基于高通量测序的DNA甲基化相关生物信息学工具的开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA甲基化作为一种重要的表观遗传学修饰,在x染色体失活、胚胎发育、细胞分化、疾病发生和癌症形成等方面发挥着重要的作用。新一代高通量测序技术的兴起使得DNA甲基化研究在深度和广度上得到了很大的拓展,涌现出一批基于高通量测序的全基因组甲基化分析方法,例如全基因组重亚硫酸盐测序(BS-seq)、甲基化DNA免疫共沉淀测序(MeDIP-seq)以及简化的重亚硫酸盐测序技术(RRBS)。这些新技术在推动甲基化研究的同时,也产生了大量甲基化测序数据。如何从这些海量的数据中快速挖掘出有效的信息对于研究者们提出了巨大的挑战。本研究主要从甲基化测序数据模拟、差异甲基化区域(DMR)分析、甲基化分析整合平台的开发以及甲基化可视化软件这几个相互辅助的方面开发基于高通量测序的甲基化分析软件,为DNA甲基化研究者提供工具上的支撑。
     首先,我们开发了甲基化测序序列模拟工具BSSim。该模拟软件适用于各大主流测序平台的测序格式,可观测多种错误因素和不同层次对甲基化数据的影响,同时能为后续的分析选择合适参数并减小错误因素提供帮助。BSSim的开发可为我们评估随后开发软件的性能提供了基础。
     其次,我们开发了以滑窗方式,在基因组水平的单碱基精度甲基化数据上扫描查找DMR (differentially methylated regions)的软件swDMR。swDMR整合多种常用的统计学方法,适用于配对样本或多个样本的重亚硫酸盐处理的DNA甲基化测序数据的DMR查找、注释和可视化。通过swDMR,我们可以更快捷的发现潜在的参与表观调控的功能区域。
     随后,我们基于RRBS测序数据开发了整合的甲基化分析平台RRBS-Analyser。RRBS-Analyser可以对原始的测序数据进行质量评估,产生基本的统计信息,把质量控制之后产生的短序列比对到参考基因组上,确定并注释甲基化胞嘧啶的位点,并能对多个样品进行差异甲基化区间的检测及注释。此外,RRBS-Analyser还支持除人以外的其它多个物种的基因组DNA甲基化分析。
     最后,我们开发了全基因组甲基化可视化软件iMethy。iMethy拥有数据比对、甲基化位点寻找、甲基化可视化等多种功能,具有使用便捷、功能强大、界面友好,可以有效地发现隐藏在信息内部的特征和规律。iMethy适用于多种操作系统,适用性强。iMethy可作为研究人员进行甲基化数据分析的一个强有力的可视化工具。
DNA methylation, as an important epigenetic modification, plays an crucial role in X-chromosome inactivation, embryonic development, cell differentiation, disease and cancer formation and other diseases. With the advent of high-throughput sequencing, researches on DNA methylation were facilitated both in the depth and scope, and a large number of genome-wide methylation analysis methods appeared, such as whole-genome bisulfite sequencing (BS-seq), methylated DNA immunoprecipitation sequencing (MeDIP-seq) and reduced representation bisulphite sequencing (RRBS). These new technologies did prompt the methylation studies, but also generated massive methylation sequencing data. Therefore, a huge challenge has emerged for researchers:how to quickly dig out the useful information from these massive data. With the hope of providing facilitations for researchers on DNA methylation, we developed the following analysis tools based on high-throughput sequencing, including simulation of methylation sequencing data, differentially methylated region (DMR) analysis, integrated platform for methylation analysis and visualization software.
     Firstly, we developed BSSim, a simulation software applied to generate short reads with sequencing format of main sequencing platforms. BSSim can evaluate the effects of multilevel factors on the sequencing data, also act as a reference for selecting the appropriate parameters in subsequent analysis and reduce the effect of error factors on the sequencing data.
     Secondly, we developed the swDMR, which is based on sliding window, to scan DMR at single-base resolution on the genome-wide scale. swDMR integrates a variety of commonly used statistical methods for detection, annotation and visualization of DMR from either paired samples or multiple samples treated by bisulfite. By using swDMR, users can identify potential functional regions involved in epigenetic regulation.
