基于SSR标记的枇杷遗传多样性分析与品种鉴别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
枇杷(Eriobotrya japonica Lindl.)原产于我国,其栽培历史悠久,是我国亚热带地区的珍稀特产水果,具有较高的经济价值。浙江和江苏是我国著名的枇杷主产区,拥有丰富的枇杷种质资源,也属于高度进化枇杷类型栽培区。因此,以当地枇杷主栽品种或类型为主,开展我国主要枇杷品种的遗传多样性和亲缘关系研究,对枇杷种质资源的有效保护和创新利用具有重要的指导意义。
     本论文以收集到的浙江和江苏主栽枇杷品种或类型为主,结合福建和四川主栽品种,以及栎叶枇杷和大渡河枇杷共54个品种或类型为试材。选取在苹果和枇杷遗传连锁图谱上已定位的110个苹果SSR标记,筛选可用于枇杷遗传分析的SSR引物,建立枇杷SSR标记体系,对54个供试材料进行遗传多样性分析和品种鉴别,并对大五星天然三倍体枇杷株系的遗传多样性进行了研究,筛选可用于天然三倍体枇杷鉴定的SSR标记,主要结果如下:
     1、建立了枇杷SSR反应体系,利用‘鸡蛋红’、‘夹脚’、‘长红’、‘铜皮’、‘大五星’、‘早黄’、‘大红袍’和‘大玫瑰红袍’8个品种,从110对SSR引物中筛选出在8个枇杷品种中具有多态性的引物78对,多态性引物比率为71%,通过梯度PCR分析,筛选出78对引物的适宜退火温度。
     2、利用39对SSR引物对54个供试材料进行遗传多样性分析,共扩增出155个等位基因。AT000400-SSR、CH01h02、CH03c02和CH01d03四对引物为多基因座引物,不用于遗传多样性分析。在不统计大渡河枇杷和栎叶枇杷等位基因的情况下,各引物52个栽培枇杷的等位基因数为2-7个,平均每对引物扩增出3.38个等位基因。有效等位基因数最高的是引物CH03a09,有4.01个等位基因,CH01f02有效等位基因数最少,为1.04,35对引物的平均有效等位基因数为2.21。香农指数最小的是CH01f02,为0.10,CH03a09最高,为1.49,平均香农指数为0.84。观察杂合度为0—0.83,CH01f02最低,Hi08a04最高,平均为0.47;期望杂合度最高的是CH03a09和CH02d12,均为0.76;CH01f02最低,为0.04;平均期望杂合度为0.50。固定指数从Hi08a04的-0.71到CH01f02的1.00,平均为0.07,表明供试枇杷种质间具有丰富的遗传多样性。对供试材料进行UPGMA聚类分析,以SM相似性系数0.48为阀值,将供试材料分成栽培枇杷和野生枇杷两组。栽培枇杷以0.723的SM相似性系数为阀值,可分成A、B和C三个亚组。A亚组包括所有浙江和江苏地方类型,地理来源很近,属温带类型,来自四川的‘龙泉1号’、福建的‘长红’以及西班牙的两个品种'Marc'和‘Peluches'也聚在A亚组内。B亚组主要是福建品种‘早钟6号’、‘解放钟’、‘香钟’、‘太城4号’和‘白梨’,属于亚热带品种,日本品种‘森尾早生’作为早钟6号的亲本之一,也聚在该亚组;此外,四川栽培品种‘金丰’也聚在B亚组内。C亚组仅由四川栽培品种‘大五星’组成。主成分分析结果与UPGMA聚类分析结果基本一致,两个野生枇杷类型与栽培枇杷类型明显区分开,栽培类型主要根据其地理分布分成4组,第Ⅰ组包括所有浙江类型和10个江苏类型,日本枇杷品种‘森尾早生’及西班牙品种'Marc'、'Peluches';第Ⅱ组包含15个江苏枇杷类型;第Ⅲ组由6个福建枇杷品种组成;四川主栽品种‘大五星’和‘龙泉1号’组成第Ⅳ组。39对多态性SSR引物可区分'Marc'与'Peluches'两个西班牙品种及‘美玉’与‘常绿2号’两个江苏品种和类型外的所有供试枇杷类型。SSR基因型分析结果验证了‘早钟6号’(解放钟×森尾早生)、‘常绿5号’(白玉×甜种)和‘香钟’的亲缘关系。本研究筛选到CH03a09、CH02c06、CH04g12、CH02d12和CH05h05五对引物组合可区分除'Marc'与'Peluches'、‘美玉’与‘常绿2号’外的所有供试材料
     3、从78对枇杷多态性SSR引物中,筛选出55对在大五星多倍体枇杷株系中有多态性的引物,用于10个株系的基因型分析结果显示,55对引物共扩增出135个等位基因,其中CH01h02-222 bp为大五星三倍体特有的等位基因。引物CH01h02在A332中扩增出222 bp、199 bp和195 bp三个等位基因;引物CH04c06在A332中扩增出214 bp、195 bp和185 bp三个等位基因,在A368和A379两个株系中扩增出217 bp、195 bp和185 bp三个等位基因;NZ02b01在株系A332中扩增出270 bp、266 bp和246 bp三个等位基因,引物Hi15h12在A322中扩增出238 bp、236 bp和230 bp三个等位基因。所有三倍体株系与二倍体相比,都出现了新的等位基因,表明供试的三倍体株系形成过程中可能都有外源基因的渗入。10个株系完全区分开,各株系间SM相似性系数最高的是A2x与A313,相似性系数为0.926;最低的是A313与A332,相似性系数为0.496。主成分分析将10个株系分成三组,第Ⅰ组包括A484、A376、A379和A368四个株系,A35、A322和A332三个株系构成了第Ⅱ组,第Ⅲ组由A2x、A313和A484三个株系组成,揭示SSR可用于天然枇杷三倍体的遗传多样性分析,并能鉴定部分三倍体株系。
Loquat [Eriobotrya japonica (Thunb) Lindl.], a rare and specialty fruits of subtropical areas, originated in China and has been cultivated for a Long history, with high economic value. Zhejiang and Jiangsu provinces are the main known producing areas of loquat, Also belong to highly evolved type of cultivation area, a lot of varieties and cultivars were developed. Therefore, study on the genetic diversity and phylogenetic relationship of Chinese main loquat germplasm resources based on the local cultivars and types of loquat cultivars in these areas, will has important guiding significance for innovative use and effective protection of loquat germplasm.
