高超声速滑翔飞行器自适应有限时间制导方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高超声速滑翔飞行器的飞行速度快、飞行空域广,具有极大的商业和军事价值。飞行器的运动具有非线性、强耦合、状态大范围快变等复杂特性,并且存在多种约束和不确定性,这给飞行器制导带来很多困难。针对上述问题,论文对高超声速滑翔飞行器的滑翔段制导和精确导引问题进行深入研究,提出一种考虑不确定性的自适应有限时间制导方法,使它适用于具有复杂运动特性的对象,能满足多种约束,并能抑制不确定性对制导的不利影响,获得较高的制导精度。论文主要开展以下研究:
     针对由飞行器制导问题抽象而来的一类存在扰动的线性系统的控制问题,提出一种新的有限时间线性控制方法和有限时间线性扩张状态观测器(FT-LESO),为制导方法研究提供理论基础。分别在状态反馈和动态输出反馈条件下,研究有限时间线性控制方法,给出控制器参数与系统收敛速率、调节时间的解析关系,为控制器在线快速设计提供依据;提出FT-LESO来观测系统中的扰动,给出观测器参数与观测误差的收敛速度、调节时间及稳态值的解析关系,以此设计观测器参数实现快速准确的扰动观测,为扰动补偿创造良好的条件。
     针对滑翔段参考轨迹制导中的不确定性及多约束下的参考轨迹生成问题,提出一种适应参数及任务变化的三维参考轨迹自适应生成方法,它能自主、快速的生成满足多种约束的三维参考轨迹,适用于进行大侧向机动的飞行任务,并具有良好的在线计算潜力。考虑到由不确定性造成的模型参数变化,基于在线模型参数估计,通过在线生成三维参考轨迹使其适应模型参数的变化;考虑飞行过程中变更目标的情况,基于更新的目标信息,在线生成三维参考轨迹使其适应飞行中改变目标的飞行任务。
     针对滑翔段参考轨迹制导中的不确定性及控制约束下的轨迹跟踪控制问题,提出考虑不确定性的自适应有限时间轨迹跟踪控制方法。将不确定性的综合影响视为系统中的扰动,利用扰动观测器对其进行观测,通过扰动补偿提高轨迹跟踪控制效果。基于有限时间控制方法设计纵向轨迹跟踪控制律,通过在线调整控制律参数,保证控制约束的满足,并使系统具有期望的收敛性能,从而获得良好的轨迹跟踪效果;通过倾侧反转调整航向,利用临近目标区域时的终端航向修正来减小不确定性造成的较大终端航向偏差,提高制导精度。
     针对精确导引阶段的不确定性及多约束下的导引问题,提出考虑不确定性的自适应有限时间精确导引方法。基于有限时间控制方法分别设计纵向导引律和侧向导引律。通过扰动观测器观测由不确定性造成的扰动,并在导引律中对扰动进行补偿,提高存在不确定性时的导引精度。根据飞行状态及剩余飞行时间在线自适应调整导引律参数,保证攻角、侧滑角、导引头视场等满足过程约束,同时使视线角及其转率在终端时刻收敛到期望值,保证终端约束的满足、获得较高的导引精度。
     通过数值仿真验证提出的制导方法,多种情况下的仿真结果表明,制导方法能适应目标固定以及飞行过程中变更目标的飞行任务,满足多种过程约束与终端约束,并且在存在大气密度变化、气动力系数变化、未知目标加速度、未建模动态等多种不确定性的条件下获得较高的制导精度。论文提出的制导方法是有效的,并且制导精度高于文献给出的制导方法。论文的研究工作能为相关飞行器制导方法研究提供理论基础。
Hypersonic gliding vehicles can fly in large space at extremely high speed. These characters endow the vehicle with great commercial and martial values. However, motion of the vehicle is with nonlinearity, close coupling. And it’s states change fast in large domain and affected by various constraints and uncertainties. These bring lots of difficulties to guidance. This dissertation focuses on gliding guidance and precise guidance of hypersonic glide vehicles. An adaptive finite-time guidance method considering uncertainties is proposed. The method is capable at handling the above complex motion characters and is easy for guidance law design. Meanwhile, multi-constraints are considered and high guidance precision can be achieved under uncertainties. Main contents of this dissertation are as follows:
     Considering guidance problem of the vehicle can be transformed to a control problem of linear systems with disturbance, a new finite-time linear control method and a finite-time linear extend state observer (FT-LESO) are proposed. They are theoretical foundations of the researches on guidance method. Under both state feedback and dynamic output feedback conditions, finite-time linear control method is researched. An analytic relationship of controller parameter, convergence speed, and settling time is obtained. It can guide online design of a controller. To observe the disturbance, a FT-LESO is established. An analytic relationship of FT-LESO’s parameter and convergence speed, settling time, steady value of observation error is obtained. Using the relationship to FT-LESO design, it can achieve rapid and exact disturbance observation, which is desired for disturbance compensation.