     Thirdly, we developed RRBS-Analyser:an integrated analysis platform which can comprehensively analyze RRBS sequencing data in genome-wide. It can perform quality assessment for the original sequencing data, produce basic statistical information, align the clean reads after quality control to the reference genome, identify and annotate sites of methylated cytosine, and identity and annotate DMR in multiple samples. Additionally, RRBS-Analyser supports genomic DNA methylation analysis of other species.
     Finally, we developed iMethy, a genome-wide methylation visualization software. It is characterized by the following functionalities:alignment, methylation identification and methylation visualization. It is powerful, userfriendly and can be used to effectively discover hidden features and patterns. Furthermore, iMethy is applicable to multiple operating systems, almost importantly, it has a fast rate in visualization refreshing and provide a powerful visualization tool for researchers on methylation analysis.
引文
Akalin, A., F. E. Garrett-Bakelman, et al. (2012). "Base-Pair Resolution DNA Methylation Sequencing Reveals Profoundly Divergent Epigenetic Landscapes in Acute Myeloid Leukemia." PLoS Genet 8(6).
    Akalin, A., M. Kormaksson, et al. (2012). "methylKit:a comprehensive R package for the analysis of genome-wide DNA methylation profiles." Genome Biol 13(10):R87.
    Amoreira, C, W. Hindermann, et al. (2003). "An improved version of the DNA methylation database (MethDB)." Nucleic Acids Res 31(1):75-77.
    Ball, M. P., J. B. Li, et al. (2009). "Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells." Nat Biotechnol 27(4):361-368.
    Bao, H., H. Guo, et al. (2009). "MapView:visualization of short reads alignment on a desktop computer." Bio informatics 25(12):1554-1555.
    Baranzini, S. E., J. Mudge, et al. (2010). "Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis." Nature 464(7293):1351-1356.
    Baubec, T., R. Ivanek, et al. (2013). "Methylation-Dependent and-Independent Genomic Targeting Principles of the MBD Protein Family." Cell 153(2):480-492.
    Begun, D. J., A. K. Holloway, et al. (2007). "Population genomics:whole-genome analysis of polymorphism and divergence in Drosophila simulans." PLoS Biol 5(11):e310.
    Benjamini, Y. and Y. Hochberg (1995). "Controlling the False Discovery Rate-a Practical and Powerful Approach to Multiple Testing." Journal of the Royal Statistical Society Series B-Methodological 57(1):289-300.
    Benoukraf, T., S. Wongphayak, et al. (2013). "GBSA:a comprehensive software for analysing whole genome bisulfite sequencing data." Nucleic Acids Res 41(4):e55.
    Berman, B. P., D. J. Weisenberger, et al. (2009). "Locking in on the human methylome." Nat Biotechnol 27(4):341-342.
    Bestor, T. H. (2000). "The DNA methyltransferases of mammals." Hum Mol Genet 9(16): 2395-2402.
    Bird, A. (2002). "DNA methylation patterns and epigenetic memory." Genes Dev 16(1):6-21.
    Bird, A. P. (1980). "DNA Methylation and the Frequency of Cpg in Animal DNA." Nucleic Acids Res 8(7):1499-1504.
    Bock, C, S. Reither, et al. (2005). "BiQ Analyzer:visualization and quality control for DNA methylation data from bisulfite sequencing." Bioinformatics 21(21):4067-4068.
    Bolormaa, S., J. E. Pryce, et al. (2013). "Accuracy of prediction of genomic breeding values for residual feed intake and carcass and meat quality traits in Bos taurus, Bos indicus, and composite beef cattle." J Anim Sci 91(7):3088-3104.
    Booth, M. J., M. R. Branco, et al. (2012). "Quantitative Sequencing of 5-Methylcytosine and 5-Hydroxymethylcytosine at Single-Base Resolution." Science 336(6083):934-937.
    Boyle, P., K. Clement, et al. (2012). "Gel-free multiplexed reduced representation bisulfite sequencing for large-scale DNA methylation profiling." Genome Biol 13(10).