     In this study, a total of 54 cultivars or types were used, including main cultivars or types of loquat collected from Zhejiang and Jiangsu provinces, and cultivars of Fujian and Sichuan, two wild species E. prinoides var. daduheensis and E. Prinodides also included, and 110 located apple SSR markers were screened for genetic analysis of loquat SSR primers. The loquat microsatellite system was established to test for the genetic diversity and cultivar identification of 54 materials, genetic diversity among natural triploid strains of 'Dawuxing' loquat also studied, and the primers that can be used for identification of natural triploid loquat were screened, the main results as follows:
     1. The SSR system was estabilished with eight cultivars as 'Jidanhong','Jiajiao','Changhong', 'Tongpi','Dawuxing','Zaohuang','Dahongpao' and 'Dameiguihongpao'. Seventy eight pairs of polymorphism primers were screened from 110 ones, the polymorphism ratio was 71 percent, and the appropriate annealing tempretures of these 78 were optimized with gradient PCR.
     2. Four markers (AT000400, CH01d03, CH01h02, and CH03c02) were judged to be multi-locus and not used for genetic diversity analysis. The 39 polymorphic SSR markers gave a total of 155 alleles, two to seven alleles per marker with an average of 3.38. The effective number of alleles varied from 1.04 for CH01f02 to 4.01 for CH03a09, with an average of 2.21. The Shannon index, as a measure of gene diversity, ranged from 0.10 for CH01f02 to 1.49 for CH03a09, with an average of 0.84. The observed heterozygosity ranged from approximately zero for CH01f02 to 0.83 for Hi08a04, with a mean of 0.47. Similar values were calculated for experted heterozygosity, the highest was 0.76 with CH03a09 and CH02d12, the lowest was 0.04 of CH01f02, ith a mean of 0.50. The fixation index ranged from-0.70 for Hi08a04 to 1.00 for CH01f02, with an average of 0.07. All these indicated that the genetic diversity of seleted materials was abundant. In the dendogram constructed from UPGMA cluster analysis of the similarity matrix, with 155 SSR alleles, the accessions are clustered in two groups, the commonly cultivated loquats and the two wild species at a 0.48 threshold of SM coefficient. The cultivated loquat accessions were further subdivided into three subgroups, at a threshold of 0.723, and generally reflected their geographic origin. Subgroup A included all. local accessions from the geographically close Zhejiang and Jiangsu provinces, being temperate zone accessions, plus the'Longquan No.l'from Sichuan and 'Changhong' from Fujian, and the two Spanish cultivars. Subgroup B included the subtropical Fujian cultivars ('Zaozhong No.6', 'Jiefangzhong', 'Xiangzhong', 'Taicheng No.4' and 'Baili'), but also the Sichuan cultivar 'Jinfeng' and the Japanese cultivar 'Moriowase'. The third subgroup included only one cultivar: 'Dawuxing' of Sichuan. The clusters thus generally reflected the geographic origin of their members. PCA analyses, carried out using the similarity matrices for the 39 SSR markers, confirmed the UPGMA cluster analysis. The two wild species were separated from the cultivated accessions, and the cultivated accessions were classified in four groups, mainly accordingto their geographical distribution. All the Zhejiang accessions, ten Jiangsu accessions, the Japanese cultivar'Moriowase', and two Spanish cultivars,'Marc'and'Peluches', were in groupⅠ. The 15 Jiangsu accessions clustered in groupⅡ, all the Fujian cultivars in groupⅢ, and'Dawuxing' and 'Longquan No.l', the two most commonly cultivated varieties in Sichuan province, in groupⅣ. Thirty nine SSR markers distinguished all accessions except four cultivars:the two Spanish cultivars 'Marc' and 'Peluches' could not be distinguished from each other, and 'Meiyu' could not be distinguished from 'Changlv No.2'. The scores of these markers confirmed pedigrees, such as that of'Zaozhong No.6'(a 'Jiefangzhong'×'Moriowase'),'Changlv No.5'(a 'Baiyu'×'Tianzhong'), and 'Xiangzhong'. Based on the number of effective alleles, we selected a set of five SSR markers (CH03a09, CH02c06, CH04g12, CH02d12, and CH05h05) able to distinguish all the accessions except bud sports.
     3. Fifty five pairs of polymorphism primers were screened from 78 ones, gave a total 135 alleles with ten strains of'Dawuxing'. The allele with 222 base pairs of CH01h02 was the specific one of the triploid. Three alleles of 222 bp,199 bp and 195 bp were gave with primer CH01h02 at strain A332, three alleles of 214bp,195 bp and 185 bp with primer CH04c06, and another three of 270 bp,266 bp and 246 bp with primer NZ02b01. Similar alleles of 217 bp,195 bp and 185 bp with primer CH04c06 at strain A368 and A379, also 238 bp,236 bp and 230 bp with primer Hil5hl2 at strain A322. New alleles emerged as compared diploid and each one of triploid strains, indicating foreign genes maybe introgressed along with the formation progress of triploid strains. All ten strains completely Distinguished from each other, the highest SM similarity coefficient was between A2x and A313, with 0.926, and the contrast one was between A313 and A332, with the similarity coefficient of 0.496. Principal component analysis divided 10 strains into three groups, GroupⅠ, including the A484, A376, A379 and A368 of four lines, A35, A322 and A332 are three lines constitute the groupⅡ, groupⅢconsists of A2x, A313 and A484. All these indicated that SSR can be used to reveal the genetic diversity of natural triploid loquat, and to identify some of triploid strains.
