the electro-hydraulic servo control system to control the elimination of non-linear properties of the system, and the use of index reaching law to eliminate the jitter, effectively weaken the system chattering phenomenon, and to improve the quality of the convergence phase of the campaign.
     In this paper valve control oil hydraulic cylinder position servo system for the study, through the theoretical analysis of electro-hydraulic servo system, the establishment of a mathematical model of the hydraulic system to calculate the relevant parameters of the system. The use of Matlab software, the dynamic simulation tool Simulink, structural simulation model of the electro-hydraulic servo system used to describe the functions controller and controlled object.
     Using the PID and sliding mode variable structure control method of electro-hydraulic position servo control system and compared the results of simulation analysis. AMEsim and Simulink to use the advantages of their more accurate co-simulation technology to simulate the actual system state, and therefore this paper carried out on the system AMEsim and Matlab / Simulink co-simulation analysis.
     The simulation results show that, regardless of Matlab's Simulink simulation environment or AMEsim/Simulink co-simulation, changes in system parameters and external disturbance force imposed circumstances, compared with PID control, sliding mode variable structure control has better dynamic characteristics of the object changes the structure and parameters as well as outside interference, and has strong robustness and adaptive capacity, and achieved high precision position servo control.
     This article also analyzes the parameters of exponential approach law and sliding mode controller parameters on system performance. Simulink simulation and AMEsim/Simulink co-simulation have proved the use of sliding mode variable structure control strategy, the system is good with fast, smooth control, good dynamic performance, robustness and the algorithm is simple and easy to achieve the advantages of computer. Sliding mode variable structure control is therefore in the electro-hydraulic servo system can effectively improve the system of anti-interference ability to improve the control precision, in practice there are a wide range of projects to be valuable.
引文
[1]张昌凡.滑模变结构控制研究综述[J].株洲工学院学报,2004,18(2):1~3.
    [2]吴宏鑫,沈少萍.PID控制的应用于理论依据[J].控制工程,2003,10(1):37-42
    [3] Detick E,Kiker E.Adaptive force control of hydraulic drivers of facility for testing mechanical constructions[J].Experimental Techniques , 2001,25(1):35~39.
    [4] C-M Kwan.Robust Adaptive Control of Induction Motors[J].Int. J.Control.1997, 67(4):539~552.
    [5]王锦标,方崇智.过程计算机控制[M] .北京:清华大学出版社,1992:12-14.
    [6]王占林.近代液压控制[M].北京:机械工业出版社,1997:5-10.5.3-4.
    [7] Chin-Wen Chuang,Liang-Cheng Shiu.CPLD based DIVSC of hydraulic position control systems.Computers and Electrical Engineering,2004,(30):527–541.
    [8]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1998:211.220.156.36
    [9]李浩.电液位置伺服系统的自适应滑模控制[D].上海:上海交通大学,2000.
    [10]闫茂德.不确定非线性系统的自适应变结构控制研究[D].西安:西北工业大学,2001.
    [11] Dirk Gebler and Joachim Holtz.Identification and Compensation of Gear Backlash without Position Sensor in Hign-Precision Servo Systems[J].Industrial Electronnics Society,1998,2:662-666.
    [12] Goto,S.,Nakamura,M. and Kura,N.Accrate contour control of mechatronic servo systems Using Gaussian networks[J].IEEE trans. On Industrial Electronics,1996,43:469-476.
    [13] Kwon,Y.S.,Hwang,H.Y.,Lee,H.R. and Kim,S.H..Rate loop control based on Torque compensation in anti-backlash geared servo system[J].American Control Conference,2004,4:3327-3332.
    [14] Wai. R. J, Lin. F. J ,Fuzzy Neural Networks Sliding -Mode Position Controller for Induction Servo Motor Drive[J].IEEE Proc,Electronics Power APPlication, 1999, 146(3):297-308.
    [15]王秀君,裘丽华.电液伺服系统的变结构控制研究[J].机床与液压,2003,(5):125-127.
    [16]王丰尧.滑模变结构控制[M].北京:机械工业出版社,1995:313.1.16-18.312-313
    [17]尤文,赵孔新,王宏志.变结构控制系统的发展与展望[J].吉林工学院学报,1993,1(14):37-44.
    [18]高为炳.变结构系统的品质控制[J].控制与决策,1989,4(4):1-6.
    [19]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005:1-3.13-15
    [20] WU J.C,Liu T.S,A Sliding-Mode Approach to Fuzzy Control Design[J].IEEE Trans. on Control Systems Technology, 1996,4(2):141-151.
    [21] Utkin V I.Variable structure systems with sliding modes[J].IEEE Transactions Automatic Control,1997,22(2):212-222.
    [22] Slotine J J,Sastry S S.Tracking control of nonlinear system using sliding surfaces with application to robot manipulator[J].International Journal of Control,1983,38(2):465-492.
    [23]姚琼荟,黄继起,吴汉松.变结构控制系统[M].重庆:重庆大学出版社,1997:3
    [24]康宇.滑模变结构理论的研究与运用[D].合肥:合肥工业大学,2002.
    [25]李军红.变结构控制抖振问题的研究与仿真[D].广州:广州工业大学,2004.
    [26]李琳.滑模变结构控制系统抖振抑制方法的研究[D].大连:大连理工大学,2006.
    [27]王祝炯.滑模变结构控制系统设计方法研究[D].杭州:浙江工业大学,2003.
    [28]吴根茂.实用电液比例技术[M].杭州:浙江大学出版社,1993:101-109.
    [29]深才山,吴祖平,伺服比例阀的特点及在龙滩电站的应用[J].水电站机电技术,2007,(10):33-35.
    [30]刘长年,袁子荣.液压控制系统导论[M].北京:北京科学技术出版社,1987:89-96.
    [31]王春行.液压控制系统[M].北京:机械工业出版社,2008:40.41.42.41.114.
    [32]宋志安.基于MATLAB的液压伺服控制系统分析与设计[M].北京:国防工业出版社,2007:144.
    [33]王积伟,吴振顺.控制工程基础[M].北京:高等教育出版社,2001:153.174-180
    [34]于长官.现代控制理论[M].哈尔滨:哈尔滨工业大学出版社,2006:1-2.96
    [35]闻新,周露,李翔,张宝伟等. MATLAB神经网络仿真与应用[M]..北京:科学出版社,2003:22-23.
    [36]张静.MATLAB在控制系统中的应用[M].北京:电子工业出版社,2007:92-94
    [37]刘海丽,李华聪.液压机械系统建模仿真软件AMESim及其应用[J].机床与液压,2006,(6):124-126.
    [38]刘海丽.基于AMESim的液压系统建模与仿真[D].西安:西北工业大学,2006
    [39]李谨,邓卫华.AMESim与MATLAB/Simulink联合仿真技术及应用[J].情报指挥控制系统与仿真技术,2004, 10 (5) :61-64.
    [40]陈宏亮,李华聪.基于AMESim/Simulink联合仿真技术的电液伺服系统减振研究[J].机床与液压,2006,(6):121-123.
    [41]江玲玲,张俊俊.基于AMESim与Matlab/Simulink联合仿真技术的接口与应用研究[J].机床与液压,2008,(1):148-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700