    Cauchi, S. and P. Froguel (2008). "TCF7L2 genetic defect and type 2 diabetes." Curr Diab Rep 8(2):149-155.
    Chadeau-Hyam, M., C. J. Hoggart, et al. (2008). "Fregene:simulation of realistic sequence-level data in populations and ascertained samples." BMC Bio informatics 9:364.
    Chatterjee, A., P. A. Stockwell, et al. (2012). "Comparison of alignment software for genome-wide bisulphite sequence data." Nucleic Acids Res 40(10):e79.
    Chen, G K., P. Marjoram, et al. (2009). "Fast and flexible simulation of DNA sequence data." Genome Res 19(1):136-142.
    Chen, P. Y., S. J. Cokus, et al. (2010). "BS Seeker:precise mapping for bisulfite sequencing." BMC Bioinformatics 11:203.
    Clark, R. M., G. Schweikert, et al. (2007). "Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana." Science 317(5836):338-342.
    Coarfa, C., F. Yu, et al. (2010). "Pash 3.0:A versatile software package for read mapping and integrative analysis of genomic and epigenomic variation using massively parallel DNA sequencing." BMC Bioinformatics 11:572.
    Cohen, N. M., E. Kenigsberg, et al. (2011). "Primate CpG Islands Are Maintained by Heterogeneous Evolutionary Regimes Involving Minimal Selection." Cell 145(5):773-786.
    Cokus, S. J., S. Feng, et al. (2008). "Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning." Nature 452(7184):215-219.
    Diep, D., N. Plongthongkum, et al. (2012). "Library-free methylation sequencing with bisulfite padlock probes." Nat Methods 9(3):270-272.
    Dinh, H. Q., M. Dubin, et al. (2012). "Advanced methylome analysis after bisulfite deep sequencing:an example in Arabidopsis." PLoS One 7(7):e41528.
    Durrant, C., K. T. Zondervan, et al. (2004). "Linkage disequilibrium mapping via cladistic analysis of single-nucleotide polymorphism haplotypes." Am J Hum Genet 75(1):35-43.
    Fan, S. C. and X. G. Zhang (2009). "CpG island methylation pattern in different human tissues and its correlation with gene expression." Biochemical and Biophysical Research Communications 383(4):421-425.
    Frazer, K. A., D. G. Ballinger, et al. (2007). "A second generation human haplotype map of over 3.1 million SNPs." Nature 449(7164):851-861.
    Frisse, L., R. R. Hudson, et al. (2001). "Gene conversion and different population histories may explain the contrast between polymorphism and linkage disequilibrium levels." Am J Hum Genet 69(4):831-843.
    Frith, M. C., R. Mori, et al. (2012). "A mostly traditional approach improves alignment of bisulfite-converted DNA." Nucleic Acids Res 40(13):e100.
    Frommer, M., L. E. McDonald, et al. (1992). "A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands." Proc Natl Acad Sci U S A 89(5):1827-1831.
    Gammie, S. C. and R. J. Nelson (2001). "cFOS and pCREB activation and maternal aggression in mice." Brain Research 898(2):232-241.
    Goll, M. G. and T. H. Bestor (2005). "Eukaryotic cytosine methyltransferases." Annual Review of Biochemistry 74:481-514.
    Grunau, C., R. Schattevoy, et al. (2000). "MethTools-a toolbox to visualize and analyze DNA methylation data." Nucleic Acids Res 28(5):1053-1058.
    Gu, F., M. S. Doderer, et al. (2013). "CMS:a web-based system for visualization and analysis of genome-wide methylation data of human cancers." PLoS One 8(4):e60980.
    Gu, H., C. Bock, et al. (2010). "Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution." Nature Methods 7(2):133-U169.
    Hackenberg, M., G. Barturen, et al. (2011). "NGSmethDB:a database for next-generation sequencing single-cytosine-resolution DNA methylation data." Nucleic Acids Res 39: D75-D79.
    Halachev, K., H. Bast, et al. (2012). "EpiExplorer:live exploration and global analysis of large epigenomic datasets." Genome Biol 13(10):R96.
    Hansen, K. D., B. Langmead, et al. (2012). "BSmooth:from whole genome bisulfite sequencing reads to differentially methylated regions." Genome Biol 13(10):R83.