引文
[1]郭瑞星,刘小红,荣廷昭,孙东发,谭振波.植物SSR标记的发展及其在遗传育种中的应用.玉米科学,2005,13(2):8~11
    [2]Levinson G, Gutman G A., Slipped-strand mispairing:a major mechanism for DNA sequence evolution. Mol. Biol. Evol.,1987,4:203~221
    [3]Ellegren, H. Microsatellites:simple sequences with complex evolution. Nat. Rev. Genet.2004,5, 435~445
    [4]Heale S.M., Petes T.D. The stabilization of repetitive tracts of DNA by variant repeats requires a functional DNA mismatch repair system. Cell,1995,83(4):539~545
    [5]Silva E.F., Reha-Krantz I.J. Dinucleotide repeat expansion catalyzed by bacteriophage T4 DNA polymerase in vitro. Journal of Biological Chemistry,2000,275(40):31528~31535
    [6]Sharma P.C., Grover A., Kahl G. Mining microsatellites in eukaryotic genomes. Trends in Biotechnology,2007,25(11):490~498
    [7]Ellegren, H. Heterogenous mutation processes in human microsatellite DNA sequences. Nat. Genet.2000,24,400~402
    [8]Chakraborty R, Kimmel M, Stivers DN, Davison LJ, Deka R. Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proc Natl Acad Sci USA,1997,94:1041~1046
    [9]Cardle L., Ramsay L., Milboume D., Macaulay M., Marshall D., Waugh R. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics, 2000,156(2):847~854
    [10]Varshney RK, Thiel T, Stein N, Langridge P, Graner A. In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett.2002,7(2A): 537~546
    [11]Gupta S., Shukla R., Roy S., Sen N., Sharma A. In silico SSR and FDM analysis through EST sequences in Ocimum basilicum. Plant Omics J ournal,2010,3(4):121~128
    [12]Yasodha R., Sumathi R., Chezhian P., Kavitha S., Ghosh M.. Eucalyptus microsatellites mined in silico:survey and evaluation. Journal of Genetics,2008,87(1):21~25
    [13]Palmieri D. A., Novelli V. M., Bastianel M., Cristofani-Yaly M., Astua-Monge G., Carlosl E. F., Oliveira A. C., Machado M. A. Frequency and distribution of microsatellites from ESTs of citrus. Genetics and Molecular Biology,2007,30,(3):1009~1018
    [14]罗玉娣,李建国.SSR标记及其在蔬菜育种中的应用.热带农业科学,2005,25(6):68~71
    [15]陈宏.基因工程原理与应用.北京:中国农业出版社,2004,322~323
    [16]Schlotterer C. Genome evolution:Are microsatellites really simple sequences? Current Biology, 1998,8(4):132~134
    [17]宋国华,刘田福.微卫星标记及其在实验动物中的应用.中国比较医学杂志,2005,15(4):244~248
    [18]Gisbert AD, Martinez-Calvo J, Llacer G, Badenes ML, Romero C. Development of two loquat [Eriobotrya japonica (Thunb.) Lindl.] linkage maps based on AFLPs and SSR markers from different Rosaceae species. Mol Breeding,2009,23:523~538
    [19]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001
    [20]刘胜传,刘仁祥,雷红梅,陈春艳.利用SSR标记分析部分烟草种质的遗传多样性.贵州农业科学2009,37(7):1~3
    [21]海林,王克晶,杨凯.半野生大豆种质资源SSR位点遗传多样性分析.西北植物学报,2002,22(4):751~757
    [22]Olson M, Hood L, Cantor C, Botstein D:A common language for physical mapping of the human genome. Science,1989,245:1434~1435
    [23]龚亚明,胡齐赞,毛伟华,李亚丹,张古文,丁桔.EST-SSR荧光标记毛细管电泳检测法在豌豆上的应用及评价.浙江农业学报,2009,21(6):540~543
    [24]Gupta S., Shukla R., Roy S., Sen N., Sharma A. In silico SSR and FDM analysis through EST sequences in Ocimum basilicum. Plant Omics J ournal,2010,3(4):121~128
    [25]Chen CX, Zhou P, Choi YA, Huang S, Gmitter Jr FG. Mining and characterizing microsatellites from citrus ESTs. Theor Appl Genet,2006,112:1248~1257
    [26]Meng H, Cao Q, Hu Z, Liu G, Cheng Y, Deng X. Analysis of SSR in Citrus sequences from EMBL database. Agricultural Sciences in China,2005,4(7):501~506
    [27]樊洪泓,李廷春,李正鹏,林毅,蔡永萍.银杏EST序列中微卫星的分布特征.基因组学与应用生物学,2009,28(5):869~873
    [28]蔡斌,李成慧,姚泉洪,周军,陶建敏,章镇.葡萄全基因组SSR分析和数据库构建.南京农业大学学报,2009,32(4):28~32
    [29]江东,钟广炎,洪棋斌.柑橘EST-SSR分子标记分析.遗传学报,2006,33(4):345~353
    [30]姜春芽,徐小彪,廖娇,倪志华,李晶.猕猴桃EST序列的SSR信息分析.中国农学通报,2009,25(13):37~39
    [31]孟海军.柑橘胚胎发生过程中DNA甲基化/去甲基化研究及SSR标记开发:[博士学位论文].武汉:华中农业大学,2006
    [32]齐建勋,王克建,吴春林,王维霞,郝艳宾,冷平.核桃EST-SSR标记的开发.农业生物技术学报,2009,17(5):872~876
    [33]王静毅,陈业渊,刘伟良,武耀廷.香蕉EST-SSRs标记的开发与应用.遗传,2008,30(7): 933~940
    [34]Shu-Yun C., Yu-Tsung L., Chia-Wei L.,Wei-Yu C., Chih Hung Y., Hsin-Mei K. Transferability of rice SSR markers to bamboo. Euphytica,2010,175:23~33