     For nominal trajectory generation with uncertainties and multi-constraints in gliding guidance based on nominal trajectory, a three-dimensional nominal trajectory generation method is proposed with adaptions to variation in model parameters and inflight alteration of mission. Using the method, a multi-constrained three-dimensional nominal trajectory can be generated autonomously and rapidly. It adapts to the missions with large-crossrange and has good potential to be performed onboard. Considering variation in model parameters resulting from uncertainties, nominal trajectory is generated onboard based on online estimation of the parameters. It ensures the method adapts to the condition with variation in the parameters. Considering altering target in flight, nominal trajectory is generated onboard based on updated information of the target. It ensures the method adapts to the condition with inflight target alteration.
     For trajectory tracking control with uncertainties and control constraint in gliding guidance based on nominal trajectory, an adaptive finite-time trajectory tracking control method is proposed. The disturbance resulting from uncertainties is observed by disturbance observer. And by disturbance compensation, control performance is improved. A tracking control law for longitudinal trajectory tracking is designed based on finite-time control. The parameter in the control law is adjusted online to enforce observation of control constraint and acquire good tracking performance. A bank-reversal logic is used to regulate heading error. A terminal heading error regulation method is proposed to reduce the large terminal heading error resulting from uncertainties, and improve guidance precision.
     For precise guidance under uncertainties and multi-constraints, an adaptive finite-time precise guidance method is proposed with the consideration of uncertainties. Utilizing finite-time control method, longitudinal guidance law and lateral guidance law are designed. The disturbance resulting from uncertainties is observed by disturbance observer, and is compensated in the guidance laws to improve guidance precision. The patameters in the guidance laws are adjusted online according to flight states and remaining time. By the adaptive online adjustment, attack angle, slide angle, and field-of-view of seeker can observe constraints. Moreover, line-of-sight angles and their rates can converge to desired values at termination, terminal constraints can be observed and high guidance precision can be achieved.
     The proposed guidance method is demonstrated by numerical simulation under various conditions. Simulation results indicate the proposed method adapts to the missions with stationary target and the missions with inflight target alteration. Mul-tiple constraints on flight process and termination are observed. And high guidance precision is achieved under various conditions with uncertainties, including varia-tions in atmospheric density and aerodynamic parameter, unknown acceleration of target, and unmodeled dynamics. The proposed guidance method is effective and achieves higher guidance precision than the methods in literatures. Investigations in this dissertation can provide theoretical foundations for the guidance method re-searches of relevant vehicles.
引文
[1] Mercier R, McClinton C. Hypersonic propulsion--transforming the future offlight[C]. AIAA/ICAS International Air and Space Symposium and Exposition:The Next100Year, Dayton USA, Jul.14-17,2003.
    [2]黄伟,罗世彬,王振国.临近空间高超声速飞行器关键技术及展望[J].宇航学报,2010,31(5):1259-1265.
    [3] Matthews W, McIntyre T, Taylor J, et al. A hypersonic attack platform: the S3concept[R]. AIAA: AIAA-96-4580,1996.
    [4] Zuber M E, Bertin J J. Hypersonic aerodynamic research at the USAF acade-my[R]. AIAA: AIAA-98-1633,1998.
    [5] Waldman B J, Harsha P T. The national aero-space plane program[R]. AIAA:AIAA-90-5252,1990.
    [6] McClinton C R, Rausch D R, Sitz J, et al. Hyper-X program status[C]. AIAA/NASDA/ISAS10th International Space Planes and Hypersonic Systems andTechnologies Conference, Kyoto Japan, Apr.24-27,2001.