    Harris, E. Y., N. Ponts, et al. (2012). "BRAT-BW:efficient and accurate mapping of bisulfite-treated reads." Bioinformatics 28(13):1795-1796.
    Harris, R. A., T. Wang, et al. (2010). "Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications." Nat Biotechnol 28(10):1097-1105.
    He, X. M., S. H. Chang, et al. (2008). "MethyCancer:the database of human DNA methylation and cancer." Nucleic Acids Res 36:D836-D841.
    Hickey, J. M. and G Gorjanc (2012). "Simulated data for genomic selection and genome-wide association studies using a combination of coalescent and gene drop methods." G3 (Bethesda) 2(4):425-427.
    Huang, D. W., B. T. Sherman, et al. (2009). "Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources." Nature Protocols 4(1):44-57.
    Hudson, R. R. (2002). "Generating samples under a Wright-Fisher neutral model of genetic variation." Bioinformatics 18(2):337-338.
    Ito, S., L. Shen, et al. (2011). "Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 5-Carboxylcytosine." Science 333(6047):1300-1303.
    Jiang, L, J. Zhang, et al. (2013). "Sperm, but Not Oocyte, DNA Methylome Is Inherited by Zebrafish Early Embryos." Cell 153(4):773-784.
    Jones, P. A. (2012). "Functions of DNA methylation:islands, start sites, gene bodies and beyond." Nat Rev Genet 13(7):484-492.
    Jones, P. A., S. M. Taylor, et al. (1982). "Inhibition of DNA Methylation by 5-Azacytidine." Journal of Cancer Research and Clinical Oncology 103(3):319-319.
    Kreck, B., G. Marnellos, et al. (2012). "B-SOLANA:an approach for the analysis of two-base encoding bisulfite sequencing data." Bioinformatics 28(3):428-429.
    Krueger, F. and S. R. Andrews (2011). "Bismark:a flexible aligner and methylation caller for Bisulfite-Seq applications." Bioinformatics 27(11):1571-1572.
    Krueger, F., B. Kreck, et al. (2012). "DNA methylome analysis using short bisulfite sequencing data." Nat Methods 9(2):145-151.
    Ku, C. S., N. Naidoo, et al. (2011). "Studying the epigenome using next generation sequencing." J Med Genet 48(11):721-730.
    Langmead, B., C. Trapnell, et al. (2009). "Ultrafast and memory-efficient alignment of short DNA sequences to the human genome." Genome Biol 10(3):R25.
    Laurent, L., E. Wong, et al. (2010). "Dynamic changes in the human methylome during differentiation." Genome Res 20(3):320-331.
    Laurent, L. C, I. Ulitsky, et al. (2011). "Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture." Cell Stem Cell 8(1):106-118.
    Laval, G. and L. Excoffier (2004). "SIMCOAL 2.0:a program to simulate genomic diversity over large recombining regions in a subdivided population with a complex history." Bioinformatics 20(15):2485-2487.
    Law, J. A. and S. E. Jacobsen (2010). "Establishing, maintaining and modifying DNA methylation patterns in plants and animals." Nat Rev Genet 11(3):204-220.
    Li, C. and M. Li (2008). "GWAsimulator:a rapid whole-genome simulation program." Bioinformatics 24(1):140-142.
    Li, E., T. H. Bestor, et al. (1992). "Targeted mutation of the DNA methyltransferase gene results in embryonic lethality." Cell 69(6):915-926.
    Li, H., B. Handsaker, et al. (2009). "The Sequence Alignment/Map format and SAMtools." Bioinformatics 25(16):2078-2079.
    Li, N. and M. Stephens (2003). "Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data." Genetics 165(4):2213-2233.
    Li, R., Y. Li, et al. (2009). "SNP detection for massively parallel whole-genome resequencing." Genome Res 19(6):1124-1132.
    Li, Y. R., J. D. Zhu, et al. (2010). "The DNA Methylome of Human Peripheral Blood Mononuclear Cells." PLoS Biol 8(11).
    Li, Y. X. and W. Li (2009). "BSMAP:whole genome bisulfite sequence MAPping program." BMC Bioinformatics 10.
