肝癌c-Met表达异常与索拉非尼耐药关系研究及肝癌动物模型建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分肝细胞性肝癌患者HGF/c-Met表达特征评价
     目的:检测原发性肝细胞性肝癌(hepatocellular carcinoma, HCC)患者血清肝细胞生长因子(hepatocyte growth factor, HGF)水平及HCC组织c-Met蛋白表达水平。
     方法:通过双抗体夹心酶联免疫ELISA方法检测血清标本中HGF水平,通过免疫组织化学方法检测肝脏病理标本c-Met蛋白染色强度。对肝癌组与肝硬化组及健康人群组在HGF水平、c-Met染色强度等变量进行One-Way ANOVA统计分析和Friedman非非参数检验,评价肝癌组与其他两组间是否存在显著性差异。
     结果:血清HGF浓度在肝癌组、肝硬化组和正常对照组分别为0.609±0.134ng/ml、0.378±0.116ng/ml、0.271±0.083ng/ml,肝癌组患者血清HGF水平明显高于肝硬化组和正常对照组,差异具有显著性(P<0.01)。不同体积的肿瘤之间血清HGF水平存在显著性差异(P<0.05),肿瘤体积越大则血清HGF水平越高。c-Met蛋白在HCC组织上呈阳性表达,c-Met阳性染色主要定位于肿瘤细胞的胞膜和胞质,而在癌旁组织及正常组织呈弱阳性和低表达,差异具有显著性意义,P<0.01。HCC组织c-Met阳性表达强度与肿瘤分化程度等密切相关,(P<0.05)。
     结论:
     1.HCC患者血清HGF水平较肝硬化及正常对照组明显升高,差异具有显著性。
     2. HCC患者术前血清HGF水平与肿瘤大小有明显正相关性,肿瘤体积越大则血清HGF水平越高。
     3.c-Met蛋白在HCC组织中表达强度明显高于癌旁组织及正常肝组织,差异具有显著性意义。
     4. c-Met表达异常与HCC病理分化程度等密切相关。
     第二部分c-Met过表达细胞株构建及索拉非尼耐药特征观察
     目的:评价c-Met过表达导致的细胞信号传导异常对索拉非尼抑制肝癌细胞增殖的影响并寻找相应治疗对策。
     方法:首先通过慢病毒载体将c-Met基因转染至HepG2细胞,并使HepG2细胞能够稳定表达c-Met蛋白,通过嘌呤霉素筛选获得稳定转染的细胞株HepG2-met。通过MTT比色法法及AnnexinV-FITC和PI双染法检测细胞周期及凋亡的方法,评价索拉非尼对HepG2细胞/HepG2-met细胞增殖影响是否存在差异,确定c-Met蛋白表达异常升高对索拉非尼抵抗作用。通过Western Blot方法检测(?) c-Met蛋白及其下游mTOR信号蛋白P70S6K、4E-BP1磷酸化水平在HepG2细胞(?)HepG2=met细胞之间的差异,寻找c-Met蛋白表达异常升高对索拉非尼抵抗作用的分子机制。在此基础上通过联合mTOR抑制药物雷帕霉素逆转索拉非尼耐药现象。
     结果:通过RT-PCR检测慢病毒感染的HepG2细胞中c-Met mRNA确定慢病毒转染MOI=20为最佳MOI值,通过2.5ug/ml嘌呤霉素持续作用10天筛选出抗嘌呤霉素的稳定细胞株HepG2-met。 Westem blot方法分析c-Met的表达和磷酸化及mTOR信号途径中P70S6K、4E-BP1蛋白磷酸化改变,显示HepG2-met细胞在c-Met的表达和磷酸化及P70S6K、4E-BP1蛋白磷酸化水平上均明显超过HepG2细胞。通过细胞生长曲线检测发现HepG2-met具有较HepG2更为活跃的细胞增殖能力。MTT法检测HepG2/HepG2-met细胞对索拉非尼增殖抑制敏感性:索拉非尼对HepG2/HepG2-met细胞增殖抑制作用随着药物浓度的增加而逐渐增加,表现出剂量依赖性;HepG2-met具有一定的索拉非尼药物作用抵抗特征。通过流式细胞术检测可以看出HepG2-met细胞处于S期的比例为65.5%,较HepG2细胞的39.92%明显升高,提示HepG2-met增殖更为活跃,在应用相同剂量的索拉非尼作用后HepG2-met细胞S期比例降至41.07%,细胞凋亡率为35.48%;HepG2细胞的S期比例降至25.89%,细胞凋亡率为63.42%,两组间比较仍有显著性差异,提示索拉非尼对HepG2-met细胞增殖抑制作用有所下降,HepG2-met表现出对索拉非尼一定的耐药性。当HepG2-met组联合应用索拉非尼及小剂量的雷帕霉素后,S期比例降至32.03%,细胞凋亡率上升至65.01%,提示雷帕霉素可以部分逆转HepG2-met细胞高表达c-Met造成的对索拉非尼一定耐药性。
     结论:
     1.通过慢病毒转染方式成功构建出c-Met过表达的HepG2-met细胞株,c-Met表达水平较HepG2明显升高。
     2. HepG2-met细胞株c-Met的表达和磷酸化水平升高,同时其下游信号如mTOR信号途径中P70S6K、4E-BP1蛋白磷酸化较HepG2明显升高。
     3. HepG2-met细胞株具有较HepG2更为活跃的细胞增殖能力。
     4. HepG2-met具有一定的索拉非尼药物作用抵抗特征。
     5.雷帕霉素通过抑制1mTOR信号途径中P70S6K、4E-BP1蛋白磷酸化可以部分逆转HepG2-met对索拉非尼的耐药作用。
     第三部分裸鼠荷人肝癌皮下模型的建立
     目的:通过临床肝癌标本建立裸鼠异种肝癌模型并对肝癌中HBV状态作初步检测。
     方法:采集肝移植患者肝癌病理组织,种植于裸鼠皮下,经过多次传代生长后,获得可以稳定生长与传代的肝癌裸鼠模型。通过HE染色比较原代肝癌病例组织结构与多次传代后的移植性肝癌模型的病理结果,评价异种肝癌模型是否具有与原代相似的病理组织学特征。同时通过PCR方法检测与HBV相关性肝癌的动物模型中HBV DNA存在状态,初步探讨HBV与HCC相关关系。
     结果:成功建立4例肝癌动物模型。异种移植肿瘤标本和病人原发肿瘤标本的病理学形态相似,保留了原发肿瘤的部分组织形态学特性。4例肝癌异种移植物模型肿瘤标本分别进行HBV DNA的S区、C区和X区三个独立区域检测,结果一例标本S区、C区和X区均呈阳性,一例标本S区和X区呈阳性,一例标本S区和C区呈阳性。
     结论:
     1.通过裸鼠皮下种植肝癌组织成功建立4例肝癌动物模型。
     2.异种移植肿瘤标本和病人原发肿瘤标本的病理学形态相似,保留了原发肿瘤的部分组织形态学特性。
     3.部分肝癌模型标本中存在HBV DNA,可能是重要的致癌因素。
Part one HGF/c-Met expression characteristics evaluation for patients with HCC
     Objective To detect the serum HGF concentration and c-Met protein expression in liver of HCC patients.
