牦牛粗毛形态结构及其拉伸细化工艺与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是牦牛的主要饲养国,约占世界总数的92%,具有丰富的牦牛毛纤维资源。牦牛毛纤维中大多数为粗毛,长度较长,但粗、硬、品质差,主要作为一般纺织原料,因此其经济价值一直较低。随着生活水平的提高,人们对于假发制品的需求日益旺盛,限于人发资源量的限制,使用牦牛粗长毛作为其替代品已被广泛应用。由于假发的利用纤维长度越长其价值越高,因此,增加纤维长度降低其细度是提升纤维价值的有效途径。人工拉伸细化工艺是目前对角蛋白纤维最有效的拉长变细的加工方法,但现有研究主要集中在羊毛细化,对于牦牛粗毛的拉伸细化报道很少。此外,人们对于牦牛粗毛纤维的认识也不够全面,这将为进一步的改性处理造成很大的困难。
     本文首次对我国产牦牛粗毛纤维的形态结构、皮质细胞特征、细胞及细胞间微细结构以及化学结构进行了细致研究。利用显微镜技术观察了牦牛粗毛纤维的外观形态结构,得到了单根纤维以及纤维之间的直径分布特点,同时阐述了纤维表面鳞片结构及截面特征。利用超声分离技术成功地分离出来牦牛粗毛纤维的皮质细胞,结合电子显微镜观察明晰了皮质细胞形态及其在纤维中的堆砌结构特征,并首次采用“长径比”指标表征皮质细胞形态,结果表明牦牛粗毛纤维皮质细胞整体形态较羊毛粗短,此外还对皮质细胞尺寸分布进行了研究。利用包埋技术成功制取到牦牛粗毛纤维的截面超薄切片,并利用透射电子显微镜观察到纤维的内部微细结构,发现多数纤维中含有髓腔,且纤维细胞无正副皮质之分,仅由单一结构组成。利用红外光谱技术得到牦牛粗毛纤维的红外光谱图,并分析其基本结构键吸收峰特征,结果表明其具有与羊毛相同的内部分子结构及结合键,但牦牛粗毛纤维内部无序结构多于羊毛。
     为了对牦牛粗毛拉伸进行工业开发,本文利用实验拉伸装置对无捻牦牛粗毛纤维片状拉伸工艺进行了研究,重点分析了影响工业连续化生产的相关参数。利用不同工艺条件下牦牛粗毛纤维片的拉伸曲线,结合低初始模量、大屈服区长度、大断裂点伸长、低拉伸断裂率的评价标准,确定了最优工艺条件,即预处理时间10min,最佳拉伸方式为多级变速拉伸,最佳纤维拉伸率为60%;通过正交试验及方差分析,以沸水回缩率为评价指标,确定了牦牛粗毛最优定型处理时间,即一次定型时间5min,二次定型时间3min,烘燥时间20min,焙烘时间3min。同时,开发了一种全新的片状纤维连续化拉伸方法,并首次采用预处理拉伸一体化拉伸方式,并通过AutoCAD软件对其拉伸设备进行了模拟。
     利用激光显微拉曼光谱技术,对拉伸过程中牦牛粗毛纤维二级结构的转变过程进行了深入研究,发现拉伸后牦牛粗毛纤维拉曼光谱酰胺Ⅰ带、酰胺Ⅲ带和C-C骨架振动区均发生了显著变化,但对纤维二硫键的影响不大;纤维拉伸细化过程中存在α螺旋大分子向p折叠大分子的转变,同时伴随着部分已转变为p折叠结构的大分子重新回复为α螺旋结构的过程,且对细化纤维进行沸煮处理也会导致这一变化发生。同时,本文借助广角X-ray衍射仪,对原毛及细化毛纤维的结晶度和取向度进行定量分析,结果显示拉伸细化处理对牦牛粗毛的结晶度有较大的影响,而对纤维取向度影响相对较小,拉伸细化过程中存在大分子或微结构块的滑移。机理分析发现,牦牛粗毛纤维拉伸细化机理应是“大分子构象转变”理论和“微结构体的滑移”理论两者相结合的一个更为复杂的过程,其中以“微结构体的滑移”机制最为主要。本文提出“大分子转变滑移”理论,其基本原理为:打开纤维分子间交联,部分保持分子内的相互作用;在外力拉伸作用下,大分子首先发生构象转变,继而出现分子、微结构体的滑移,同时伴随分子构象的往复变化;完成拉伸后,迅速重建分子间交联,实现纤维的拉长变细的同时保持纤维弹性。
     为了便于后期进一步的加工和使用,本文对拉伸后牦牛粗毛纤维形态、结构以及性能的变化进行了研究。结果显示:①纤维表面鳞片结构被劣化,覆盖密度随拉伸率的提高而降低,部分出现边缘翘起,甚至部分鳞片细胞出现滑移和损伤;②纤维直径显著降低,90%的细化纤维直径可比原毛减少约30%,截面形态由近圆形变为椭圆形:③纤维皮质细胞被拉长变细,在纤维中沿长度方向取向更加明显,排列更加紧密;④细化纤维的断裂强度和初始模量均高于原毛,且随着拉伸率的提高而逐渐增大,但断裂伸长率却呈现相反变化,另外,细化纤维抗弯刚度低于原毛;⑤细化纤维的摩擦系数逐步增大,其变化量随拉伸率增加而减小;⑥纤维浸润接触角随拉伸率的提高而逐渐减小,吸湿性大大增强,并极大地改善了纤维的染色性能,使低温染色变为可能。