    Liang, L., S. Zollner, et al. (2007). "GENOME:a rapid coalescent-based whole genome simulator." Bioinformatics 23(12):1565-1567.
    Lister, R., E. A. Mukamel, et al. (2013). "Global epigenomic reconfiguration during mammalian brain development." Science 341(6146):1237905.
    Lister, R., R. C. O Malley, et al. (2008). "Highly integrated single-base resolution maps of the epigenome in Arabidopsis." Cell 133(3):523-536.
    Lister, R., M. Pelizzola, et al. (2009). "Human DNA methylomes at base resolution show widespread epigenomic differences." Nature 462(7271):315-322.
    Liu, S. Y, J. Q. Lin, et al. (2012). "Bisulfite sequencing reveals that Aspergillus flavus holds a hollow in DNA methylation." PLoS One 7(1):e30349.
    Liu, Y, K. D. Siegmund, et al. (2012). "Bis-SNP:Combined DNA methylation and SNP calling for Bisulfite-seq data." Genome Biol 13(7):R61.
    Livingston, R. J., A. von Niederhausern, et al. (2004). "Pattern of sequence variation across 213 environmental response genes." Genome Res 14(10A):1821-1831.
    Mailund, T., M. H. Schierup, et al. (2005). "CoaSim:a flexible environment for simulating genetic data under coalescent models." BMC Bioinformatics 6:252.
    Marjoram, P. and J. D. Wall (2006). "Fast "coalescent" simulation." BMC Genet 7:16.
    Mateescu, R. G, D. J. Garrick, et al. (2013). "Genome-wide association study of concentrations of iron and other minerals in longissimus muscle of Angus cattle." J Anim Sci 91(8):3593-3600.
    Meissner, A., A. Gnirke, et al. (2005). "Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis." Nucleic Acids Res 33(18): 5868-5877.
    Nabel, C. S. and R. M. Kohli (2011). "Demystifying DNA Demethylation." Science 333(6047): 1229-1230.
    Nagaraju, G. P. and B. F. El-Rayes (2013). "SPARC and DNA methylation:Possible diagnostic and therapeutic implications in gastrointestinal cancers." Cancer Letters 328(1):10-17.
    Nishioka, M., M. Bundo, et al. (2012). "DNA methylation in schizophrenia:progress and challenges of epigenetic studies." Genome Med 4(12):96.
    Ogata, H., S. Goto, et al. (1999). "KEGG:Kyoto Encyclopedia of Genes and Genomes." Nucleic Acids Res 27(1):29-34.
    Okano, M., D. W. Bell, et al. (1999). "DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development." Cell 99(3):247-257.
    Ondov, B. D., C. Cochran, et al. (2010). "An alignment algorithm for bisulfite sequencing using the Applied Biosystems SOLiD System." Bioinformatics 26(15):1901-1902.
    Ongenaert, M., L. Van Neste, et al. (2008). "PubMeth:a cancer methylation database combining text-mining and expert annotation." Nucleic Acids Res 36(Database issue):D842-846.
    Otto, C, P. F. Stadler, et al. (2012). "Fast and sensitive mapping of bisulfite-treated sequencing data." Bioinformatics 28(13):1698-1704.
    Pedersen, B., T. F. Hsieh, et al. (2011). "MethylCoder:software pipeline for bisulfite-treated sequences." Bioinformatics 27(17):2435-2436.
    Quinlan, A. R. and I. M. Hall (2010). "BEDTools:a flexible suite of utilities for comparing genomic features." Bioinformatics 26(6):841-842.
    Rakyan, V. K., T. A. Down, et al. (2008). "An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs)." Genome Res 18(9):1518-1529.
    Richardson, B. (2007). "Primer:epigenetics of autoimmunity." Nature Clinical Practice Rheumatology 3(9):521-527.
    Rohde, C, Y. Zhang, et al. (2010). "BISMA--fast and accurate bisulfite sequencing data analysis of individual clones from unique and repetitive sequences." BMC Bioinformatics 11:230.
    Rozen, S. and H. Skaletsky (2000). "Primer3 on the WWW for general users and for biologist programmers." Methods Mol Biol 132:365-386.