    [7] Walker S H, Rodgers F. Falcon hypersonic technology overview[R]. AIAA:AIAA-2005-3253,2005.
    [8] Richman M S, Kenyon J A, Sega R M. High speed and hypersonic science andtechnology[C].41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference andExhibit, Tucson USA, Jul.10-13,2005.
    [9] Bahm C, Baumann E, Martin J, et al. The X-43A Hyper-X Mach7flight2guidance, navigation, and control overview and flight test results[R]. AIAA:AIAA-2005-3275,2005.
    [10] Hank J M, Murphy J S, MutzmanR C. The X-51A scramjet engine flight dem-onstration program[R]. AIAA: AIAA-2008-2540,2008.
    [11] Curran E T. Scramjet engines: the first forty years[J]. Journal of Propulsion andPower,2001,17(6):1138-1148.
    [12]葛东明.临近空间高超声速飞行器鲁棒变增益控制[D].哈尔滨:哈尔滨工业大学博士学位论文,2011.
    [13]陈予恕,郭虎伦,钟顺.高超声速飞行器若干问题研究进展[J].飞航导弹,2009,(8):26-33.
    [14]丁世宏,李世华.有限时间控制问题综述[J].控制与决策,2011,26(2):161-169.
    [15] Wang X H, Wang J Z. Partial integrated missile guidance and control with finitetime convergence[J]. Journal of Guidance, Control, and Dynamics,2013,36(5):1399-1409.
    [16]郭阳,姚郁,王仕成,等.一种基于有限时间理论的抗饱和制导律设计方法[J].宇航学报,2012,33(2):175-182.
    [17]高岱,吕建婷,王本利.航天器有限时间输出反馈姿态控制[J].航空学报,2012,33(11):2074-2081.
    [18] Frye M T, Ding S H, Qian C J, et al. Control of a PVTOL aircraft using fi-nite-time output feedback[C]. AIAA Guidance, Navigation, and Control Confe-rence, Chicago USA, Aug.10-13,2009.
    [19] Jin E D, Sun Z W. Robust controllers design with finite time convergence forrigid spacecraft attitude tracking control[J]. Aerospace Science and Technology,2008,12(4):324-330.
    [20] Huang X Q, Lin W, Yang B. Global finite-time stabilization of a class of uncer-tain nonlinear systems[J]. Automatica,2005,41(5):881-888.
    [21] Bhat S P, Bernstein D S. Continuous finite-time stabilization of the translationaland rotational double integrators[J]. IEEE Transactions on Automatic Control,1998,43(5):678-682.
    [22] Bhat S P, Bernstein D S. Finite-time stability of continuous autonomous sys-tems[J]. SIAM Journal on Control and Optimization,2000,38(3):751-766.
    [23] Feng Y, Yu X H, Man Z. Non-singular terminal sliding mode control of rigidmanipulators[J]. Automatica,2002,38(9):2159-2167.
    [24] Wu Y, Man Z, Yu X. Terminal sliding mode control design for uncertain dynam-ics[J]. Systems and Control Letters,1998,34(1):281-287.
    [25] Yu S, Yu X, Shirinzadeh B, et al. Continuous finite-time control for robotic ma-nipulators with terminal sliding mode[J]. Automatica,2005,41(10):1957-1964.
    [26] Hong Y. Finite-time stabilization and stabilizability of a class of controllablesystems[J]. Systems and Control Letters,2002,46(2):231-236.
    [27] Qian C, Lin W. A continuous feedback approach to global strong stabilization ofnonlinear systems[J]. IEEE Transactions on Automatic Control,2001,46(7):1061-1079.
    [28] Hong Y, Wang J, Cheng D. Adaptive finite-time control of a class of uncertainnonlinear systems[J]. IEEE Transactions on Automatic Control,2006,51(5):858-862.
    [29] Amato F, Ariola M, Dorato P. Robust finite-time stabilization of linear uncertainsystems via gain-scheduled output feedback[C]. Proceedings of the14th IFACWorld Congress, Peking,1999:85-90.
    [30] Boyd S, El Ghaoui L, Feron E, et al. Linear matrix inequalities in system andcontrol theory[M]. Philadelphia: SIAM Press,1994.