    [35]Dayanandan S, Bawa KS, Kesseli R. Conservation of Microsatellites among tropical Trees (Leguminosae). American Journal of Botany,1997,84(12):1658~1663
    [36]Arnold C, Rossetto M, Mcnally J, Henry RJ. The application of SSRs characterized for grape(Vitis vinifera) to conservation studied in Vitaceae. American Journal of Botany,2002, 89(1):22~28
    [37]Vendramin E, Dettori MT, Giovinazzi J, Micali S, Quarta R, Verde I. A set of EST-SSRs isolated from peach fruit transcriptome and their transportability across Prunus species. Mol Ecol Note,2007,7(2):307~310
    [38]孙燕琳,阮成江,金华.沙棘SSR分子标记的开发.安徽农业科学,2007,35(1):45~46
    [39]王艳梅,翟明普,马天晓,黄武刚,程丽莉.榛属7种植物与虎榛微卫星测序及分析.华中农业大学学报,2009,28(1):5~10
    [40]Wiinsch A.. Cross-transferable polymorphic SSR loci in Prunus species. Scientia Horticulturae, 2009,120:348~352
    [41]张叶,代红艳,张琪静,李贺,张志宏.利用苹果SSR引物分析山楂属植物遗传关系.果树学报,2008,25(4):521~525
    [42]Diaz A, De la Rosa R, Martin A, Rallo P. Development, characterization and inheritance of new microsatellites in olive (Olea europaea L.) and evaluation of their usefulness in cultivar identification and genetic relationship studies. Tree Genetics & Genomes,2006,2:165~175
    [43]Di Gaspero G, Cipriani G, Marrazzo MT, Andreetta D, Prado Castro MJ, Peterlunger E, Testolin R. Isolation of (AC)n-microsatellites in Vitis vinifera L. and analysis of genetic background in grapevines under marker assisted selection. Molecular Breeding,2005,15: 11~20
    [44]Viruel MA, Escribano P, Barbieri M, Ferri M, Hormaza JI. Fingerprinting, embryo type and geographic differentiation in mango (Mangifera indica L., Anacardiaceae) with microsatellites. Molecular Breeding,2005,15:383~393
    [45]Viruel MA, Hormaza JI. Development, characterization and variability analysis of microsatellites in lychee (Litchi chinensis Sonn., Sapindaceae). Theor Appl Genet,2004,108: 896~902
    [46]刘闯萍,王军.SSR标记及其在葡萄上的应用.果树学报,2008,25(1):93~101
    [47]Woodhead M, McCallum S, Smith K, Cardle L, Mazzitelli L, Graham J. Identification, characterisation and mapping of simple sequence repeat (SSR) markers from raspberry root and bud ESTs. Mol Breeding,2008,22:555~563
    [48]张水明.基于AFLP和SSR分子标记的中国杨梅遗传多样性分析.[博士学位论文].杭州:浙江大学,2009
    [49]Kandpal RP, Kandpal G, Weissman SM. Construction of libraries enriched for sequence repeats and jumping clones, and hybridization selection for region-specific markers. Proc Natl Acad Sci,1994,91:88~92
    [50]潘磊,郑鹏,徐杰,全志武,李双梅,刘宏高,柯卫东,丁毅.磁珠富集法制备莲藕基因组的微卫星分子标记.中国蔬菜,2007,增刊:7~13
    [51]崔秀敏,侯喜林,董玉秀:ISSR-PCR和链亲和素磁珠吸附法开发白菜SSR引物.园艺学报,2006,33(1):155~157
    [52]Hayden MJ, Sharp PJ. Targeted development of informative microsatellite (SSR) markers. Nucleic Acids Research,2001,29(8):e44
    [53]Witsenboer H, Michelmore RW, Vogel J. Identification, genetic localization, and allelic diversity of selectively amplified microsatellite polymorphic loci in lettuce and wild relatives (Lactuca spp.). Genome,1997,40(6):923~936
    [54]李明芳,郑学勤.荔枝SSR标记的研究.遗传,2004,26(6):911~916
    [55]吴翼.椰子SSR分子标记的开发.[硕士学位论文].海口:海南大学,2008
    [56]艾呈祥,余贤美,张力思,魏海蓉,辛力,苑克俊,金松南,孙清荣,刘庆忠.甜樱桃SSR标记的选择性扩增微卫星(SAM)法筛选.园艺学报,2007,34(2):311~316
    [57]张慧蓉,薛华柏,乔玉山,曹尚银,张建伟,利用改进的SAM法分离小黄李中的微卫星.经济林研究,2009,27(3):90~93
    [58]马庆华,王贵禧,梁丽松.枣选择性扩增微卫星体系的建立及优化.中国农业科学,2010,43(2):371~379
    [59]Cifarelli RA, Gallitelli M, Cellini F. Random amplified hybridization microsatellites (RAHM): isolation of a new class of microsatellite containing DNA clones. Nucleic Acids Research, 1995,23(18):3802~3803
    [60]Lunt DH, Hutchinson WF, Carvalho GR. An efficient method for PCR-based identification of microsatellite arrays. Molecular Ecology,1999, (8):893~894
    [61]Fisher PJ, Gardner RC, Richardson TE. Single locus microsatellites isolated using 5'anchored PCR. Nucleic Acids Research,1996,24(21):4369~4371
    [62]Lench NJ, Norris A, Bailey A, Booth A, Markham AF. Vectorette PCR isolation of microsatellites repeat sequences using anchored dinuclentide repeats primers. Nucleic Acids Research,1996,24:2190~2191