Yaks are mainly bred in China, and its number is over 92% in the world, thus there is rich resource of yak hair fiber. But most fibers among them are coarse and long, so they are basically used for slub materials with lower economic value. With the increase of living standard, the need for the production of wigs is increasingly strong by people. Due to the limit of the quantity of human hair resource, coarse yak hairs are widely used instead of it now. The longer the length of yak hair fiber is, the high the price of wig, thereby it is an effective way for raising fiber value to increase its length and decrease its diameter. The stretching slenderization is most efficient method at present for increasing fiber length, while the relatively research is mainly focused on wool fiber, and there is rare work to be report about the slenderization of coarse yak hair fiber. In addition, due to the tiny knowledge for coarse yak hair fiber, it will be very difficult to modify these fibers further.
     This paper studied amply the morphologic structure, cortical cell character, cell and substance between cells, and chemical structure of Chinese coarse yak hair fiber for the first time. Using scanning microscope electron (SEM) and optical microscopy observed the appearance morphological structure of coarse yak hair fiber and obtained the diameter distribution situation of single fiber and between fibers, at the same time it is revealed for the surface scale structure and character of cross section of fiber. Making use of ultrasonic separation achieved the cortical cell and observed its morphological and packing structure in fiber. The "length/diameter ratio" was put forward to characterize the shape of cortical cell for the first time, and the result show that the shape of coarse yak hair is thicker and shorter than that of wool fiber. Furthermore, the dimension distribution of cortical cell was also studied. The ultrathin section dyed was achieved very well using embedding method, and through the TEM the microfine structure of coarse yak hair fiber was investigated in detail. It was found that the medulla existed in most coarse yak hair fiber, and fiber is made up of one sort of cortex-cell but not the structure of ortho-and para-cortex. By FTIR techniques studied the basic absorbent apics characters of coarse yak hair and compared with wool fiber, it presented that two kind fiber have same inner molecular structure and bonding forms but the disordered structure in coarse yak hair fiber is more than wool.