    [31] Amato F, Ariola M, Dorato P. Finite-time control of linear systems subject toparametric uncertanties and disturbances[J]. Automatica,2001,37(9):1459-1463.
    [32] Amato F, Ariola M, Cosentino C. Finite-time stabilization via dynamic outputfeedback [J]. Automatica,2006,42(2):337-342.
    [33] Han J Q. From PID to active disturbance rejection control[J]. IEEE Transactionson Industrial Electronics,2009,56(3):900-906.
    [34]尹永鑫,石文,杨明.基于动态逆和状态观测的制导控制一体化设计[J].系统工程与电子技术,2011,33(6):1342-1345.
    [35]姚郁,王宇航.基于扩张状态观测器的机动目标加速度估计[J].系统工程与电子技术,2009,31(11):2682-2692.
    [36]陈国栋,贾培发.基于扩张状态观测的机器人分散鲁棒跟踪控制[J].自动化学报,2008,34(7):828-832.
    [37] Yan B Y, Tian Z H, Shi S J, Weng Z X. Fault diagnosis for a class of nonlinearsystems via ESO[J]. ISA Transactions,2008,47(4):386-394.
    [38]陈增强,孙明玮,杨瑞光.线性自抗扰控制器的稳定性研究[J].自动化学报,2013,39(5):574-580.
    [39]韩京清.一类不确定对象的扩张状态观测器[J].控制与决策,1995,10(1):85-88.
    [40]甘作新,韩京清.二阶ESO的Lyapunov函数构造[C].第21届中国控制会议论文集,中国杭州,2002:354-357.
    [41] Guo B Z, Zhao Z L. On convergence of non-linear extended state observer formulti-input multi-output systems with uncertainty [J]. IET Control Theory andApplications,2012,6(15):2375-2386.
    [42] Gao Z Q. Scaling and bandwidth-parameterization based controller tuning [C].Proceedings of the American Control Conference, Denver Colorado, June4-6,2003:4989-4996.
    [43] Yang X X, Huang Y. Capabilities of extended state observer for estimating un-certainties [C]. Proceedings of the American Control Conference, Hyatt Regen-cy Riverfront, St. Louis, MO, USA, June10-12,2009:3700-3705.
    [44] Yoo D, Yau S S-T, Gao Z. Optimal fast tracking observer bandwidth of the li-near extended state observer [J]. International Journal of Control,2007,80(1):102-111.
    [45]许志才,王志桑,王永骥.基于线性扩张状态观测器的非线性系统最优控制[C].第30届中国控制会议论文集,中国烟台,2011:97-101.
    [46]王海强,黄海.扩张状态观测器的性能与应用[J].控制与决策,2013,28(7):1078-1082.
    [47] Guo Z B, Zhao Z L. On the convergence of an extended state observer for non-linear systems with uncertainty[J]. Systems&Control Letters,2011,60(6):420-430.
    [48] Wingrove R C. Survey of atmosphere re-entry guidance and control methods[J].AIAA Journal,1963,1(9):2019-2029.
    [49] Hanson J M. A Plan for advanced guidance and control technology for2nd gen-eration reusable launch vehicles[C]. AIAA Guidance, Navigation, and ControlConference and Exhibit, Monterey USA, Aug.5-8,2002.
    [50] Harpold J C, Graves C A. Shuttle entry guidance[J]. Journal of AstronauticalSciences,1979,27(3):239-268.
    [51] Mease K D, Teufel P, Sh nenberger H, et al. Re-entry trajectory planning for areusable launch vehicle[C]. AIAA Atmospheric Flight Mechanics Conferenceand Exhibit, Portland USA, Aug.9-11,1999.
    [52] Mease K D, Chen D T, Teufel P, et al. Reduced-order entry trajectory planningfor acceleration guidance[J]. Journal of Guidance, Control, and Dynamics,2002,25(2):257-266.
    [53] Saraf A, Leavitt J A, Chen D T, et al. Design and evaluation of an accelerationguidance algorithm for entry[J]. Journal of Spacecraft and Rockets,2004,41(6):986-996.
    [54] Leavitt J A, Mease K D. Feasible trajectory generation for atmospheric entryguidance[J]. Journal of Guidance, Control, and Dynamics,2007,30(2):473-481.