    [63]Lian CL, Zhou ZH, Hogetsu T. A simple method for developing microsatellite markers using amplified fragments of inter-simple sequence repeat (ISSR). J Plant Res,2001,114:381-385
    [64]Folta KM, Staton M, Stewart PJ, Jung S, Bies DH, Jesdurai C, Main D. Expressed sequence tags (ESTs) and simple sequence repeat (SSR) markers from octoploid strawberry (Fragaria× ananassa). BMC Plant Biology,2005,5(12)
    [65]王娟.苹果EST-SSR引物的开发及部分品种亲缘关系分析.[硕士学位论文].郑州:河南农业大学,2009
    [66]Clarke JB, Tobutt KR. Development and characterization of polymorphic microsatellites from Prunus avium 'Napoleon'. Molecular Ecology Notes,2003,3:578~580
    [67]Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arus P, Laigret F. Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet, 2002,105:127~138
    [68]Mnejja M, Garcia-Mas J, Howad W, Badenes ML, Arus P. Simple-sequence repeat (SSR) markers of Japanese plum (Prunus salicina Lindl.) are highly polymorphic and transferable to peach and almond. Molecular Ecology Notes,2004,4:163~166
    [69]Mnejja M, Garcia-Mas J, Howad W, Arus P. Development and transportability across Prunus species of 42 polymorphic almond microsatellites. Molecular Ecology Notes,2005,5: 531~535
    [70]姚利华.苹果属EST-SSR标记开发及其在梨属上的转移性.[硕士学位论文].杭州:浙江大学,2008
    [71]Kacar Y.A., Lezzoni A., Cetiner S. Sweet cherry cultivar identification by using SSR markers. Journal of Biological Sciences,2005,5 (5):616~619
    [72]Sanchez-Parez R, Ruiz D, Dicenta F, Egea J, Martinez-Gomez P. Application of simple sequence repeat (SSR) markers in apricot breeding:molecular characterization, protection, and genetic relationships. Scientia Horticulturae,2005,103:305~315
    [73]Goulao L, Oliveira CM. Molecular characterisation of cultivars of apple (Malus×domestica Borkh.) using microsatellite (SSR and ISSR) markers. Euphytica,2001,122:81~89
    [74]张靖国.湖北海棠遗传多样性的SSR分析.[硕士学位论文].武汉:华中农业大学,2007
    [75]蔡青,姜立杰,张晓明,闫国华,张开春,曹玉芬,马焕普.苹果主栽品种的SSR分子标记鉴别.中国农学通报,2007,23(7):129~134
    [76]张广和,唐美玲,张文娜,赵明.甜樱桃先锋及其芽变品种的SSR分析.北方园艺,2009, (7):108~110
    [77]张东,舒群,滕元文,仇明华,鲍露,胡红菊.中国红皮砂梨品种的SSR标记分析.园艺学报,2007,34(1):47~52
    [78]韩宏伟,杨敏生,徐兴兴,梁海永.利用SSR标记鉴定主要梨栽培品种.中国农业科学,2006,22(12):383~386
    [79]葛志刚,俞明亮,马瑞娟,沈志军.基于连锁群定位SSR标记的蟠桃分子指纹检索表构建.江苏农业科学,2009,(6):31~33
    [80]沈志军,马瑞娟,俞明亮,宋宏峰,蔡志翔.早熟油桃紫金红1号亲本的SSR鉴定.华北农学报,2009,24(6):205~209
    [81]蔡胜文.仁用杏与扁桃属间杂交种的获得及SSR分析.[硕士学位论文].保定:河北农业大学,2008,28
    [82]Gonai T, Manabe T, Inoue E, Hayashi M, Yamamoto T, Hayashi T, Sakuma F, Kasumi F. Overcoming hybrid lethality in a cross between Japanese pear and apple using gamma irradiation and confirmation of hybrid status using flow cytometry and SSR markers. Scientia Horticulturae,2006,109:43~47
    [83]韩蕾.利用AFLP和SSR鉴定苹果砧木及SH40自然实生后代父本.[硕士学位论文].保定:河北农业大学,2008
    [84]张春雨,陈学森,何天明,刘晓丽,冯涛,苑兆和.中国新疆野苹果[Malus sieversii (Lebed.) Roem.]群体遗传结构的SSR分析.遗传学报,2007,34(10):947~955
    [85]Brini W, Mars M, Hormaza JI. Genetic diversity in local Tunisian pears (Pyrus communis L.) studied with SSR markers. Scientia Horticulturae,2008,115:337~341
    [86]Katayama H, Adachi S, Yamamoto T, Uematsu C. A wide range of genetic diversity in pear (Pyrus ussuriensis var. aromatica) genetic resources from Iwate, Japan revealed by SSR and chloroplast DNA markers. Genet Resour Crop Evol,2007,54:1573~1585
    [87]Bao L, Chen K, Zhang D, Cao Y, Yamamoto T, Teng Y. Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers. Genet Resour Crop Evol,2007,54:959~971
    [88]曹玉芬,刘凤之,高源,姜立杰,王昆,马智勇,张开春.梨栽培品种SSR鉴定及遗传多样性.园艺学报,2007,34(2):305~310
    [89]范太伟,蔡丹英,李红旭,王发林,赵长增,滕元文.甘肃中部梨资源遗传变异和亲缘关系的SSR分析.果树学报,2007,24(3):268~275
    [90]张妤艳,吴俊,张绍铃.基于SSR标记的梨资源遗传多样性分析.农业生物技术学报,2008,16(6):983~989
    [91]冯晨静.李种质资源RAPD、SSR、ISSR亲缘关系鉴定及遗传多样性研究.[硕士学位论文].保定:河北农业大学,2005
    [92]Xie H, Sui Y, Chang FQ, Xu Y, Ma RC. SSR allelic variation in almond (Prunus dulcis Mill.). Theor Appl Genet,2006,112:366~372
    [93]He TM, Chen XS, Xu Z, Gao JS, Lin PJ,Liu W, Liang Q, Wu Y. Using SSR markers to determine the population genetic structure of wild apricot (Prunus armeniaca L.) in the Ily Valley of West China. Genetic Resources and Crop Evolution,2007,54:563~572