     Methods The level of serum HGF was detected by ELISA method. Immunohisto-chemistry was used to detect c-Met protein staining intensity within liver pathology specimens.
     Results The serum HGF concentration in HCC group, cirrhosis group and normal control group were0.609±0.134ng/ml,0.378±0.116ng/ml, and0.271±0.083ng/ml, respectively. HGF levels in patients with HCC group were significantly higher than that in other two groups (P<0.01). There was a significant difference of HGF levels between different tumor volume (P<0.05). HCC tissues showed positive expression of c-Met staining, but the expressions were weakly in the paracancerous tissues, cirrhotic liver tissue and normal liver tissue (P<0.01). The intensity of c-Met expression closely related to the tumor differentiation and showed a negative correlation (P<0.05).
     Conclusions1. The serum HGF level of HCC patients was significantly higher than that of liver cirrhosis patients and normal control group.2. The serum HGF levels of HCC were significantly associated with tumor size.3. The c-Met protein staining intensity in HCC tissue was significantly higher than in paracancerous and normal liver tissues.4. The c-Met protein staining intensity was closely related to HCC histological differentiation.
     Part two The c-Met over-expression cell lines building and sorafenib-resistant features observing
     Objective To evaluate the effect of c-Met overexpression and subsequent cell signaling abnormalities for sorafenib-resistance of HCC and to find countermeasures.
     Methods The c-Met gene was transfected to HepG2cells by lentiviral vector, and selected the stably transfected cell lines HepG2-met by puromycin. Evaluated the cell cycle and apoptosis rate for HepG2cells and HepG2-met cells with sorafenib. The c-Met protein and its downstream mTOR signaling protein such as P70S6K,4E-BP1 and their phosphorylation levels were detected by Western Blot, to find out if c-Met overexpression can subsequently lead to mTOR signaling abnormalities. Then observed if the resistance to sorafenib could be reversed by combination with mTOR inhibiting drug rapamycin.
     Results c-Met mRNA was determined by RT-PCR. The stable transfected cell lines HepG2-met was selected by2.5ug/ml puromycin for about10days. Western blot analysis showed that the c-Met, P70S6K and4E-BP1protein phosphorylation level in HepG2-met cells were significantly higher than in HepG2cells. HepG2-met had more proliferative activity. Sorafenib inhibited the proliferation of HepG2/HepG2-met cells, and the effects enhanced with drug concentration increased. HepG2-met cells had a certain resistance to sorafenib. HepG2-met cells S phase decreased and apoptosis rate increased when cultured with sorafenib combining small doses of rapamycin, the results suggested that the resistance to sorafenib could be reversed by combination with mTOR inhibiting drug.
     Conclusions1. HepG2-met cells with high level c-Met expression were constructed.2. c-Met expression and phosphorylation levels increased in HepG2-met cells, while its downstream mTOR signaling protein phosphorylation of P70S6K and4E-BP1were as higher than in HepG2cells.3. HepG2-met cells were more proliferatively active.4. HepG2-met cells showed a certain degree of drug resistance to sorafenib.5. Rapamycin inhibited mTOR signaling pathway protein phosphorylation of P70S6K and4E-BP1partially reversing sorafenib resistance of HepG2-met.
     Part three Establishment of nude mice bearing human liver tumor models
     Objective Xenograft tumor models established by transplantation of human tumor into immunodifficient mice, and made the initial detection of HBV status in tumor.
     Methods The fresh human liver tumor samples were selected from clinic patients, and implanted in nude mices. Compared the histopathological characteristics between the original liver cancer and the stabilized tumor model by HE staining. And then detected the HBV DNA existing status in tumor model by PCR methods.
     Results We successfully established four cases of liver cancer animal models. The pathological characteristics of xenograft tumor samples and primary patient tumor specimens were similar. HBV S, C, and X sequences were respectively detected from three cases of liver cancer xenograft model tumor samples by PCR methods.
     Conclusions1.Four cases of liver cancer xenograft models were established by subcutaneously implanting in the nude mices.2. Xenograft tumor samples and patients' primary tumor specimens had the similar histomorphometric characteristics.3. HBV DNA can be detected in the HCC model specimens, and it may be important carcinogenic factors.
引文
1. Beaugrand M, N'kontchou G, Seror O, et al. Local/regional and systemic treat-ments of hepatocellular carcinoma. Semin Liver Dis.2005;25(2):201-11.
    2. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med.2008 Jul 24;359(4):378-90.
    3. Richly H, Kupsch P, Passage K, et al. Results of a phase I trial of BAY 43-9006 in combination with doxorubicin in patients with primary hepatic cancer. Int J Clin Pharmacol Ther.2004;42(11):650-1.
    4. Richly H, Henning BF, Kupsch P, et al. Results of a Phase I trial of sorafenib (BAY 43-9006) in combination with doxorubicin in patients with refractory solid tumors. Ann Oncol.2006;17(5):866-73.