    [55] Xie Y, Liu L H, Tang G J, et al. Highly constrained entry trajectory generation[J].Acta Astronautica,2013,88(4):44-60.
    [56] Yan X D, Wang Z. Three-dimensional trajectory planning method for hypersonicglide vehicle[C].18th AIAA/3AF International Space Planes and HypersonicSystems and Technologies Conference, Tours France, Sep.24-28,2012.
    [57] Shen Z, Lu P. Onboard generation of three-dimensional constrained entry tra-jectories[J]. Journal of Guidance, Control, and Dynamics,2003,26(1):111-121.
    [58] Shen Z, Lu P. On-board entry trajectory planning expanded to sub-orbitalflight[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit,Austin USA, Aug.11-14,2003.
    [59] Shen Z, Lu P. Dynamic lateral entry guidance logic[C]. AIAA Guidance, Navi-gation, and Control Conference and Exhibit, Providence USA, Aug.16-19,2004.
    [60] Li H F, Zhang R, Li Z Y, et al. New method to enforce inequality constraints ofentry trajectories[J]. Journal of Guidance, Control, and Dynamics,2012,35(5):1662-1667.
    [61]李昭莹,黄兴李,李惠峰.基于闭环解析解的可重复使用运载器轨迹在线生成方法[J].宇航学报,2013,34(6):755-762.
    [62] Berend N, Talbot C. Overview of some optimal control methods adapted to ex-pendable and reusable launch vehicle trajectories[J]. Aerospace Science andTechnology,2006,10(3):222-232.
    [63]雍恩米,陈磊,唐国金.飞行器轨迹优化数值方法综述[J].宇航学报,2008,29(2):397-406.
    [64] Han P, Shan J Y. Re-entry trajectory optimization using Radau pseudospectralmethod[J]. Control Theory&Applications,2013,30(8):1027-1032.
    [65] Tian B, Zong Q. Optimal guidance for reentry vehicles based on indirect legen-dre pseudospectral method[J]. Acta Astronautica,2011,68(7-8):1176-1184.
    [66] Chawla C, Sarmah P, Padhi R. Suboptimal reentry guidance of a reusable launchvehicle using pitch plane maneuver[J]. Aerospace Science and Technology,2010,17(6):377-386.
    [67]晁涛,王松艳,杨明,等.基于组合优化算法的临近空间飞行器轨迹优化[J].宇航学报,2012,33(2):183-189.
    [68]郭继峰,傅瑜,崔乃刚.三维自主再入制导方法[J].控制与决策,2013,28(5):688-694.
    [69] Mease K D, Kremer J P. Shuttle entry guidance revisited using nonlinear geo-metric methods[J]. Journal of Guidance, Control and Dynamics,1994,17(6):1350-1356.
    [70] Roenneke A J, Markl A. Re-entry control to a drag-vs-energy profile[J]. Journalof Guidance, Control, and Dynamics,1994,17(5):916-920.
    [71] Bharadwaj S, Rao A V, Mease K D. Entry trajectory tracking law via feedbacklinearization[J]. Journal of Guidance, Control and Dynamics,1998,21(5):726-732.
    [72] Lu P. Entry guidance and trajectory control for reusable launch vehicle[J]. Jour-nal of Guidance, Control and Dynamics,1997,20(1):143-149.
    [73] Benito J, Mease K D. Nonlinear predictive controller for drag tracking in entryguidance[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit,Honolulu USA, Aug.18-21,2008.
    [74] Dukeman G A. Profile-following entry guidance using linear quadratic regulatortheory[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit,Monterey USA, Aug.5-8,2002.
    [75] Sudhir M, Tewari A. Adaptive maneuvering entry guidance with ground-trackcontrol[J]. Aerospace Science and Technology2007,11(5):419-431.
    [76] Hormigo T, Silva J A, Camara F. Nonlinear dynamic inversion-based guidanceand control for a pinpoint mars entry[C]. AIAA Guidance, Navigation and Con-trol Conference and Exhibit, Honolulu USA, Aug.18-21,2008.
    [77] Gao J P, Chen Z J. The attitude stabilization and trajectory tracking of reentryvehicle via variable-structure based control method[R]. AIAA: AIAA-97-3534,1997.