    [94]Bourguiba H, Krichen L, Audergon JM, Khadari B, Trifi-Farah N. Impact of Mapped SSR Markers on the Genetic Diversity of Apricot (Prunus armeniaca L.) in Tunisia. Plant Mol Biol Rep,2010,28:578~587
    [95]吴婷,高疆生,王宝强,乔霞,胡学林.扁桃品种的SSR分析.湖北农业科学,2008,47(8):865~867
    [96]张淑青,刘冬成,刘威生,张爱民,李绍华.普通杏品种SSR遗传多样性分析.园艺学报,2010,37(1):23~30
    [97]杨本芸.桃、李、杏、核桃不同品种的SSR指纹图谱构建.[硕士学位论文].保定:河北农业大学,2006
    [98]Baranek M, Raddova J, Pidra M. Comparative analysis of genetic diversity in Prunus L. as revealed by RAPD and SSR markers. Scientia Horticulturae,2006,108:253~259
    [99]陈巍,王力荣,张绍铃,陈昌文,曹珂.利用SSR研究不同国家桃育成品种的遗传多样性.果树学报,2007,24(5):580~584
    [100]陆苏瑀,俞明亮,马瑞娟,沈志军.硬肉桃品种群SSR标记的遗传多样性分析.植物遗传资源学报,2010,11(3):374~379
    [101]沈志军,马瑞娟,俞明亮,蔡志翔,张好艳,许建兰.无锡水蜜桃品种群遗传多样性及与其他群体亲缘关系的SSR分析.植物遗传资源学报,2009,10(3):367~372
    [102]Xie R, Li X, Chai M, Song L, Jia H, Wu D, Chen M, Chen K, Aranzanac MJ, Gao Z. Evaluation of the genetic diversity of Asian peach accessions using a selected set of SSR markers. Scientia Horticulturae,2010,125:622~629
    [103]Martinez-Gomez P, Arulsekar S, Potter D, Gradziel TM. An extended interspecific gene pool available to peach and almond breeding as characterized using simple sequence repeat (SSR) markers. Euphytica,2003,131:313~322
    [104]艾呈祥,辛力,余贤美,张力思,魏海蓉,苑克俊,孙清荣,刘庆忠.樱桃主栽品种的遗传多样性分析.园艺学报,2007,34(4):871~876
    [105]Lacis G, Rashal I, Ruisa S, Trajkovski V, Iezzoni AF. Assessment of genetic diversity of Latvian and Swedish sweet cherry (Prunus avium L.) genetic resources collections by using SSR (microsatellite) markers. Scientia Horticulturae,2009,121:451~457
    [106]Kato S, Iwata H, Tsumura Y, Mukai Y. Genetic structure of island populations of Prunus lannesiana var. speciosa revealed by chloroplast DNA, AFLP and nuclear SSR loci analyses. J Plant Res,2010, DOI 10.1007/s10265-010-0352-3
    [107]王爱德,李天忠,许雪峰,韩振海.苹果品种的SSR分析.园艺学报,2005,32(5):875~877
    [108]高源,刘凤之,曹玉芬,王昆.苹果属种质资源亲缘关系的SSR分析.果树学报,2007,24(2):129~134
    [109]Gharghani A., Zamani Z., Talaie A., Oraguzie N.C., Fatahi R., Hajnajari H., Wiedow C., Gardiner S. E. Genetic identity and relationships of Iranian apple (Malus×domestica Borkh.) cultivars and landraces, wild Malus species and representative old apple cultivars based on simple sequence repeat (SSR) marker analysis. Genet Resour Crop Evol,2009,56:829~842
    [110]尹载皓.基于SSR技术和ITS序列进行桃(Prunus persica L.Batsch)品种间亲缘关系的研究.[博士学位论文].北京:中国农业大学,2005
    [111]Cheng Z, Huang H. SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Scientia Horticulturae,2009,120:188~193
    [112]徐宝利.用SSR标记对甘肃地方油桃(Prunus Persica L)种质资源遗传多样性及亲缘演化关系分析.[硕士学位论文].兰州:甘肃农业大学,2006
    [113]俞明亮,马瑞娟,许建兰,沈志军,章镇.桃种间亲缘关系的SSR鉴定.果树学报,2004,21(2):106~112
    [114]Shiran B, Amirbakhtiar N, Kiani S, Mohammadi Sh, Sayed-Tabatabaei BE, Moradi H. Molecular characterization and genetic relationship among almond cultivars assessed by RAPD and SSR markers. Scientia Horticulturae,2007,111:280~292
    [115]曾斌,李疆,罗淑萍,程运江.扁桃属植物种质资源鉴定的SSR分析研究.新疆农业科学,2009,46(1):18~22
    [116]Pedryc A, Ruthner S, Herman R, Krska B, Hegedus A, Halasz J. Genetic diversity of apricot revealed by a set of SSR markers from linkage group G1. Scientia Horticulturae,2009,121: 19~26
    [117]何天明,陈学森,高疆生,张大海,徐麟,吴燕.新疆栽培杏群体遗传结构的SSR分析.园艺学报,2006,33(4):809~812
    [118]Zhang Q, Yan G, Dai H, Zhang X, Li C, Zhang Z. Characterization of Tomentosa cherry (Prunus tomentosa Thunb.) genotypes using SSR markers and morphological traits. Scientia Horticulturae,2008,118:39~47
    [119]Canli FA. Development of a second generation genetic linkage map for sour cherry using SSR markers. Pakistan Journal of Biological Science,2004,7(10):1676~1683
    [120]Campoy JA, Ruiz D, Egea J, Rees DJG, Celton JM, Martinez-Gomez P. Inheritance of Flowering Time in Apricot (Prunus armeniaca L.) and Analysis of Linked Quantitative Trait Loci (QTLs) using Simple Sequence Repeat (SSR) Markers. Plant Mol Biol Rep,2010, DOI 10.1007/s 11105-010-0242-9