    5. Richly H, Schultheis B, Adamietz IA, et al. Combination of sorafenib and doxorubicin in patients with advanced hepatocellular carcinoma: results from a phase I extension trial. Eur J Cancer.2009;45(4):579-87.
    6. Prete SD, Montella L, Caraglia M, et al. Sorafenib plus octreotide is an effective and safe treatment in advanced hepatocellular carcinoma: multicenter phase II So.LAR. study.Cancer Chemother Pharmacol.2010;66(5):837-44.
    7. Petrini I, Lencioni M, Ricasoli M, et al. Phase Ⅱ trial of sorafenib in combination with 5-fluorouracil infusion in advanced hepatocellular carcinoma. Cancer Chemother Pharmacol.2012;69(3):773-80.
    8. Girard N, Mornex F.Sorafenib and radiotherapy association for hepatocellular carcinoma. Cancer Radiother.2011 Feb;15(1):77-80.
    9. Kudo M, Imanaka K, Chida N, et al. Phase III study of sorafenib after transarterial chemoembolisation in Japanese and Korean patients with unresectable hepatocellular carcinoma. Eur J Cancer.2011;47(14):2117-27.
    10. Hoffmann K, Glimm H, Radeleff B, et al. Prospective, randomized, double-blind, multi-center, Phase III clinical study on transarterial chemoembolization (TACE) combined with Sorafenib versus TACE plus placebo in patients with hepatocellular cancer before liver transplantation-HeiLivCa [ISRCTN24081794]. BMC Cancer. 2008;8:349.
    11. Gomez-Martin C, Bustamante J, Castroagudin JF, et al. Efficacy and safety of sorafenib in combination with mammalian target of rapamycin inhibitors for recurrent hepatocellular carcinoma after liver transplantation. Liver Transpl.2012;18(1):45-52.
    12. Abou-Alfa GK, Chan SL, Lin CC, et al. PR-104 plus sorafenib in patients with advanced hepatocellular carcinoma. Cancer Chemother Pharmacol. 2011;68(2):539-45.
    13. Wei G, Wang M, Hyslop T, et al. Vitamin K enhancement of sorafenib-mediated HCC cell growth inhibition in vitro and in vivo. Int J Cancer.2010;127(12):2949-58.
    14. Hsu CH, Shen YC, Lin ZZ, et al. Phase II study of combining sorafenib with metronomic tegafur/uracil for advanced hepatocellular carcinoma. J Hepatol. 2010;53(1):126-31.
    15. Streubel B, Chott A, Huber D, et al. Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med. 2004;351(3):250-259.
    16. Raza A, Franklin MJ, Dudek AZ, et al. Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am J Hematol.2010;85(8):593-598.
    17. Paez-Ribes M, Allen E, Hudock J, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009;15(3):220-231.
    18. Blagosklonny MV. Antiangiogenic therapy and tumor progression. Cancer Cell. 2004;5(1):13-17.
    19. Burkitt K, Chun SY, Dang DT, et al. Targeting both HIF-1 and HIF-2 in human colon cancer cells improves tumor response to sunitinib treatment. Mol Cancer Ther. 2009;8(5):1148-1156.
    20. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721-732.
    21. Chun SY, Johnson C, Washburn JG, et al. Oncogenic KRAS modulates mitochondrial metabolism in human colon cancer cells by inducing HIF-1 a and HIF-2a target genes. Mol Cancer.2010;9(1):293.
    22. Scheuermann TH, Tomchick DR, Machius M, et al. Artificial ligand binding within the HIF2 alpha PAS-B domain of the HIF2 transcription factor. Proc Natl Acad Sci.2009;106(2):450-455.
    23. Rubenstein JL, Kim J, Ozawa T, et al. Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia.2000;2(4):306-314.
    24. Hendrix MJ, Seftor EA, Hess AR, et al.Vasculogenic mimicry and tumour-cell plasticity:lessons from melanoma. Nat Rev Cancer.2003;3(6):411-421.
    25. Paulis YW, Soetekouw PM, Verheul HM, et al. Signalling pathways in vasculogenic mimicry. Biochim Biophys Acta.2010;1806(1):18-28.
    26. Llovet JM, Pena CE, Lathia CD, et al. Plasma Biomarkers as Predictors of Outcome in Patients with Advanced Hepatocellular Carcinoma. Clin Cancer Res. 2012;18(8):2290-2300.
    27. Miyahara K, Nouso K, Tomoda T, et al. Predicting the treatment effect of sorafenib using serum angiogenesis markers in patients with hepatocellular carcinoma. J Gastroenterol Hepatol.2011;26(11):1604-11.
    28. Huynh H, Ngo VC, Koong HN, et al. Sorafenib and rapamycin induce growth suppression in mouse models of hepatocellular carcinoma. J Cell Mol Med. 2009;13(8B):2673-83.
    29. Chau GY, Lui WY, Chi CW, et al. Significance of serum hepatocyte growth factor levels in patients with hepatocellular carcinoma undergoing hepatic resection. Eur J Surg Oncol.2008;34(3):333-8.
    30. Osada S, Kanematsu M, Imai H, et al. Clinical significance of serum HGF and c-Met expression in tumor tissue for evaluation of properties and treatment of hepatocellular carcinoma. Hepatogastroenterology.2008;55(82-83):544-9.
    31. You H, Ding W, Dang H, et al. c-Met represents a potential therapeutic target for personalized treatment in hepatocellular carcinoma. Hepatology.2011;54(3):879-89.
    32. Daniela T, Giuseppina D, Ana B. u-PA and c-Met mRNA expression is co-ordinately enhanced while hepatocyte growth factor mRNA is down-regulated in human hepatocelullar carcinoma. Int J Cancer.2000;87:644-649.
    33.龙淼云,黎洪浩,郑启昌,赖东明,徐鏊耀,翁赖鸿.肝细胞癌门静脉癌栓中肝细胞生长因子及其受体的表达.临床外科杂志.2008;13(3):161-164.
    34. DaveauM, ScotteM, FrancoisA, et al. Hepatocyte growthfactor,transforming growthfactoralpha,and their receptors as combined markers of prognosis in hepatocellular carcinoma. MolCarcinog.2003;36(3):130-141.