    Saatchi, M., J. Ward, et al. (2013). "Accuracies of direct genomic breeding values in Hereford beef cattle using national or international training populations." J Anim Sci 91(4):1538-1551.
    Sargolzaei, M. and F. S. Schenkel (2009). "QMSim:a large-scale genome simulator for livestock." Bioinformatics 25(5):680-681.
    Sasaki, M., J. Anast, et al. (2003). "Bisulfite conversion-specific and methylation-specific PCR:a sensitive technique for accurate evaluation of CpG methylation." Biochemical and Biophysical Research Communications 309(2):305-309.
    Schillebeeckx, M., A. Schrade, et al. (2013). "Laser capture microdissection-reduced representation bisulfite sequencing (LCM-RRBS) maps changes in DNA methylation associated with gonadectomy-induced adrenocortical neoplasia in the mouse." Nucleic Acids Res 41(11).
    Smith, A. D., W. Y. Chung, et al. (2009). "Updates to the RMAP short-read mapping software." Bioinformatics 25(21):2841-2842.
    Smith, Z. D., H. Gu, et al. (2009). "High-throughput bisulfite sequencing in mammalian genomes." Methods 48(3):226-232.
    Song, C. X., C. Q. Yi, et al. (2012). "Mapping recently identified nucleotide variants in the genome and transcriptome." Nat Biotechnol 30(11):1107-1116.
    Su, J. Z., H. D. Yan, et al. (2013). "CpG MPs:identification of CpG methylation patterns of genomic regions from high-throughput bisulfite sequencing data." Nucleic Acids Res 41(1).
    Sun, Z., S. Baheti, et al. (2012). "SAAP-RRBS:streamlined analysis and annotation pipeline for reduced representation bisulfite sequencing." Bioinformatics 28(16):2180-2181.
    Thorvaldsdottir, H., J. T. Robinson, et al. (2013). "Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration." Brief Bioinform 14(2): 178-192.
    Wang, L., J. Sun, et al. (2012). "Systematic assessment of reduced representation bisulfite sequencing to human blood samples:A promising method for large-sample-scale epigenomic studies." J Biotechnol 157(1):1-6.
    Wang, Y, C. Liu, et al. (2011). "Intrathecal 5-azacytidine inhibits global DNA methylation and methyl-CpG-binding protein 2 expression and alleviates neuropathic pain in rats following chronic constriction injury." Brain Research 1418:64-69.
    Warnecke, P. M., C. Stirzaker, et al. (2002). "Identification and resolution of artifacts in bisulfite sequencing." Methods 27(2):101-107.
    Xi, Y, C. Bock, et al. (2012). "RRBSMAP:a fast, accurate and user-friendly alignment tool for reduced representation bisulfite sequencing." Bioinformatics 28(3):430-432.
    Xiang, H., J. Zhu, et al. (2010). "Single base-resolution methylome of the silkworm reveals a sparse epigenomic map." Nat Biotechnol 28(5):516-520.
    Xie, W., C. L. Barr, et al. (2012). "Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome." Cell 148(4):816-831.
    Xin, Y., Y. Ge, et al. (2011). "Methyl-Analyzer-whole genome DNA methylation profiling." Bioinformatics 27(16):2296-2297.
    Yang, C. H., L. Y. Chuang, et al. (2010). "Methyl-Typing:an improved and visualized COBRA software for epigenomic studies." FEBS Lett 584(4):139-144.
    Ye, J., L. Fang, et al. (2006). "WEGO:a web tool for plotting GO annotations." Nucleic Acids Res 34:W293-W297.
    Yu, M., G. C. Hon, et al. (2012). "Base-Resolution Analysis of 5-Hydroxymethylcytosine in the Mammalian Genome." Cell 149(6):1368-1380.
    Zackay, A. and C. Steinhoff (2010). "MethVisual-visualization and exploratory statistical analysis of DNA methylation profiles from bisulfite sequencing." BMC Res Notes 3:337.
    Zhang, Y., H. Liu, et al. (2011). "QDMR:a quantitative method for identification of differentially methylated regions by entropy." Nucleic Acids Res 39(9):e58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700