    [121]Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arus P. A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet,2003,106:819~825
    [122]Liebhard L, Gianfranceschi L, Koller B, Ryder CD, Tarchini R,. Van De Weg E, Gessler C. Development and characterisation of 140 new microsatellites in apple (Malus×domestica Borkh.). Molecular Breeding,2002,10:217~241
    [123]Vilanova S, Romero C, Abbott AG, Llacer G, Badenes ML. An apricot (Prunus armeniaca L.) F2 progeny linkage map based on SSR and AFLP markers, mapping plum pox virus resistance and self-incompatibility traits. Theor Appl Genet,2003,107:239~247
    [124]艾呈祥,刘庆忠,李国田,张力思.甜樱桃品种SSR指纹图谱的构建.山东农业科学,2010,4:8~10
    [125]李亚蒙.桃垂枝性状生理特性及SSR分子标记研究.[硕士学位论文].泰安:山东农业大学,2006
    [126]田义轲,王彩虹,贾彦利,王亮,戴洪义.梨矮化基因pcDw的SSR标记定位.果树学报,2008,25(3):404~407
    [127]欧良喜,向旭,狄凤香,白丽军,陈洁珍,孙清明.SSR分子标记在荔枝上的研究进展.生物技术通报,2009(增刊):83~87
    [128]逯昀,潘自舒,王倩,逯世超.桃果肉颜色和花粉育性的SSR分子标记初探.湖北农业科学,2009,48(9):2055~2057
    [129]宋健,韩明玉,赵彩平,高妍.桃‘秦光2号’ב曙光’F1代SSR遗传连锁图谱的构建.西北植物学报,2008,28(5):895~900
    [130]田义轲,王彩虹,戴洪义,张继澍.苹果Co基因的SSR标记定位.实验生物学报,2005,38(3):272~275
    [131]姚玉新,翟衡,赵玲玲,伊凯,刘志,宋烨.苹果果实酸/低酸性状的SSR分析.园艺学报,2006,33(2):244~248
    [132]张桂粉,韩明玉,赵彩平,高妍,宋健.桃熟性性状的SSR标记.西北农业学报,2007, 16(3):112~115
    [133]寿园园.苹果抗褐斑病性遗传分析与SSR分子标记.[硕士学位论文].哈尔滨:东北农业大学,2009
    [134]Ashley MV, Wilk JA, Styan SMN, Craft KJ, Jones KL, Feldheim KA, Lewers KS, Ashman TL. High variability and disomic segregation of microsatellites in the octoploid Fragaria virginiana Mill. (Rosaceae). Theor Appl Genet,2003,107:1201~1207
    [135]邱武陵,章恢志.中国果树志·龙眼枇杷卷.北京:中国林业出版社,1996.91~117
    [136]Lin SQ. World loquat production and research with special reference to China. Acta Hort, 2007,750:37~43
    [137]Martinez-Calvo JM, Gisbert AD, Alamar MC, Hernandorena R, Romero C, Llacer G, Badenes ML. Study of a germplasm collection of loquat (Eriobotrya japonica Lindl.) by multivariate analysis. Genet Resour Crop Evol,2008,55:695~703
    [138]Vilanova S, Badenes ml, Martinez-Calvo J, Llacer G. Analysis of loquat germplasm (Eriobotrya japonica Lindl) by RAPD molecular markers. Euphytica,2001,121:25~29
    [139]潘新法,孟祥勋,曹广力,徐春明.RAPD在枇杷品种鉴定中的应用.果树学报,2002,19(2):136~138
    [140]范建新,罗楠,王永清.8个枇杷品种(系)的RAPD分析.四川农业大学学报,2006,24(1):65~68
    [141]陈义挺,赖钟雄,陈菁瑛,郭玉琼,蔡英卿,郭志雄,吴金寿,黄金松.枇杷品种早钟6号与解放钟、森尾早生亲缘关系的RAPD分析.福建农林大学学报(自然科学版),2004,33(1):46~50
    [142]董燕妮.枇杷小种子植株遗传多样性的RAPD分析.[硕士学位论文].雅安:四川农业大学,2008
    [143]陈菁瑛,陈义挺,赖钟雄,蔡英卿.福建省12个地方解放钟枇杷的RAPD分析.亚热带农业研究,2006,2(2):62~65
    [144]乔燕春,林顺权,何小龙,杨向晖.普通枇杷种内和种间杂种苗的RAPD鉴定.果树学报,2010,27(3):385~390
    [145]杨岑.枇杷胚败育机制及退化种子株系的ISSR遗传多样性研究.[硕士学位论文].雅安:四川农业大学,2009
    [146]范晨昕.白沙枇杷离体再生及ISSR分子标记研究.[硕士学位论文].南京:南京农业大学,2008
    [147]盛良明,王化坤,徐春明,章镇.白沙枇杷优良株系苏白1号的ISSR分析.江苏农业科学,2006,(3):97~98
    [148]赵依杰,王江波,张小红,施维属,林航.枇杷新品种‘东湖早’的ISSR分子鉴定.热带作物学报,2010,31(1):72~76
    [149]乔燕春,林顺权,刘成明,杨向晖.SRAP分析体系的优化及在枇杷种质资源研究上的应用.果树学报,2008,25(3):348~352
    [150]蔡礼鸿.枇杷属的等位酶遗传多样性和种间关系及品种鉴定研究.[博士学位论文].武汉:华中农业大学,2000
    [151]李惠文.应用分子标记进行枇杷品种的鉴别与分类.[硕士学位论文].广州:华南农业大学,2007
    [152]陈义挺,赖钟雄,郭志雄,郭玉琼,蔡英卿,陈菁瑛,陆修闽,吴金寿.枇杷主要种类的RAPD分析.江西农业大学学报,2003,25(2):258~261
    [153]陈义挺,赖钟雄,陈菁瑛,.蔡英卿,郭玉琼,吴金寿.65份枇杷种质资源的RAPD分析.热带作物学报,2007,28(1):65~71
    [154]付燕.41份枇杷属植物材料的RAPD和ISSR分析,[硕士学位论文].雅安:四川农业大学,2009
    [155]杨向晖,李平,刘成明,林顺权.枇杷属植物及其近缘属植物亲缘关系的RAPD分析.果树学报,2009,26(1):55~59
    [156]杨向晖,刘成明,林顺权.普通枇杷、大渡河枇杷和栎叶枇杷遗传关系研究——基于RAPD和AFLP分析.亚热带植物科学,2007,36(2):9~12
    [157]乔燕春.枇杷属植物分子遗传图谱的构建及遗传多样性研究.[博士学位论文].广州:华南农业大学,2008
    [158]Soriano JM, Romero C, Vilanova S, Llacer G, Badenes ML. Genetic diversity of loquat germplasm (Eriobotrya japonica (Thunb) Lindl) assessed by SSR markers. Genome,2005,48: 108~114
    [159]盛良明.白沙枇杷优良单株—苏白1号的选育及其分子鉴定.[硕士学位论文].南京:南京农业大学,2006
    [160]Watanabe M, Yamamoto T, Ohara M, Nishitani C, Yahata S. Cultivar differentiation identified by SSR markers and the application for polyploidy loquat plants. J Jpn Soc Hortic Sci,2008, 77:388~394