    35. Shen Z, Yang ZF, Gao Y, et al. The kringle 1 domain of hepatocyte growth factor has antiangiogenic and antitumor cell effects on hepatocellular carcinoma. Cancer Res.2008;68:404-414.
    36. Kaposi NP, Lee JS, Gome -QL, et al. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest.2006;116:1582-1595.
    37. Ahmed T, Shea K, Masters JR, et al. A PAK4-LIMK1 pathway drives prostate cancer cell migration downstream of HGF. Cell Signal.2008 Ju1;20(7):1320-8.
    38. Lee WJ, Wu LF, Chen WK, et al. Inhibitory effect of luteolin on hepatocyte growth factor/scatter factor-induced HepG2 cell invasion involving both MAPK/ERKs and PI3K-Akt pathways. Chem Biol Interact.2006 Mar 25;160(2):123-33.
    39. Trusolino L, Cavassa S, Angelini P, et al.HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity. FASEB J.2000 Aug;14(11):1629-40.
    40. Lee KH, Choi EY, Hyun MS, et al. Role of hepatocyte growth factor/c-Met signaling in regulating urokinase plasminogen activator on invasiveness in human hepatocellular carcinoma: a potential therapeutic target. Clin Exp Metastasis. 2008;25(1):89-96.
    41. Lee KH, Kim JR. Reactive oxygen species regulate the generation of urokinase plasminogen activator in human hepatoma cells via MAPK pathways after treatment with hepatocyte growth factor. Exp Mol Med.2009;41(3):180-8.
    42. Wang SW, Pan SL, Peng CY,et al. CHM-1 inhibits hepatocyte growth factor-induced invasion of SK-Hep-1 human hepatocellular carcinoma cells by suppressing matrix metalloproteinase-9 expression. Cancer Lett.2007 Nov 8;257(1):87-96.
    43. Lee KH, Choi EY, Hyun MS, et al. Association of extracellular cleavage of E-cadherin mediated by MMP-7 with HGF-induced in vitro invasion in human stomach cancer cells. Eur Surg Res.2007;39(4):208-15.
    44. You WK, McDonald DM. The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis. BMB Rep.2008 Dec 31;41(12):833-9.
    45. Wajih N, Sane DC. Angiostatin selectively inhibits signaling by hepatocyte growth factor in endothelial and smooth muscle cells. Blood.2003 Mar 1;101(5):1857-63.
    46. Rong S, Segal S, Anver M, et al. Invasiveness and matastasis of NIH3T3 cells induced by Met-hepatocyte growth factor/cactter factor autocrine stimulation. Proc Natl Acad Sci USA,1994,91(11):4731-4735.
    47. Nguyen TH, Loux N, Dagher I, et al. Improved gene transfer selectivity to hepatocarcinoma cells by retrovirus vector displaying single-chain variable fragment antibody against c-Met. Cancer Gene Ther,2003,10(11):840-849.
    48. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol,2003,4(12):915-925.
    49. Kondo S, Ojima H, Tsuda H, et al.Clinical impact of c-Met expression and its gene amplification in hepatocellular carcinoma. Int J Clin Oncol.2012 Jan 5.
    50. Inagaki Y, Qi F, Gao J, et al.Effect of c-Met inhibitor SU11274 on hepatocellular carcinoma cell growth. Biosci Trends.2011;5(2):52-6.
    51. Cheng AL, Kang YK, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomized, double-blind, placebo-controlled trial. Lancet Oncol.2009; 10(1):25-34.
    52. Gollob JA, Wilhelm S, Carter C, et al. Role of Raf kinase in cancer:therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway. Semin Oncol. 2006;33:392-406.
    53. Ocana A, Pandiella A. Identifying Breast Cancer Druggable Oncogenic Alterations:Lessons Learned and Future Targeted Options. Clin Cancer Res. 2008:14(4); 961-970.
    54. Emens LA, Silverstein SC, Khleif S, Marincola FM, Galon J. Toward integrative cancer immunotherapy:targeting the tumor microenvironment. J Transl Med.2012 Apr 10;10(1):70.
    55. Mandai M, Matsumura N, Baba T, et al. Ovarian clear cell carcinoma as a stress-responsive cancer: influence of the microenvironment on the carcinogenesis and cancer phenotype. Cancer Lett.2011;310(2):129-33.
    56. Leonardi GC, Candido S, Cervello M, et al. The tumor microenvironment in hepatocellular carcinoma (Review). Int J Oncol.2012;40(6):1733-47.
    57. Spano D, Zollo M. Tumor microenvironment:a main actor in the metastasis process. Clin Exp Metastasis.2012;29(4):381-95.
    58. Shen X, Li N, Li H, et al. Increased prevalence of regulatory T cells in the tumor microenvironment and its correlation with TNM stage of hepatocellular carcinoma.J Cancer Res Clin Oncol.2010;136(11):1745-54.
    59. Zhao R, Wang TZ, Kong D, Zhang L, Meng HX, Jiang Y, Wu YQ, Yu ZX, Jin XM.Hepatoma cell line HepG2.2.15 demonstrates distinct biological features compared with parental HepG2. World J Gastroenterol.2011 Mar 7; 17(9):1152-9.
    60.滕大洪,朱志军,郑虹,等.与乙型肝炎病毒相关的原发性肝细胞癌肝移植术后的临床观察.中华器官移植杂志.2007;28(12):719-721.
    61. Chun J, Kim W, Kim BG, et al. High viremia, prolonged Lamivudine therapy and recurrent hepatocellular carcinoma predict posttransplant hepatitis B recurrence. Am J Transplant.2010; 10(7):1649-59.
    62. Saab S, Yeganeh M, Nguyen K, et al. Recurrence of hepatocellular carcinoma and hepatitis B reinfection in hepatitis B surface antigen-positive patients after liver transplantation. Liver Transpl.2009;15(11):1525-34.
    63. Brechot C, Gozuacik D, Murakami Y, Paterlini-Brechot P.Molecular bases for the development of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Semin Cancer Biol 2000; 10(3):211-231。
    64. Michael T, Fred C, David P.A., Barbara B.K., Stanley A.P.. Integration Pattern of Hepatitis B Virus DNA Sequences in Human Hepatoma Cell Lines. J Viro,1981,37:239-243.