     For the commercial development of stretching slenderization of coarse yak hair, the stretching process of the untwisted fiber sheet has been investigated, and the processing parameters which will affect the continuous production have been studied mainly. By means of strain-stress curves of coarse yak hair fiber stretching with different technological conditions and with lower initial module, longer yield region, lower breakage ratio as a evaluation criterion, the optimum process conditions were decided, i.e., the time of pretreating process is 10min, and the best stretching method is varying speed mode with 6 grade, and the stretch ratio should not exceed 60%. Using the retraction ratio of slenderized fiber in boil water as the evaluating indicator, the optimum setting time were found, i.e., first setting 5min, and second setting 3min, and drying process 20min, and baking process 3min. According to the slenderization process of coarse yak hair sheet, a whole new method of continuous stretching has been developed, and the relative machine has also been simulated, particularly adopted a new stretching method, i.e., all-in-one of pretreating and stretching.
     Through laser confocal Raman microscopy, the secondary structure transformation of coarse yak hair fiber during stretching process was studied in depth. It was proved that amide I, amide III and C-C backbone vibration regions all took notable change except for S-S bond. The result also showed that the conformation transformation occurred from the a-helical toβ-pleated-sheet in coarse yak hair fiber during stretching, meanwhile some a-helical macromolecule transformed would restore fromβ-pleated-sheet. This change could also be found when the fiber slenderized undergo boiling treatment. In addition, the degree of crystallinity and orientation has been analyzed quantificationally on coarse yak hair fiber after and before stretching. The results showed that the degree of crystallinity was changed obviously, while the change of degree of orientation is tiny. It follows that the slippage of macromolecule or microstructure mass exists during the stretching process. On the basis of the microstructure analysis to coarse yak hair, it was found that the mechanism should be a more complicated process for stretching slenderization of coarse yak hair, which involved "macromolecular conformation transformation" and "microstructure mass slippage", and the latter was primary. The mechanism of "macromolecule transformation and slippage" is put forward in present paper. Firstly, the crosslinks between the a-helical macromolecule are taken apart by the pretreating solution and keep partially the crosslinks inside the molecules. Secondly, the fibers are stretched by force, and the conformation transformation happened on the macromolecule first, and then the slippage of macromolecule and microstructure mass begin present, at the same time the reciprocate of the conformation of molecule arise. Finally, the stretched fibers are set quickly and restructure the crosslinks between molecules. This will keep the length of slenderized fiber and elasticity.
     For the sake of the convenience of treatment and use in the future, the morphology, structure and properties of slenderized coarse yak hair fiber were studied. The results showed that the scale structure has been deteriorated in the surface of coarse yak hair fiber stretched, and the density of that decreased gradually with the stretching ratio increase. Some scales turned up at the edge of cell, even the partial of scales come forth situation slippage and damage. After stretching slenderization, the diameter of fibers decrease evidently, especially that of the fiber stretched at 90% ratio could reduce approximate 30% than the original fiber. Moreover, the shape of cross-section of fibers change from near circular form to oval. The cortical cells have been elongated and slenderized, and the orientation along the fiber axis became more obvious, and the density of packing of those gets increase. The breaking strength and initial module of slenderized fibers are both higher than the original fiber, and with the increase of stretching ratio the value of those raise gradually. However, the variation of the extension at break was different. Furthermore, the bending rigidity of fibers is lower than its original fiber after stretching. Slenderized fibers have a higher friction coefficient than the original coarse yak hair fiber have, and the variation quantity of that reduce gradually with stretching ratio increase. The hydroscopic property of the fibers has been improved obviously, so that the slenderized fiber's dyeability is made better greatly and it become possible for dyeing at lower temperature.
引文
[1]蔡立.中国牦牛.北京:农业出版社,1992,1-5.
    [2]陆仲磷.中国牦牛科学技术发展回顾与展望.中国牛业科学,2007,33(4):3-13.
    [3]熊维权.我国牦牛资源开发前景与措施.农牧产品开发,1999(11):3-4.
    [4]薛永朗.从经济效益出发用好牦牛绒(毛).西南民族学院·畜牧兽医版,1987(1):70-73.