    [78] Zerar M, Cazaurang F, Zolghadri A. Coupled linear parameter varying andflatness-based approach for space re-entry vehicles guidance[J]. IET ControlTheory and Applications,2009,3(8):1081-1092.
    [79] Morio V, Cazaurang F, Vernis P. Flatness-based hypersonic reentry guidance of alifting-body vehicle[J]. Control Engineering Practice,2009,17(5):588-596.
    [80] Shen Z. On-board three-dimensional constrained entry flight trajectory genera-tion[D]. Ames: A Doctoal Dissertation of Iowa State University,2002:39-44.
    [81]吴旭忠,唐盛景,郭杰,等.基于滚动时域控制的再入轨迹跟踪控制制导律[J].系统工程与电子技术,2014,36(8):1602-1608.
    [82] Youssef H, Chowdhry R, Lee H, et al. Predictor-corrector entry guidance forreusable launch vehicles[C]. AIAA Guidance, Navigation, and Control Confe-rence, Quebec Canada, Aug.,2001.
    [83] Brunner C W, Lu P. Skip entry trajectory planning and guidance[J]. Journal ofGuidance, Control, and Dynamics,2008,31(5):1210-1219.
    [84] Lu P. Predictor-corrector entry guidance for low lifting vehicles[J]. Journal ofGuidance, Control, and Dynamics,2008,31(4):1067-1075.
    [85] Zimmerman C, Dukeman G, Hanson J. Automated method to compute orbitalreentry trajectories with heating constraints[J]. Journal of Guidance, Control,and Dynamics,2003,26(4):523-529.
    [86] Brunner C W, Lu P. Comparison of numerical predictor-corrector and apolloskip entry guidance algorithms[C]. AIAA Guidance, Navigation, and ControlConference and Exhibit, Toronto Canada, Aug.2-5,2010.
    [87] Joshi A, Sivan K, Amma S S. Predictor-corrector reentry guidance algorithmwith path constraints for atmospheric entry vehicles[J]. Journal of Guidance,Control, and Dynamics,2007,30(5):1307-1318.
    [88] Xue S, Lu P. Constrained predictive-corrector entry guidance[C]. AIAA Guid-ance, Navigation, and Control Conference, Chicago USA, Aug.10-13,2009.
    [89] Lu P, Forbes S, Baldwin S. Gliding guidance of high L/D hypersonic ve-hicles[C]. AIAA Guidance, Navigation, and Control Conference, Boston USA,Aug.19-22,2013.
    [90] Lu P. Entry guidance: a unified method[J]. Journal of Guidance, Control, andDynamics,2014,37(3):713-728.
    [91]胡建学,陈克俊,赵汉元,等. RLV再入标准轨道制导与轨道预测制导方法比较分析[J].国防科技大学学报,2007,29(1):26-34.
    [92] Zarchan P. Tactical and strategic missile guidance (6th edition)[M]. Virginia:American Institute of Aeronautics and Astronautics Inc,2012:13-14.
    [93] Guelman M. Aqualitative study of proportional navigation[J]. IEEE Transac-tions on Aerospace and Electronic Systems,1971,7(4):637-643.
    [94] Ghawghawe S N, Ghose D. Pure proportional navigation against time-varyingtarget manoeuvres[J]. IEEE Transactions on Aerospace and Electronic Systems,1996,32(4):1336-1347.
    [95] Yanushevsky R T, Broord W J. New approach to guidance law design[J]. Journalof Guidance, Control, and Dynamics,2005,28(1):162-166.
    [96]汤善同.微分对策制导规律与改进的比例导引制导规律性能比较[J].宇航学报,2002,23(6):38-42.
    [97] Zhang P, Fang Y W, Zhang F M, et al. An adaptive weighted differential gameguidance law[J]. Chinese Journal of Aeronautics2012,25(5):739-746.
    [98] Chen B S, Chen Y Y, Lin C L. Nonlinear fuzzy H∞guidance law with saturationof actuators against manoeuvring targets[J]. IEEE Transactions on Control Sys-tems and Technology,2002,10(6):769-779.
    [99]郭建国,周军.基于H∞控制的非线性末制导律设计[J].航空学报,2009,30(12):2423-2427.