    65.彭志海,张益,裘国强,等.原发性肝细胞癌中乙型肝炎病毒基因整合状态研究.肝胆外科杂志.2002;10:333-335.
    1. Yoneda N, Sato Y, Kitao A, et al. Epidermal growth factor induces cytokeratin 19 expression accompanied by increased growth abilities in human hepatocellular carcinoma. Lab Invest.2011;91(2):262-72.
    2. Hisaka T, Yano H, Haramaki M, et al. Expressions of epidermal growth factor family and its receptor in hepatocellular carcinoma cell lines:relationship to cell proliferation. Int J Oncol.1999;14(3):453-60.
    3. Abu Dayyeh BK, Yang M, Fuchs BC, et al. A functional polymorphism in the epidermal growth factor gene is associated with risk for hepatocellular carcinoma. Gastroenterology.2011;141(1):141-9.
    4. Hoffmann K, Xiao Z, Franz C, et al. Involvement of the epidermal growth factor receptor in the modulation of multidrug resistance in human hepatoceliular carcinoma cells in vitro. Cancer Cell Int.2011;17(11):40.
    5. Breuhahn K, Longerich T, Schirmacher P, et al. Dysregulation of growth factor signalling in human hepatocellular carcinoma. Oncogene.2006;25(27):3787-3800.
    6. Avila MA, Berasain C, Sangro B, et al. New therapies for hepatocellular carcinoma. Oncogene.2006;25(27):3866-3884.
    7. Castillo J, Erroba E, Perugorria MJ, et al. Amphiregulin contribuyes to the transformed phenotype of human hepatocellular carcinoma cells. Cancer Res. 2006;66(12):6129-6138.
    8. Berasain C, Castillo J, Prieto J, et al. New molecular targets for hepatocellular carcinoma: the ErbB1 signaling system. Liver Int.2007;27(2):174-185.
    9. Ortiz C, Caja L, Sancho P, et al. Inhibition of the EGF receptor blocks autocrine growth and increases the cytotoxic effects of doxorubicin in rat hepatoma cells. Biochem Pharmacol.2008;75(10):1935-1945.
    10. Urtasun R, Latasa MU, Demartis MI, et al. Connective tissue growth factor autocriny in human hepatocel;ular carcinoma: oncogenic role and regulation by epidermal growth factor receptor/yes-associated protein-mediated activation. Hepatology.2011;54(6):2149-58.
    11. Hoffmann K, Shibo L, Xiao Z, et al. Correlation of gene expression of ATP-binding cassette protein and tyrosine kinase signaling pathway in patients with hepatocellular carcinoma. Anticancer Res.2011;31(11):3883-90.
    12. Price JA, Kovach SJ, Johnson T, et al. Insulin-like growth factor I is a comitogen for hepatocyte growth factor in a rat model of hepatocellualr carcinoma. Hepatology. 2002;36(5):1089-1097.
    13. Lund P, Schubert D, Niketeghad F, et al. Autocrine inhibition of chemotherapy response in human liver tumor cells by insulin-like growth factor-Ⅱ. Cancer Lett. 2004;206(1):85-96.
    14. Kim KW, Bae SK, Lee OH, et al. Insulin-like growth factor Ⅱ induced by hypoxia may contribute to angiogenesis of human hepatocellular carcinoma. Cancer Res. 1998;58(2):348-51.
    15. von Marschall Z, Cramer T, Hocker M, et al. Dual mechanism of vascular endothelial growth factor upregulation by hypoxia in human hepatocellular carcinoma. Gut.2001;48(1):87-96.
    16. Qian J, Yao D, Dong Z, et al. Characteristics of hepatic igf-ii expression and monitored levels of circulating igf-ii mRNA in metastasis of hepatocellular carcinoma. Am J Clin Pathol.2010;134(5):799-806.
    17. Tayebi HM, Salah W, Sayed IH, et al. Expression of insulin-like growth factor-II, matrix metalloproteinases, and their tissue inhibitors as predictive markers in the peripheral blood of HCC patients. Biomarkers.2011;16(4):346-54.
    18. Rehem RN, El-Shikh WM. Serum IGF-1, IGF-2 and IGFBP-3 as parameters in the assessment of liver dysfunction in patients with hepatic cirrhosis and in the diagnosis of hepatocellular carcinoma. Hepatogastroenterology.2011;58(107-108):949-54.
    19. Liu Z, Yue WT, LI Q. Research Progress on the Relationship between Insulin-like Growth Factor-I and Lung Cancer. Chin J Lung Cancer.2010; 13(6):642-647.
    20. Hebert E. Mannose-6-phosphate/insulin-like growth factor II receptor expression and tumor development. Biosci Rep.2006;26(1):7-17.
    21. Yeh MM, Larson AM, Campbell JS, et al. The expression of transforming growth factor-alpha in cirrhosis, dysplastic nodules, and hepatocellular carcinoma:an immunohistochemical study of 70 cases. Am J Surg Pathol.2007;31(5):681-689.
    22. Dong ZZ, Yao DF, Yao M, et al. Clinical impact of plasma TGF-betal and circulating TGF-betal mRNA in diagnosis of hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int.2008;7(3):288-95.
    23. Bassiouny AE, Zoheiry MM, Nosseir MM, et al. Expression of cyclooxygenase-2 and transforming growth factor-beta1 in HCV-induced chronic liver disease and hepatocellular carcinoma. Med Gen Med.2007; 9(3):45.
    24. Ikeguchi M, Iwamoto A, Taniguchi K, et al. The gene expression level of transforming growth factor-beta(TGF-beta) as a biological prognostic marker of hepatocellular carcinoma. J Exp Clin Cancer Res 2005;24(3):415-421.
    25. Fransvea E, Angelotti U, Antonaci S, et al. Blocking transforming growth factor-beta up-regulates E-cadherin and reduces migration and invasion of hepatocellular carcinoma cells. Hepatology 2008; 47(5):1557-1566.
    26. Giannelli G, Fransvea E, Marinosci F, et al. Transforming growth factor-betal triggers hepatocellular carcinoma invasiveness via alpha3betal integrin. Am J Pathol. 2002;161(1):183-93.