    [5]Ghoshal S P, Raut S D, and Jaiswal P K. A study of quality factors of yak fiber. Wool & Wollen of India,1993,30(4):15-17.
    [6]姚穆.毛绒纤维标准与检验.北京:中国纺织出版社,1997,184.
    [7]王亚中,芦玉花.牦牛绒(毛)的纤维特征和性能分析.毛纺科技,2002(1):18-20.
    [8]魏禾.瑞贝卡:2009年销售目标增幅为20%.纺织商业周刊,2009(20):60-61.
    [9]朱丽.论瑞贝卡在全球价值链中的提升之路.企业活力,2006(12):16-17.
    [10]马蕾.瑞贝卡:头顶第一股.东方企业家,2006(7):70-71.
    [11]曾昭训,秦庆亮,张爱华等.国人头发直径的调查.泰山医学院学报,1991,12(4):370-372.
    [12]王一鸣.人发和牦牛毛的性能测试分析.中国纺织大学学报,1993,19(1):101-105.
    [13]朱丽亚.印度头发的环球之旅.财富时代,2003(7):64-65.
    [14]朱广娟,王俊玲,董景岩.牦牛绒剥色及染色工艺的研究.纺织学报,1984(6):329-332.
    [15]吴安成,宋修彩,严灏景.特种动物毛纤维的性能研究.中国纺织大学学报,1987(6):11-18.
    2001,22(3):39-42.
    [16]申玉双,李纪标,史永红.牦牛毛的扫描电镜观察.电子显微镜学报,2003,22(6):490-491.[17] 陈国宏,吴信生,丁键等.林芝牦牛毛绒纤维物理特性及其超微结构研究.江苏农业研究,
    [18]李文清,王丽霞,刘丹.特种动物毛纤维表面形态和超微结构的研究.电子显微镜学报,2000,19(2):158-165.
    [19]Ma X G, Zhang X L, and Gu Z Y. Dyeing Behavior of Yak Hair Fiber Treated with Microwave Low Temperature Plasma. Journal of Donghua University (Eng Ed),2006,23(1): 27-31.
    [20]吕晶.等离子体及其在纺织工业中的应用.广西纺织科技,2001(2):40-42.
    [21]余军杰,汪建华.等离子体表面改性处理牦牛毛纤维.辽宁石油化工大学学报,2006,26(4):149-152.
    [22]余军杰,汪建华,王升高.牦牛毛的低温等离子体表面改性.纺织学报,2006,27(5):19-22.
    [23]余军杰,王升高,汪建华.等离子体表面改性对牦牛毛表面性能的影响.武汉工程大学学报,2007,29(1):52-54.
    [24]Bereck A. Bleaching of dark fibers in wool. Proc.8th Int. Wool Text. Res. Conf:1985; 1985: 152-162.
    [25]Bereck A. Bleaching of pigmented speciality animal fibers and wool. Rev. Prog. Coloration, 1994(24):17-25.
    [26]Schurmacher U and Knott J. Depigmentierung von feinen tierhaaren, schrift. DWI,1988, 1988(102):213-228.
    [27]Yan K L. Handle of bleached knitted fabric made from fine yak hair. Textile Research Journal,2000,70(8):734-738.
    [28]黄玉丽.牦牛毛的变性及其对性能的影响.毛纺科技,1998(4):12-1 5.
    [29]梁治齐.蛋白酶处理牦牛毛的研究.北京联合大学学报,1996(2):34-39.
    [30]欧学志.生化法对牦牛毛改性整理的研究.天津纺织科技,2005(4):5-8.
    [31]杨锁廷,狄剑锋,刘淑贞等.牦牛毛变性及其产品的研制.纺织学报,1996(6):49-51.
    [32]刘洪玲,于伟东,章悦庭.羊毛拉伸细化及其效果.东华大学学报,2003,29(2):47-51.
