液压集成块人机结合智能虚拟设计方法与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压集成块是集成式液压系统的关键零件,应用广泛。随着液压系统复杂程度的提高,集成块设计难度随之增加。因此将新技术与方法引入到集成块设计中必然成为未来的发展方向。纵观国内外研究现状,集成块设计目前大多致力于应用各种智能优化方法进行全自动设计,由于缺乏有效的人工干预,优化过程没有充分考虑设计规则和习惯,存在优化时间长,设计人员还需对优化结果进行调改以满足工程实际需要等问题;其次,集成块设计环境可视化程度还不是很高,仅仅作为设计结果的展示手段,设计人员只能从外部对集成块进行三维浏览,无法深入到集成块内部清晰地探查孔道相交情况,半封闭的设计环境限制了设计人员的创造思维。液压集成块设计是人的创造力与环境条件交互作用的物化过程,是一种智能行为。目前的集成块设计没有提供有利的工具使设计人员真正融入集成块设计中,设计过程仍是一个困难地、非直观的、耗时间的过程。
     本文紧密结合实际,从工程优化角度出发,旨在通过对虚拟设计技术、计算智能算法、人机结合方法及人工智能的深入研究,针对集成块设计问题,探索一种人机结合智能虚拟设计方法与实现策略,创立开放式智能型虚拟设计模式和环境,构建集成块人机结合智能虚拟设计系统框架,高质量地完成集成块整个设计流程。主要研究内容包括:
     第一,全面总结集成块设计问题特点与设计流程,明确提出集成块设计的核心问题是外部布局和内部布孔集成方案的优化设计,可以归结为一种复杂的立体空间布局问题。深入分析当今研究热点的各种布局问题求解策略,以工程优化为目标,提出了一种液压集成块人机结合的智能虚拟设计方法:在集成块虚拟设计环境中,以基于计算智能的集成块优化计算为内核,采用基于设计实例与设计规则的人工智能施加设计引导,借助自然直观的人机交互方式,设计人员在优化进程中与真实感显示的设计对象实时交互与探查,实现算法驾驭;充分发挥各自特长,实现设计人员智能与计算机智能在虚拟设计环境中的完美和谐的统一。详细阐述方法可行性、构造出发点、设计流程及其实现关键技术,给出系统构架,规划了集成块优化设计问题的总体解决方案。人机结合智能虚拟设计方法为集成块设计提供崭新的研究思路,对解决其它复杂空间布局问题也具有借鉴意义。
     第二,虚拟设计环境是人机结合智能虚拟设计方法实施的平台和支撑,虚拟建模是构建一个虚拟设计系统的基础。针对集成块虚拟设计,提出一种多分辨率智能参数化层次特征虚拟建模方法:基于集成块参数化的基本体素特征,以CSG树记录构型历史,提出改进的B-Rep半边结构进行模型几何特征表述,采用多分辨率控制下的三角剖分算法生成面片网络模型,几何引擎设计实现了CAD模型与虚拟显示模型的无缝集成;对集成块设计全生命周期的特征进行层次化封装,依据设计知识与设计规则,基于智能体技术赋予模型智能特征,最终实现集成块多分辨率智能参数化层次特征虚拟模型,有效实现了集成块交互式特征参数化设计与设计对象的动态、实时、真实感显示。
     第三,集成块虚拟设计场景的建立与自然、直观的人机交互手段的实现是人机结合的集成块优化设计得以实施的保证。创立一种适合集成块结构特点和设计需求的虚拟设计环境构成方案,建立开放式的集成块虚拟设计环境层次模型,实现集成块的三维立体图形实时动态显示,精确展现集成块布局和孔道网络结构形状,实时进行集成块上布局和集成块内布孔的碰撞检测,借助孔道网络内部桁架结构虚拟漫游,在拟实的集成块虚拟设计环境中进行自然直观的人机交互设计,使虚拟设计场景不仅仅是设计结果的展示手段,更有效融入集成块设计流程并成为集成块设计的有机组成部分。
     第四,深入分析集成块优化设计问题,建立集成块优化数学模型,规划集成块优化设计中各个典型环节,讨论其相互支撑关系与实现方法。在对基于小生境遗传退火算法(NGSA)的优化设计、基于人智的集成块虚拟设计与基于功能块的集成块智能设计三种设计模式分析的基础上,给出了虚拟环境下人机结合的集成块智能优化设计实现方式:在集成块虚拟设计环境中,以工程数据库为支撑,以人机结合的NGSA算法为内核,借助布局布孔智能体的引导,采用基于功能块的虚拟分层设计降低设计难度,实现了自动设计、半自动设计与人工设计三种设计模式的结合,以及计算智能与设计人员智能在真实感虚拟设计环境中的融合,使“人”“机”在多级层面有机结合并具有可操作性。集成块设计算例验证了方法有效性。
     第五,在上述研究基础上,应用Visual C++和OpenGL工具包,从底层开发集成块智能虚拟设计软件原型系统。详细讨论了系统总体架构、数据结构设计、交互界面设计及系统数据库设计。最后针对典型液压集成系统工程实例进行了完整设计,设计结果令人满意,较充分的验证了系统实用性及本文方法的可行性与有效性。
As the key component of integrated hydraulic system,hydraulic manifold block(HMB) is widely used.With the more and more complicated hydraulic systems,the design of HMB becomes more and more difficult.Therefore,introducing new methods and technologies into the field of HMB design becomes a trend in the future.Recently,researchers from home and abroad focus on applying different kinds of intelligent optimization methods to fulfill completely automatic HMB design.However,designers can't intervene or control the design process in this automatic method.So it often results in long design period and sometimes the design results need modification to meet the actual engineering requirements.In addition,the HMB design environments are usually 2D or simple 3D nowadays.In these environments, designers can only browse the HMB from outside and can't step into it to observe the inner holes intersection clearly,to locate the exact inference position,or to find out the possible movable space.These environments are relatively poor at interaction and visualization.Also, these half-close design environments restrict designers' creative ideation.HMB design is a process of interaction between human's creativity and environments and is a kind of intelligent action.Current HMB design does not offer convenient tools to permit designers join the design process.The HMB design is still a difficult,non-intuitionistic,and time-consuming process.