    27. Fransvea E, Mazzocca A, Santamato A, et al. Kinase activation profile associated with TGF-β-dependent migration of HCC cells:a preclinical study. Cancer Chemother Pharmacol.2011;68(1):79-86.
    28. Musch A, Rabe C, Paik MD, et al. Altered expression of TGF-beta receptors in hepatocellular carcinoma--effects of a constitutively active TGF-beta type I receptor mutant. Digestion.2005;71(2):78-91.
    29. Ji GZ, Wang XH, Miao L,et al. Role of transforming growth factor-betal-smad signal transduction pathway in patients with hepatocellular carcinoma. World J Gastroenterol.2006 Jan 28;12(4):644-8.
    30. Blackford A, Serrano OK, Wolfgang CL, et al. SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin Cancer Res. 2009;15(14):4674-4679.
    31. Torbenson M, Marinopoulos S, Dang DT, et al. Smad 4 overrexpression in hepatocellular carcinoma is strongly associated with transforming growth factor beta Ⅱ receptor immunolabeling. Hum Pathol,2002;33(9):871-876.
    32. Ji GZ, Wang XH, Miao L, et al. Role of transforming growth factor-betal-smad signal transduction pathway in patients with hepatocellular carcinoma. World J Gastroenterol.2006 Jan 28;12(4):644-8.
    33. Kawate S, OhwadaS, HamadaK, et al. Mutational analysis of the Smad 6 and Smad 7 genes in hepatocelltdar carcinoma. Int J MoL Med.2001;8(1):49-52.
    34. Shen Z, Yang ZF, Gao Y, et al. The kringle 1 domain of hepatocyte growth factor has antiangiogenic and antitumor cell effects on hepatocellular carcinoma. Cancer Res.2008;68(2):404-414.
    35. Kaposi NP, Lee JS, Gome-QL, et al. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest.2006;116(6):1582-1595.
    36. Ahmed T, Shea K, Masters JR, et al. A PAK4-LIMK1 pathway drives prostate cancer cell migration downstream of HGF. Cell Signal.2008 Jul;20(7):1320-8.
    37. Lee WJ, Wu LF, Chen WK, et al. Inhibitory effect of luteolin on hepatocyte growth factor/scatter factor-induced HepG2 cell invasion involving both MAPK/ERKs and PI3K-Akt pathways. Chem Biol Interact.2006 Mar 25;160(2):123-33.
    38. Trusolino L, Cavassa S, Angelini P, et al. HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity. FASEB J.2000 Aug;14(11):1629-40.
    39. Lee KH, Choi EY, Hyun MS, et al. Role of hepatocyte growth factor/c-Met signaling in regulating urokinase plasminogen activator on invasiveness in human hepatocellular carcinoma: a potential therapeutic target. Clin Exp Metastasis. 2008;25(1):89-96.
    40. Lee KH, Kim JR. Reactive oxygen species regulate the generation of urokinase plasminogen activator in human hepatoma cells via MAPK pathways after treatment with hepatocyte growth factor. Exp Mol Med.2009;41(3):180-8.
    41. Wang SW, Pan SL, Peng CY,et al. CHM-1 inhibits hepatocyte growth factor-induced invasion of SK-Hep-1 human hepatocellular carcinoma cells by suppressing matrix metalloproteinase-9 expression. Cancer Lett.2007 Nov 8;257(1):87-96.
    42. Lee KH, Choi EY, Hyun MS, et al. Association of extracellular cleavage of E-cadherin mediated by MMP-7 with HGF-induced in vitro invasion in human stomach cancer cells. Eur Surg Res.2007;39(4):208-15.
    43. You WK, McDonald DM. The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis. BMB Rep.2008;41(12):833-9.
    44. Wajih N, Sane DC. Angiostatin selectively inhibits signaling by hepatocyte growth factor in endothelial and smooth muscle cells. Blood.2003;101(5):1857-63.
    45. Chau GY, Lui WY, Chi CW, et al. Significance of serum hepatocyte growth factor levels in patients with hepatocellular carcinoma undergoing hepatic resection. Eur J Surg Oncol.2008;34(3):333-8.
    46. Osada S, Kanematsu M, Imai H, et al. Clinical significance of serum HGF and c-Met expression in tumor tissue for evaluation of properties and treatment of hepatocellular carcinoma. Hepatogastroenterology.2008;55(82-83):544-9.
    47. You H, Ding W, Dang H, et al. c-Met represents a potential therapeutic target for personalized treatment in hepatocellular carcinoma. Hepatology.2011;54(3):879-89.
    48. Amarapurkar AD, Amarapurkar DN, Vibhav S, et al. Angiogenesis in chronic liver disease. Ann Hepatol 2007;6(3):170-173.
    49. Amaoka N, Osada S, Kanematsu M, et al. Clinicopathological features of hepatocellular carcinoma evaluated by vascular endothelial growth factor expression. J Gastroenterol Hepatol.2007;22(12):2202-2207.
    50. Tsunedomi R, Iizuka N, Tamesa T, et al. Decreased ID2 promotes metastatic potentials of hepatocellular carcinoma by altering secretion of vascular endothelial growth factor. Clin Cancer Res.2008; 14(4):1025-1031.
    51.Romanque P, Piguet AC, Dufour JF. Targeting vessels to treat hepatocellular carcinoma. Clin Sci(Lond) 2008;114(7):467-477.
    52. Gollob JA, Wilhelm S, Carter C, et al. Role of Raf kinase in cancer:therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway. Semin Oncol. 2006;33(4):392-406.
    53. Wiesenauer CA, Yip-Schneider MT, Wang Y, Schmidt CM. Multiple anticancer effects of blocking MEK-ERK signaling in hepatocellular carcinoma. J Am Coll Surg 2004;198(3):410-21.
    54. Zhang Z, Zhou X, Shen H, et al. Phosphorylated ERK is a potential predictor of sensitivity to sorafenib when treating hepatocellular carcinoma: evidence from an in vitro study. BMC Med.2009;7:41.