    [33]于伟东,刘洪玲,章悦庭.羊毛细化与定形的基本理论.纺织学报,2005,26(2):15-17.
    [34]Masaru Y and Ryoji F. Slenderized Animal Hair Fiber and Its Production.日本专利:JP10158976,1998.
    [35]Philips D G and Warner J J. Process for stretching staple fibers and staple fibers produced Thereby.美国专利:USP 5477669,1995.
    [36]Liu H L and Yu W D. Study of the Structure Transformation of Wool Fibers with Raman Spectroscopy. Journal of Applied Polymer Science,2007,103:1-7.
    [37]Liu H L and Yu W D. Microstructural Transformation of Wool during Stretching with Tensile Curves. Journal of Applied Polymer Science,2007,104:816-822.
    [38]Liu H L and YU W D, Zhang Y T. The Process Analysis of the Roller Stretching for Wool Slenderization. Journal of Donghua University(Eng Ed),2003,20(1):49-53.
    [39]Liu H L and Yu W D, Zhang Y T. Investigating the Microstructure of Slenderized Wool Fibers at Different Stretching Ratios by Raman Spectroscopy. Journal of Donghua University(Eng Ed),2005,22(1):102-105.
    [40]侯祖龄,刘松运,张德良等.真捻羊毛纤维细化生产方法.中国专利:CN200410024993.2,2004.
    [41]杨锁廷,姚金波,刘建忠.一种动物纤维拉伸方法及设备.中国专利:ZL02100557.5,2004.
    [42]王娟.牦牛毛拉伸改性工艺与机理的研究.硕士学位论文.上海:东华大学,2004,9-61.
    [43]王娟,刘洪玲,于伟东.牦牛毛拉伸改性研究初探.毛纺科技,2004(8):44-47.
    [44]王娟,刘洪玲,于伟东.拉伸率、捻度对牦牛毛拉伸细化的影响.东华大学学报(自然科学版),2005,31(6):81-85.
    [45]于伟东,章悦庭,刘洪玲.一种用于羊毛拉伸细化后的多功能定型剂和定型工艺.ZL200410024653,2004.
    f46] 杨锁廷,刘建中,姚金波.拉伸改性羊毛性能的研究.纺织学报,2002,23(3):32-33.
    [47]Feughelman M. Mechanical properties and structure of alpha-keratin fibers, human hair and related fibers. Sydney:University of New South Wales Press,1997,1.
    [48]于伟东,钱海频,刘洪玲等Optim纤维的物理性能研究.东华大学学报,2002,28(1):78-82.
    [49]Morton W E and Hearle J W S. Physical properties of textile fibres,3rd edn. Manchester:The Textile Inst,1993,55-60.
    [50]Feughelman M. A Two-phase structure for keratin fibers. Textile Research Journal,1959(29): 223-227.
    [51]Feughelman M. The mechanical properties of set wool fibers and structure of keratin. J Text Inst,1960,51:T589-T602.
    [52]Feughelman M. A model for the mechanical properties of the alpha-keratin cortex. Textile Res J,1994,64(4):236-239.
    [53]Feughelman M and Haly A R. Mechanical properties of wool keratin and its molecular configuration. Lolloid Z,1960,168:107-117.
    [54]Hearle J W S, Chapman B M, and Senior G S. The interpretation of the mechanical properties of wool. Appli Polymer Symposium,1971(18):775-794.
    [55]Wortmann F J and Zahn H. The stress/strain curve of alpha-keratin fibers and the structure of the intermediated filament. Textile Research Journal,1994,64(12):737-743.
    [56]Dowling L M, Crewther W G, and Parry D A. A secondary structure of component 8c-1 of alpha-keratin. Biochem J,1986, (236):705-712.
    [57]Scientists modify fiber from 19 to 16 microns. Wool Record,1998,157(6):21.