     In this dissertation,facing complex layout problems and aiming at effective HMB design, a new human-computer cooperative intelligent virtual design method(HCCIVD) is proposed based on thorough study on virtual design technology,computational intelligent algorithms, human-computer cooperation and artificial intelligence.Moreover,the implement strategy of the method is discussed and an open intelligent virtual design pattern and environment is developed.In this system,the whole design process of HMB can be fulfilled with high efficiency.The main research contents and results are as follows:
     On the basis of summarizing the features and design process of HMB,it is put forward that the core of HMB design is a problem of optimization of outer spatial layout scheme and inner holes connection scheme.It can be boiled down to a complex 3D spatial layout problem. Through analysis on different kinds of currently hot research strategies in layout problems,a HCCIVD method combining virtual design technology,computational intelligent algorithms, human-computer cooperation and artificial intelligence technology is proposed.Taking the virtual design environment as shell,the intelligent algorithm as core,the artificial intelligence as guidance,the engineering database as support,the method take full advantage of human's high-level decision-making ability and computer's rapid response and calculation power to realize the perfect harmonious unification of intelligence among designers,experts and computers.The method's feasibility,syncretizing mechanism,design process and implement key technologies are discussed in detail and the frame structure is given.HCCIVD method offers not only a brand new approach to HMB design problem,but also a reference to complex special layout problems.
     Virtual design environment is the platform of HCCIVD method while virtual modeling is the basis and key in building a virtual design system.For HMB design problem,a new intelligent multi-resolution featured parameterized virtual modeling method is brought forward.Taking featured parameterized modeling as kernel,using boundary representation 3D solid model,introducing agent-based intelligent behavior modeling,encapsulating leveled design lifecycle features,a virtual modeling method suitable for HMB design is developed.
     The creating of virtual design scene is the basis of a virtual design system while natural intuitionistic human-computer interaction manner is one of the features of a virtual design system.Based on the modeling method discussed above,a virtual design pattern and environment composing scheme is provided.Real-time dynamic display of 3D virtual design scene as well as bump detection and virtual walk are accomplished in this leveled open HMB virtual design environment.In this immersive HMB environment,designers can interact with the design objects in a natural way.Therefore,the design scene can not only display the design results,but also become an organic component in the HMB design process.