    55. Schuierer MM, Bataille F, Weiss TS, et al. Raf kinase inhibitor protein is downregulated in hepatocellular carcinoma. Oncol Rep.2006; 16(3):451-6.
    56. Wei W, Chua MS, Grepper S, et al. Blockade of Wnt-1 signaling leads to anti-tumor effects in hepatocellular carcinoma cells. Mol Cancer.2009;8:76.
    57. Cheng AS, Lau SS, Chen Y, et al. EZH2-mediated concordant repression of Wnt antagonists promotes β-catenin-dependent hepatocarcinogenesis. Cancer Res. 2011;71(11):4028-39.
    58. Wong CM, Fan ST, Ng 10. beta-Catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance. Cancer. 2001;92(1):136-45.
    59. Wang XH, Meng XW, Sun X, et al. Wnt/β-catenin signaling regulates MAPK and Aktl expression and growth of hepatocellular carcinoma cells. Neoplasma. 2011;58(3):239-44.
    60. Yuzugullu H, Benhaj K, Ozturk N,et al. Canonical Wnt signaling is antagonized by noncanonical Wnt5a in hepatocellular carcinoma cells. Mol Cancer.2009;8:90.
    61. Kim M, Lee HC, Tsedensodnom O, et al. Functional interaction between Wnt3 and Frizzled-7 leads to activation of the Wnt/beta-catenin signaling pathway in hepatocellular carcinoma cells. J Hepatol.2008;48(5):780-91.
    62. Merle P, de la Monte S, Kim M, et al. Functional consequences of frizzled-7 receptor overexpression in human hepatocellular carcinoma. Gastroenterology. 2004; 127(4):1110-22.
    63. Merle P, Kim M, Herrmann M, et al. Oncogenic role of the frizzled-7/beta-catenin pathway in hepatocellular carcinoma. J Hepatol.2005;43(5):854-62.
    64. Nambotin SB, Lefrancois L, Sainsily X, et al. Pharmacological inhibition of Frizzled-7 displays anti-tumor properties in hepatocellular carcinoma. J Hepatol. 2011;54(2):288-99.
    65. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med.2008 Jul 24;359(4):378-90.
    66. Cheng AL, Kang YK, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma:a phaseⅢ randomized, double-blind, placebo-controlled trial. Lancet Oncol.2009; 10(1):25-34.
    67. Richly H, Kupsch P, Passage K, et al. Results of a phase I trial of BAY 43-9006 in combination with doxorubicin in patients with primary hepatic cancer. Int J Clin Pharmacol Ther.2004;42(11):650-1.
    68. Richly H, Henning BF, Kupsch P, et al. Results of a Phase I trial of sorafenib (BAY 43-9006) in combination with doxorubicin in patients with refractory solid tumors. Ann Oncol.2006;17(5):866-73.
    69. Richly H, Schultheis B, Adamietz IA, et al. Combination of sorafenib and doxorubicin in patients with advanced hepatocellular carcinoma: results from a phase I extension trial. Eur J Cancer.2009;45(4):579-87.
    70. Prete SD, Montella L, Caraglia M, et al. Sorafenib plus octreotide is an effective and safe treatment in advanced hepatocellular carcinoma: multicenter phase II So.LAR. study.Cancer Chemother Pharmacol.2010;66(5):837-44.
    71. Petrini I, Lencioni M, Ricasoli M, et al. Phase II trial of sorafenib in combination with 5-fluorouracil infusion in advanced hepatocellular carcinoma. Cancer Chemother Pharmacol.2012;69(3):773-80.
    72. Girard N, Mornex F.Sorafenib and radiotherapy association for hepatocellular carcinoma. Cancer Radiother.2011 Feb;15(1):77-80.
    73. Kudo M, Imanaka K, Chida N, et al. Phase III study of sorafenib after transarterial chemoembolisation in Japanese and Korean patients with unresectable hepatocellular carcinoma. Eur J Cancer.2011;47(14):2117-27.
    74. Hoffmann K, Glimm H, Radeleff B, et al. Prospective, randomized, double-blind, multi-center, Phase III clinical study on transarterial chemoembolization (TACE) combined with Sorafenib versus TACE plus placebo in patients with hepatocellular cancer before liver transplantation-HeiLivCa [ISRCTN24081794]. BMC Cancer. 2008;8:349.
    75. Gomez-Martin C, Bustamante J, Castroagudin JF, et al. Efficacy and safety of sorafenib in combination with mammalian target of rapamycin inhibitors for recurrent hepatocellular carcinoma after liver transplantation. Liver Transpl. 2012;18(1):45-52.
    76. Abou-Alfa GK, Chan SL, Lin CC, et al. PR-104 plus sorafenib in patients with advanced hepatocellular carcinoma. Cancer Chemother Pharmacol. 2011;68(2):539-45.
    77. Wei G, Wang M, Hyslop T, et al. Vitamin K enhancement of sorafenib-mediated HCC cell growth inhibition in vitro and in vivo. Int J Cancer.2010;127(12):2949-58.
    78. Hsu CH, Shen YC, Lin ZZ, et al. Phase II study of combining sorafenib with metronomic tegafur/uracil for advanced hepatocellular carcinoma. J Hepatol. 2010;53(1):126-31.
    79. Zhu AX, Sahani DV, Duda DG, di Tomaso E, et al. Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase Ⅱ study. J Clin Oncol.2009;27(18):3027-35.
    80. Faivre S, Raymond E, Boucher E, et al. Safety and efficacy of sunitinib in patients with advanced hepatocellular carcinoma:an open-label, multicentre, phase Ⅱ study. Lancet Oncol.2009;10(8):794-800.
    81. Koeberle D, Montemurro M, Samaras P, et al. Continuous Sunitinib treatment in patients with advanced hepatocellular carcinoma: a Swiss Group for Clinical Cancer Research (SAKK) and Swiss Association for the Study of the Liver (SASL) multicenter phase Ⅱ trial (SAKK 77/06). Oncologist.2010;15(3):285-92.
    82. Bekaii-Saab T, Markowitz J, Prescott N, et al. A multi-institutional phase Ⅱ study of the efficacy and tolerability of lapatinib in patients with advanced hepatocellular carcinomas.Clin Cancer Res.2009;15(18):5895-901.