    [58]Bandekar J, S K. Vibrational Analysis of Peptides, Polypeptides, and Proteins VI: Assignment of B-turns Modes in Insulin and Other Proteins. J Biopolymers,1980,19: 31-36.
    [59]Bendit E G. A Quantitive X-ray Diffraction Study of the Alpha-Beta Transformation in Wool Keratin. Textile Res J,1960,30:547-555.
    [60]Bendit E G. Infrared Absorption Spectrum of Keratin. II. Deuteration Studies. Biopolymers, 1966,4:561-577.
    [61]Cao J and Bhoyro A Y. Structural Characterization of Wool by Thermal Mechanical Analysis of Yarns. Textile Res J,2001,71(1):63-66.
    [62]Cao J and Billows C A. Crystallinity Determination of Native and Stretched Wool by X-ray Diffraction. Polym lnt,1999,48(10):1027-1033.
    [63]Cao J, Joko K, and Cook J R. DSC Studies of the Melting Behavior of a Form Crystallites in Wool Keratin. Textile Res J,1997,67(2):117-123.
    [64]Church J S, Corino G L, and Woodhead A L. The Analysis of Merino Wool Cuticle and Cortical Cells by FourierTransform Raman Spectroscopy. Biopolymers,1997,42(1):7-17.
    [65]Church J S, Corino G L, and Woodhead A L. The Effect of Stretching on Wool Fibers as Monitored by FT-Raman Spectroscopy. J Mol Structure,1998,440:15-23.
    [66]Hino R, Karakawa T, and Kengaku W et al. Slenderized animal wool and its manufacturing method.美国专利:USP 5459902,1995.
    [67]Bhoyro A Y, Cook J R, and Hillbrick L K. Opportunities in cool wool. Textile Asia,1997, 28(9):67-69.
    [68]黄立新OPTIM纤维及产品的开发与应用.纺织学报,2004,25(2).
    [69]刘航,陆凯.拉伸改性处理对羊毛机械性能影响的研究.北京纺织,2002,23(5):51-53.
    [70]Umehara R, Takashi K, and Masaru Y. Method for preparation of slenderized animal fiber.美国专利:US2003/0068493A1,2003.
    [71]王国强.羊毛拉伸细化连续化生产研究.硕士学位论文.上海:东华大学,2005,1-69.
    [72]张福坤.羊毛拉伸细化工艺技术及表征.硕士学位论文.上海:东华大学,2002,1-36.
    [73]Haly A R and Inglis A S. Amino-acid analysis of orthocortex from Lincoln wool. Textile Res J,1964,34:562-563.
    [74]Snaith J W. A method of removing the outer layer of animal fibers. Textile Res J,1960,30: 543.
    [75]Bradbury J H and Chapman G V. The chemical composition of wool I:The separation and microscopic characterization of components produced by ultrasonic disintegration. Aust J Biol Sci,1964,17:960-972.
    [76]Xu W L, Ke G Z, and Wu J H. Modification of wool fiber using steaming explosion. Eur Poly J,2006,42:2168.
    [77]Bradbury J H. An investigation by light microscopy of the swelling of wool fibers. Textile Res J,1963,33:666.
    [78]Bradbury J H, Chapman G V, and Hambly A N. Separation of chemically unmodified histological components of keratin fibers and analyses of cuticles. Nature,1966,210:1333.
    [79]Bradbury J H and Ley K F. Separation of orthocortical and paracortical cells from wool. Textile Res J,1971,43:87.
    [80]Chapman G B and Bradbury J H. The chemical composition of wool 7:Separation and analysis of orthocortex and paracotex. Archeves of Biochemistry and Biophysics,1968,127: 157.
    [81]Kulkarni V G, Ruth M R, and Robson A. Studies on the orthocortex and paracortex of merino wool. Applied Polymer Symposium,1971,18:127.
    [82]于伟东.纺织材料学.北京:中国纺织出版社,2006,1-100.
    [83]李汝勤,宋均才.纤维和纺织品的测试原理与仪器.上海:东华大学出版社,1995,1-150.