    [161]Gisbert AD, Martinez-Calvo J, Llacer G, Badenes ML, Romero C. Development of two loquat [Eriobotrya japonica (Thunb.) Lindl.] linkage maps based on AFLPs and SSR markers from different Rosaceae species. Mol Breeding,2009,23:523~538
    [162]Gisbert AD, Romero C, Martinez-Calvo JM, Leida C, Llacer G, Badenes ML. Genetic diversity evaluation of a loquat (Eriobotrya japonica (Thunb) Lindl) germplasm collection by SSRs and S-allele fragments.-Euphytica,2009,168:121~134
    [163]向素琼,全志武,何波,汪卫星,梁国鲁,丁毅.枇杷基因组SSR分子标记的分离及筛选.第四届全国枇杷学术研讨会论文集.苏州.2009,244~248
    [164]仲艳,杜青珍,李海芬,孟祥勋,袁卫民,王化坤,郗红丽.枇杷核基因组DNA提取方法的改良及其SSR分析.安徽农业科学,2010,38(18):9419~9422
    [165]Roche P, Alston FH, Maliepaard C, Evans KM, Vrielink R, Dunemann F, Markussen T, Tartarini S, Brown LM, Ryder C, King GJ. RFLP and RAPD markers linked to the rosy leaf curling aphid resistance gene (Sd1) in apple. Theor Appl Genet,1997,94:528~533
    [166]Bassam, BJ, Gresshoff, PM. Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry,1991,196:80~83
    [167]Dirlewanger E., Graziano E., Joobeur T., Garriga-Caldere F., Cosson P., Howad W. and Arus P. Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci,2004,101:9891~9896
    [168]Gisbert AD, Lopez-Capuz I, Soriano JM, Llacer G, Romero C, Badenes ML. Development of microsatellite markers from loquat, Eriobotrya japonica (Thunb.) Lindl. Mol Ecol Resour, 2008,9(3):803~805
    [169]Rohlf F J. NTSYS-pc:Numerical taxonomy and multivariate analysis system, version 2.1. New York, USA:Exeter Publications,2000
    [170]Wunsch A, Hormaza JI. Characterization of variability and genetic similarity of European pear using microsatellite loci developed in apple. Sci Hortic,2007,113:37~43
    [171]Zhang CY, Chen XS, Zhang YM, Yuan ZH, Liu ZC, Wang YL, LIN Q. Method of constructing core collection for Malus sieversii in Xinjiang, China using molecular markers. Agric Sci China,2009,8:276~284
    [172]唐蓓.普通枇杷、大渡河枇杷、栎叶枇杷的亲缘关系探讨.重庆师范学院学报(自然科学版),1997,14(3):18~25
    [173]梁国鲁.天然三倍体枇杷的筛选及其遗传特性与基因组分析.[博士学位论文].重庆:西南大学,2006
    [174]汪卫星.天然与人工合成三倍体批把基因组变异及其DNA甲基化分析.[博士学位论文].重庆:西南大学,2008
    [175]Nordstrom S, Hedren M. Development of polymorphic nuclear microsatellite markers for polyploid and diploid members of the orchid genus Dactylorhiza. Molecular Ecology Notes, 2007,7:644~647
    [176]Thompson JD, Lumaret R. The evolutionary dynamics of polyploid plants:origins, establishment and persistence. Trends Ecol Evol,1992,7(9):303~306
    [177]Wendel J. Genome evolution in polyploids. Plant Molecular Biology,2000,42:225~249
    [178]Byrne M, Hankinson M, Sampson JF. Stankowski S. Microsatellite markers isolated from a polyploid saltbush, Atriplex nummularia Lindl. (Chenopodiaceae). Molecular Ecology Resources,2008,8:1426~1428
    [179]Besnard G, Garcia-verdugo C, Rubio de casas R, Treier UA, Galland N, Vargas P. Polyploidy in the Olive Complex (Olea europaea):Evidence from Flow Cytometry and Nuclear Microsatellite Analyses. Annals of Botany,2008,101:25~30
    [180]Omran SA, Guerra-Sanz JM, Garrido Cardenas JA. Methodology of tetraploid induction and expression of microsatellite alleles in triploid watermelon. Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae,2008,381~384
    [179]Vinatzer BA, Patocchi A, Tartarini S, Gianfranceschi L, Sansavini S, Gessler C. Isolation of two microsatellite markers from BAC clones of the Vf scab resistance. Plant Breed,2004,123: 321~326
    [180]Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A. Microsatellite markers spanning the apple (Malus×domestica Borkh) genome. Tree Genet Genomes,2006,2:202~224
    [181]Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H, Forster R. Microsatellites in Malus×domestica (apple):abundance, polymorphism and cultivar identification. Theor Appl Genet,1997,94:249~254
    [182]Hokkanson SC, Szewc-McFadden AK, Lamboy WF, McFerson JR. Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationship in a Malus×domestica Borkh. Core subset clolletion. Theor Appl Genet,1998,97(5-6):671~683

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700