    [100]Harl N, Balakrishnan S N. Reentry terminal guidance through sliding modecontrol[J]. Journal of Guidance, Control, and Dynamics,2010,33(1):186-199.
    [101]宋愿赟,陈万春.高精度快速趋近滑模变结构末端导引方法[J].北京航空航天大学学报,2012,38(3):319-323.
    [102]Zhou D, Sun S, Teo K L. Guidance laws with finite time convergence[J]. Journalof Guidance, Control, and Dynamics,2009,32(6):1838-1846.
    [103]Sun S, Zhou D, Hou W T. A guidance law with finite time convergence ac-counting for autopilot lag[J]. Aerospace Science and Technology,2013,25(1):132-137.
    [104]Erdos D, Shima T, Kharisov E, et al. L1adaptive control integrated missile au-topilot and guidance[C]. AIAA Guidance, Navigation, and Control Conference,Minneapolis USA, Aug.13-16,2012.
    [105]Hou M Z, Liang X L, Duan G R. Adaptive block dynamic surface control forintegrated missile guidance and autopilot[J]. Chinese Journal of Aeronautics,2013,26(3):741-750.
    [106]Manchester I R, Savkin A V. Circular-navigation-guidance law for precisionmissile/target engagements[J]. Journal of Guidance, Control, and Dynamics,2006,29(2):314-320.
    [107]蔡洪,胡正东,曹渊.具有终端角度约束的导引律综述[J].宇航学报,2010,31(2):315-323.
    [108]Ratnoo A, Ghose D. Impact angle constrained guidance against nonstationarynonmaneuvering targets[J]. Journal of Guidance, Control, and Dynamics,2010,33(1):269-275.
    [109]Erer K S, zg ren M K. Control of impact angle using biased proportional na-vigation[C]. AIAA Guidance, Navigation, and Control Conference, Boston,USA, Aug.19-22,2013.
    [110] Lee J I, Jeon I S, Tahk M J. Guidance law to control impact time and angle[J].IEEE Transactions on Aerospace and Electronic Systems,2007,43(1):301-310.
    [111]张友安,黄诘,孙阳平.带有落角约束的一般加权最优制导律[J].航空学报,2014,35(3):848-856.
    [112]吴鹏,杨明.带终端攻击角度约束的变结构制导律[J].固体火箭技术,2008,31(2):116-120.
    [113]胡正东,曹渊,蔡洪.带落角约束的再入机动弹头的变结构导引律[J].系统工程与电子技术,2009,31(2):393-398.
    [114] Harl N, Balakrishnan S N. Impact time and angle guidance with sliding modecontrol[J]. IEEE Transactions on Control Systems Technology,2012,20(6):1436-1449.
    [115]林波,孟秀云,刘藻珍.具有末端角约束的鲁棒制导律设计[J].系统工程与电子技术,2005,27(11):1943-1945.
    [116]胡正东,郭才发,蔡洪.带落角约束的再入机动弹头的复合导引律[J].国防科技大学学报,2008,30(3):21-26.
    [117] Xin M, Balakrishnan S N, Ohlmeyer E J. Guidance law design for missiles withreduced seeker field-of-view[C]. AIAA Guidance, Navigation, and ControlConference, Keystone USA, Aug.21-24,2006.
    [118] Sang D, Ryoo K C, Song R K, et al. A guidance law with a switching logic formaintaining seeker’s lock-on for stationary targets[C]. AIAA Guidance, Naviga-tion, and Control Conference, Honolulu USA, Aug.18-21,2008.
    [119]顾家立,陈万春.一种带导引头视角和落角约束的导引方法[J].宇航学报,2013,34(6):782-787.
    [120]孙未蒙,骆振,郑志强.一种多约束条件下高超声速导弹对地攻击的三维最优变结构制导律[J].国防科技大学学报,2007,29(3):126-130.
    [121]康兴无,陈刚,乔洋,等.天对地精确攻击武器末段制导律设计[J].固体火箭技术,2009,32(1):11-14.
    [122]Liang X L, Hou M Z, Duan G R. Integrated guidance and control for missile inthe presence of input saturation and angular constraints[C]. Proceedings of the32nd Chinese Control Conference, Xi’an China,2013:1070-1075.