    [84]冯山,张一心,朱宝瑜.牦牛绒的性能特征及其皮质细胞尺寸分布的实测分析.现代纺织技术,2000,8(4):1-3.
    [85]Feughelman M. Mechanical properties and structure of alpha-keratin fibers. sydney: UNSW Press,1997,1.
    [86]Fraser R D B, Rogers G E, and Parry D A D. Macrofibril assembly in trichocyte (hard α-) keratins. Journal Structural Biology,2003,143:85-93.
    [87]Hearle J W S. A critical review of the structural mechanics of wool and hair fibres. International Journal Biological Macromolecules,2000,27:123-138.
    [88]Mckinnon A J. The self-assembly of keratin intermediate filaments in macrofibrils:Is this process mediated by a mesophase? Current Appl Phys,2006,6:375-378.
    [89]Church J S, Corino G L, and Woodhead A L. The effects of stretching on wool fibers as monitored by FT-Raman spectroscopy. Journal of Molecular Structure,1998,440:15-23.
    [90]高晶.羽绒纤维及其集合体结构和性能的研究.博士学位论文.上海:东华大学,2006,18-20.
    [91]电子显微镜.http://baike.baidu.com/view/25114.htm.
    [92]朱诚身.聚合物结构分析.北京:化学出版社,2004,1-200.
    [93]侯秀良.山羊绒纤维结构与热学性能研究.博士学位论文.上海:东华大学,2002,18-39.
    [94]王永.补饲硫对安哥拉山羊后代杂种羊无髓毛机械性能的影响研究.西南民族学院学报(自然群学版),1998,24(2):185-189.
    [95]Edsall J T. Advance Protein Chemistry,1959,14:7-15.
    [96]Church J S, Corino G L, and Woodhead A L. The Analysis of Merino Wool Cuticle and Cortical Cells by Fourier Transform Raman Spectroscopy. John Wiley & Sons, INC Biopoly, 1997,42:7-17.
    [97]Pielesz A and Weselucha A B. The Identification of Structural Changes in the Keratin of Wool Fibre Dyed with An Azo Dye Using the Raman and Fourier Transform Infrared Spectroscopy Methods. Journal of Molecular Structure,2000,555:325-334.
    [98]Vasanthan N and Salem D R. Infrared Spectroscopic Analysis of Crystallization in Poly(ethylene naphalate). Polym Eng Sci,1999,81:311-312.
    [99]钱和生,俞莲芳.傅里叶变换红外光声光谱法在纺织上的应用.中国纺织大学报,1994,20(4):70-79.
    [100]邵正中,吴冬,李光宪等.用拉曼光谱研究蚕丝蛋白的结构与功能的关系.光散射学报,1995(4):2-7.
    [101]熊磊.纺织纤维显微红外光谱技术的应用研究.硕士学位论文.上海:东华大学,2004,1-69.
    [102]唐芙菊.拉伸细化羊毛二级结构的分析与表征.硕士学位论文,上海:东华大学,2006,36-71.
    [103][美]中西香尔,索罗曼.红外光谱分析100例.北京:科学出版社,1984,1-205.
    [104]王宗明,何欣翔,孙殿卿.实用红外光谱学.北京:石油工业出版社,1982,1-104.
    [105]Jurdana L E, Ghiggino K P, and Nugent K W et al. Confocal Laser Raman Microprobe Studies of Keratin Fibers. Textile Res J,1995,65(10):593-600.
    [106]王国强,刘洪玲,于伟东.拉伸速度及其他参数变化对束纤维细化过程的影响.纺织科技进展,2006(2):26-28.
    [107]Meredith R. A Comparison of the Tensile Elasticity of Some Textile Fibers. J Text Inst, 1945(36):T147-164.
    [108]Kurashiki B and Kabushiki K. Slenderized animal wool and its manufacturing method. 美 国专利:USP 5459902,1995.