     An optimization mathematical model for HMB design is established.Then,the supporting relations and implementation of six design modules in optimization of HMB are discussed.After introduction of three design modes,automatic design based on niche genetic annealing algorithm(NGSA),virtual design based on human's intelligence and intelligent design based on function blocks,a HMB human-computer cooperative intelligent optimization method in virtual environment is given.In HMB virtual design environment, using the databases as the bottom foundation,centering on human-computer cooperative NGSA,guiding with layout and connection agents,taking advantage of former design results and experts' knowledge and experience with virtual layered function blocks,this method realizes the combination of three design patterns(automatic,semiautomatic and manual) and three kinds of intelligences(computer intelligence,experts intelligence and designers intelligence).The method is an operative multi-level integration of human and computer's intelligence.A HMB design example verifies the validity of the method.
     Based on the researches mentioned above,an intelligent virtual design software package is developed using Visual C++ and OpenGL toolkit.The system frame structure design,data structure design,interface design and database design are discussed in detail.In the end,a typical integrated hydraulic system is designed by using this software and the satisfying results have testified the practicability of this software as well as the feasibility and effectiveness of the method proposed in this dissertation.
引文
[1]lwatsuki F.Hydraulic manifolds.Machine Design,1978,50(13):104-107.
    [2]Jacobs E.Look at hydraulic manifolds.Hydraulics & Pneumatics,1991,44(10):51-52.
    [3]王广怀.液压技术应用.哈尔滨:哈尔滨工业大学出版社,2001.
    [4]李利.液压集成块智能优化设计理论与方法研究:(博士学位论文).大连:大连理工大学,2002.
    [5]Backe W.Program package HYKON for planning and design of hydraulic control blocks.Computer Aided Design in High Pressure Hydraulic Systems,1983:97-98.
    [6]Woodwark J R.Solid modelling of fluid power components.Computer Aided Design in High Pressure Hydraulic Systems,1983:99-101.
    [7]Rinkinen J A.HYBLO-CAD/CAM:Interactive program package for hydraulic cartridge valve blocks.Tampere International Conference on Fluid Power,Finland,1987.
    [8]Seheehner Y.CAD shines in hydraulic manifold design.Hydraulics & Pneumatics,1990,43(3):16-17.
    [9]Chambon R,Tollenaere M.Automated AI-based mechanical design of hydraulic manifold blocks.Computer Aided Design,1991,23(3):213-222.
    [10]Fok S C,Xiang W,Yap F F.Feature-based component models for virtual prototyping of hydraulic systems.International Journal of Advanced Manufacturing Technology,2001(18):665-672.
    [11]Eaton Fluid Power-lndustrial and Mobile.http://eatonhydraulics.com/home_body,html,2007.
    [12]Automation Studio for Parker.http://www.parker.com/parkersql,2007.
    [13]Engineering Design-Software and Services.http://www.vestusa.com/Products.htm,2007.
    [14]Moog Inc-Integrated Hydraulic Manifold Systems.http://www.moog.com,2007.
    [15]Apollo Machinery Ltd-Hydraulic Manifold-Products.http://hydraulic-manifold.com,2007.
    [16]Atos Electro-hydraulic Blocks.http://www.atos.com,2007.
    [17]Bosch Rexroth-FMSsoft.http://www.bosehrexroth-us.com,2007.
    [18]MDTools 5_0.http://www.vestusa.com/MDTools5.html,2007.
    [19]SICV Library.http://www.eatonhydraulics.com/sicv/sicv_body.html,2007.
    [20]陈鹰,路甬祥.三维插装阀液压系统阀块计算机辅助设计研究.机床与液压,1989,(3):7-11.
    [21]Wang R L,Chen Y.CAD of hydraulic manifold with object.orient feature-based solid modeling.Proceedings of the 48th National Conference on Fluid Power,USA,2000:187-191.
    [22]张海平,钟廷修.插装阀复杂系统的CAD.中国机械工程学会第三届液压CAD和控制系统学术讨论会论文集,1986.
    [23]陈子侠.二通插装阀集成系统CV-CAD实用软件开发.机械设计与制造,1995,(4):17-18.
    [24]乔进友,金忠孝,钟廷修.液压集成块CAD软件的研究开发.液压气动与密封,1997,(3):42-44.