    83. Ramanathan RK, Belani CP, Singh DA, et al. A phase Ⅱ study of lapatinib in patients with advanced biliary tree and hepatocellular cancer. Cancer Chemother Pharmacol.2009;64(4):777-83.
    84. Huynh H, Ngo VC, Fargnoli J, et al. Brivanib alaninate, a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor tyrosine kinases, induces growth inhibition in mouse models of human hepatocellular carcinoma. Clin Cancer Res.2008;14(19):6146-53.
    85. Finn RS, Kang YK, Mulcahy M, et al. Phase II, Open-label Study of Brivanib as Second-line Therapy in Patients with Advanced Hepatocellular Carcinoma. Clin Cancer Res.2012;18(7):2090-8.
    86. Park JW, Finn RS, Kim JS, et al. Phase Ⅱ, open-label study of brivanib as first-line therapy in patients with advanced hepatocellular carcinoma. Clin Cancer Res.2011;17(7):1973-83.
    87. Heideman DA, Overmeer RM, van Beusechem VW, et al. Inhibition of angiogenesis and HGF-cMET-elicited malignant processes in human hepatocellular carcinoma cells using adenoviral vector-mediated NK4 gene therapy. Cancer Gene Ther.2005;12(12):954-62.
    88. Guo D, Hou X, Zhang H, et al. More expressions of BDNF and TrkB in multiple hepatocellular carcinoma and anti-BDNF or K252a induced apoptosis, supressed invasion of HepG2 and HCCLM3 cells. J Exp Clin Cancer Res.2011;30:97.
    89. Kaufmann R, Oettel C, Horn A, Met receptor tyrosine kinase transactivation is involved in proteinase-activated receptor-2-mediated hepatocellular carcinoma cell invasion. Carcinogenesis.2009;30(9):1487-96.
    90. Giordano S.Rilotumumab, a mAb against human hepatocyte growth factor for the treatment of cancer. Curr Opin Mol Ther.2009; 11(4):448-55.
    91. Wen PY, Schiff D, Cloughesy TF, et al. A phase Ⅱ study evaluating the efficacy and safety of AMG 102 (rilotumumab) in patients with recurrent glioblastoma. Neuro Oncol.2011;13(4):437-46.
    92. Jin H, Yang R, Zheng Z, et al.MetMAb, the one-armed 5D5 anti-c-Met antibody, inhibits orthotopic pancreatic tumor growth and improves survival. Cancer Res. 2008;68(11):4360-8.
    93. Zhu AX, Blaszkowsky LS, Ryan DP, et al. Phase Ⅱ study of gemcitabine and oxaliplatin in combination with bevacizumab in patients with advanced hepatocellular carcinoma.J Clin Oncol.2006;24(12):1898-1903.
    94. Sun W, Sohal D, Haller DG, et al. Phase 2 trial of bevacizumab, capecitabine, and oxaliplatin in treatment of advanced hepatocellular carcinoma. Cancer. 2011;117(14):3187-92.
    95. Philip PA, Mahoney MR, Holen KD, et al. Phase 2 study of bevacizumab plus erlotinib in patients with advanced hepatocellular cancer. Cancer. 2012;118(9):2424-30.
    96. Wang SY, Chen B, Zhan YQ, et al.SU5416 is a potent inhibitor of hepatocyte growth factor receptor (c-Met) and blocks HGF-induced invasiveness of human HepG2 hepatoma cells.J Hepatol.2004;41(2):267-73.
    97. Yang ZF, Poon RT, Liu Y, et al. High doses of tyrosine kinase inhibitor PTK787 enhance the efficacy of ischemic hypoxia for the treatment of hepatocellular carcinoma: dual effects on cancer cell and angiogenesis. Mol Cancer Ther. 2006;5(9):2261-70.
    98. Liu Y, Wen XM, Lui EL,et al.Therapeutic targeting of the PDGF and TGF-beta-signaling pathways in hepatic stellate cells by PTK787/ZK22258.Lab Invest.2009;89(10):1152-60.
    99. Yorozuya K, Kubota T, Watanabe M, et al. TSU-68 (SU6668) inhibits local tumor growth and liver metastasis of human colon cancer xenografts via anti-angiogenesis.Oncol Rep.2005;14(3):677-82.
    100. Giannelli G, Sgarra C, Porcelli L, et al. EGFR and VEGFR as potential target for biological therapies in HCC cells.Cancer Lett.2008;262(2):257-64.
    101. Streubel B, Chott A, Huber D, et al. Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med.2004;351 (3):250-259.
    102. Raza A, Franklin MJ, Dudek AZ, et al. Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am J Hematol.2010;85(8):593-598.
    103. Paez-Ribes M, Allen E, Hudock J, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell.2009;15(3):220-231.
    104. Blagosklonny MV. Antiangiogenic therapy and tumor progression. Cancer Cell. 2004;5(1):13-17.
    105. Burkitt K, Chun SY, Dang DT, et al. Targeting both HIF-1 and HIF-2 in human colon cancer cells improves tumor response to sunitinib treatment. Mol Cancer Ther.2009;8(5):1148-1156.
    106. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721-732.
    107. Chun SY, Johnson C, Washburn JG, et al. Oncogenic KRAS modulates mitochondrial metabolism in human colon cancer cells by inducing HIF-1 a and HIF-2a target genes. Mol Cancer.2010;9(1):293.
    108. Scheuermann TH, Tomchick DR, Machius M, et al. Artificial ligand binding within the HIF2 alpha PAS-B domain of the HIF2 transcription factor. Proc Natl Acad Sci.2009;106(2):450-455.
    109. Rubenstein JL, Kim J, Ozawa T, et al. Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia. 2000;2(4):306-314.
    110. Hendrix MJ, Seftor EA, Hess AR, et al. Vasculogenic mimicry and tumour-cell plasticity:lessons from melanoma. Nat Rev Cancer.2003;3(6):411-421.
    111. Paulis YW, Soetekouw PM, Verheul HM, et al. Signalling pathways in vasculogenic mimicry. Biochim Biophys Acta.2010;1806(1):18-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700