    [109]Feughelman M. Mechanical properties and structure of alpha-keratin fibers. sydney: UNSW Press,1997,78-95.
    [110]邱轶兵.实验设计与数据处理.合肥:中国科学技术大学出版社,2008,77-176.
    [111]甘登岱AutoCAD中文版机械制图实用教程.北京:人民邮电出版社,2003,1-314.
    [112]Liu H L, Yu W D, and Jin H B. Modeling the stress-relaxation behavior of wool fibers. Journal of Applied Polymer Science,2008,110:2078-2084.
    [113]张尚德,张汉武.羊毛学.西安:陕西科学技术出版社,1986,248.
    [114]刘梅,于伟东.羊毛角蛋白作为生物医用材料的研究进展.材料导报,2005,19(9):111-113.
    [115]Kauzmann W. Some factors in the interpretation of protein denaturation. Adv Protein Chem,1959,14:1-63.
    [116]Workmann F J and Deutz H. Characterizing Keratins Using High Pressure DSC. J Appl Polym Sci,1993,48:137-150.
    [117]侯秀良,刘启国,王善元.采用WAXD、DSC技术研究山羊绒、羊毛纤维的结晶结构.东华大学学报(自然科学叛),2004,30(3):86-89.
    [118]Tonin C, Aluigi A, and Bianchetto M S. Thermoanalytical Characterization of Modified Keratin Fibres. Jouranl of Thermal Analysis and Calorimetry,2004,77:987-996.
    [119]Arai T, Freddi G, and Innocenti R et al. Acylation of Silk and Wool with Acid Preparation of Water-Repellent Fibers. Jouranl of Applied Polymer Science,2001,82:2832-2841.
    [120]熊磊,刘洪玲,于伟东.拉伸羊毛分子结构的显微红外光谱分析.东华大学学报(自然群学版),2005,31(3):5-8.
    [121]Samanta S R, Lanier W W, and Miller R W et al. Fiber Structure Study by Polarized Infrared Attenuated Total Reflection Spectroscopy. Applied Spectroscopy,1990,44(2): 286-289.
    [122]Yao J B, Liu Y B, and Yang S T et al. Characterization of Secondary Structure Transformation of Stretched and Slenderized Wool Fibers with FTIR Spectra.journal of Engineered Fibers and Fabrics,2008,3(2):1-10.
    [123]Pielesz A, Freeman H S, and Weselucha B A. Assessing Secondary Structure of A Dyed Wool Fibre by Means of FTIR and FTR Spectroscopies. J Mol Structure,2003,651-653:405-418.
    [124]Carey P R. Biochemical Applications of Raman and Resonance Raman Spectroscopies. New York:Academic Press,1982,71-96.
    [125]Frushour B G and Koenig J L. Advances in Infrared and Raman Spectroscopy. vol.1. London:Heyden,1975,35-97.
    [126]Fabian H and Anzenbacher P. Vibrational Spectroscopy. vol.4. Amsterdam:Elsevier Science, 1993,125-148.
    [127]Chapman B M. A Mechanical Model for Wool and other Keratin Fibers. Textile Res J,1969, 39:1102-1109.
    [128]刘伟,陈韶娟,马建伟.比重瓶法测纤维密度.纺织标准与质量,2005(3):42-44.
    [129]马中伟,杨建平,郁崇文.竹原纤维的密度测试.纺织科技进展,2007(1):75-76.
    [130]罗俊琼.头发知识.大自然探索,2006(2):72-76.
    [131]刘宇清,于伟东,陈鲁铁.纤维弯曲性能测量.中国纤检,2006(4):22-26.
    [132]Brady P R. Diffusion of Dyes in Natural Fibres. Rev Prog Coloration,1992(22):58-78.
    [133]Rippon J A. The Structure of Wool, in Wool Dyeing. Bradford:Society of Dyers and Colorists,1992,17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700