    [123]Lee J I, Jeon I S, Tahk M J. Guidance law to control impact time and angle[J].IEEE Transactions on Aerospace and Electronic Systems,2007,43(1):301-310.
    [124]钱杏芳,林瑞雄,赵亚男.导弹飞行力学[M].北京:北京理工大学出版社,2008:36-37.
    [125]杨炳尉.标准大气参数的公式表示[J].宇航学报,1983,4(1):84-86.
    [126]Zhou B, Duan G R, Lin Z. A parametric Lyapunov equation approach to the de-sign of low gain feedback[J]. IEEE Transactions on Automatic Control,2008,53(6):1548-1554.
    [127]Guggenheimer H W, Edelman H W, Johnson C R. A simple estimate of the con-dition number of a linear system[J]. College Mathematics Journal,1995,26(1):2-5.
    [128]Veberi D. Lambert W function for applications in physics[J]. Computer PhysicsCommunications,2012,183(12):2622-2628.
    [129]Orlov Y, Aoustin Y, Chevallereau C. Finite time stabilization of a perturbeddouble integrator-part I: continuous sliding mode-based output feedback synthe-sis[J]. IEEE Transactions on Automatic Control,2011,56(3):614-618.
    [130]Hong Y, Huang J, Xu Y S. On an output feedback finite-time stabilization prob-lem[J]. IEEE Transactions on Automatic Control,2001,46(2):305-309.
    [131]Gao Z-Q. Scaling and bandwidth-parameterization based controller tuning[C].Proceedings of the American Control Conference, Denver USA, June4-6,2003:4989-4996.
    [132]朱凯.滑翔导弹再入制导与控制方法研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2011:23-24.
    [133]赵汉元.飞行器再入动力学与制导[M].长沙:国防科技大学出版社,1997:1-167.
    [134]陈小庆,侯中喜,刘建霞.高超声速滑翔式飞行器再入轨迹多目标多约束优化[J].国防科技大学学报,2009,31(6):77-83.
    [135]王丽英,张友安,赵国荣,等.高超声速飞行器再入突防轨迹快速优化[J].应用科学学报,2013,31(4):434-440.
    [136]李柯,聂万胜,冯必鸣.助推-滑翔飞行器规避能力研究[J].飞行力学,2013,31(2):148-156.
    [137]南英,吕学富,陈士橹.航天器的再入走廊及其计算方法[J].飞行力学,1993(2):34-35.
    [138]Schoenberg I. On spline function[M]. New York: Academic Press,1967.
    [139]施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:高等教育出版社,2001:214-222.
    [140]Boor C. A Practical Guide to Splines[M]. New York: Springer-Verlay,1978.
    [141]Benito J, Mease K D. Reachable and controllable sets for planetary entry andlanding[J]. Journal of Guidance, Control, and Dynamics,2010,33(3):641-654.
    [142]Lu P, Sue S B. Rapid generation of accurate entry landing footprints[C]. AIAAGuidance, Navigation, and Control Conference, Chicago USA, Aug.10-13,2009.
    [143]Saraf A, Leavitt J A, Mease K D. Landing footprint computation for entry ve-hicles[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit,Providence USA, Aug.16-19,2004.
    [144]Fliess M. Flatness and defect of nomlinear systems: introductory theory andexamples[J]. International Journal of Control,1995,61(6):1327-1361.
    [145]Levine J. Analysis and control of nonlinear systems: a flatness-based approach,mathematical engineering[M]. Heidelberg: Springer-Verlag Berlin Heidelberg,2009:131-133.
    [146]Shen Z, Lu P. Dynamic lateral entry guidance logic[J]. Journal of Guidance,Control, and Dynamics,2004,27(6):949-959.
    [147]李洪波,肖业伦.升力式再入侧向制导的无奇异方位误差算法[J].宇航学报,2008,29(3):901-906.
    [148]朱凯,齐乃明,秦昌茂.动态调整航向角误差走廊的侧向制导策略[J].哈尔滨工业大学学报,2011,43(1):31-35.
    [149]Analytical Graph Inc. STK User's Manual for PCs[M]. Pennsylvania: AnalyticalGraph Inc (AGI),1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700