    [25]周惠友,郭海英,钟廷修.液压集成块设计趋势.液压气动与密封,2001(1):19-21.
    [26]熊壮,喻道远,段正澄.液压集成块CAD/CAM系统的设计与研究.华中理工大学学报,1999,27(8):27-29.
    [27]赵葛霄,司徒忠,贺继钢等.液压集成块CAM系统开发研究.机床与液压,2000,(6):25-26.
    [28]Wong P K,Tam L M,Tam S C.Research on intelligent CAD for hydraulic manifold blocks.Proceedings of the 3rd China Association for Science and Technology(CAST) conference of Young Scientists,Beijing,China,1998:118-121.
    [29]Xiang W,Chuen C W,Wong C M et al.Feature representation and database schema of an object-oriented feature-based product model for hydraulic manifold blocks,international Journal of Advanced Manufacturing Technology,2000,16(3):182-188.
    [30]高卫国,徐燕中,牛文铁.液压集成块三维设计方法研究.液压与气动,2007,(2):23-26.
    [31]孙志军.液压集成块虚拟设计平台的研究:(硕士学位论文).上海:东华大学,2005.
    [32]刘焕平.基于虚拟设计的液压集成块CAD的研究:(硕士学位论文).沈阳:辽宁工学院,2007.
    [33]曹明.基于ARX的液压集成块CAD系统的研究与开发:(硕士学位论文).武汉:中国地质大学,2006.
    [34]王占奎,陈锡渠,焦红伟.基于遗传粒子群算法的集成块布孔优化及其实现.工程设计学报,2008,15(1):66-71.
    [35]洪国俊,夏永胜.液压集成块孔道设计专家系统HIBD.机床与液压,1994,(1):37-42.
    [36]王积伟,叶冰,王晓峻.应用数据结构设计液压集成块.机床与液压,1996,(3):36-38.
    [37]胡萍,丁子佳,冯晓梅.交互式设计液压系统集成块.机械设计与制造,1997,(6):30-31.
    [38]刘惠敏,张亚平,郑玉明.液压集成阀块CAD/CAM方法研究.机械科学与技术,1998,17(1):135-137.
    [39]贾竹青.液压集成块设计法分析.液压与气动,1998,(1):7-8.
    [40]郭捷,朱世和,郭津津.液压集成块CAD系统的研究与设计.天津理工学院学报,2001,17(3):35-37.
    [41]Dong Hua.CAD/CAM for hydraulic systems.Proceedings of the 46th National Conference of Fluid Power,USA,1994.
    [42]牛治刚,谢琳,董华等.实用液压集成块CAD的开发和研究.组合机床与自动化加工技术,1995,(4):18-20.
    [43]Xie L,Dong H,Feng X Aet al.Research on feature-based CAD/CAM for hydraulic valve blocks.Proceedings of the 47th National Conference on Fluid Power,USA,1996:359-367.
    [44]Xie L,George E.Feature-based optimization design of hydraulic valve blocks.Proceedings of the 48th National Conference of Fluid Power,USA,2000:397-406.
    [45]田树军,李利,冯毅.基于计算智能的液压集成块优化设计.中国机械工程,2003年,14(17):1492-1495.
    [46]田树军,张宏.液压管路动态特性的Simulink仿真及其应用.系统仿真学报,2006,18(5):1136-1138.
    [47]田树军,贾春强,刘万辉.基于智能优化方法的插装阀液压集成块设计.计算机集成制造系统,2007年,13(6):1041-1046.
    [48]刘万辉.液压集成块CAD/AM集成系统理论与开发技术研究:(博士学位论文).大连:大连理工大学,2007.
    [49]贾春强.插装式集成块智能优化设计理论与方法研究:(博士学位论文).大连:大连理工大学,2007.
    [50]钱志勤.人机交互的演化设计方法及其在航天器舱布局方案设计中的应用:(博士学位论文).大连:大连理工大学,2001.
    [51]Tsai C C,Chen S J.An H-V alternating router.IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems,1992,11(8):976-991.
    [52]Tam V.Removing node and edge overlapping in graph layouts by a modified EGENET solver.Proceedings of the International Conference on Tools with Artificial Intelligence,1999:218-225.
    [53]黄文奇,詹叔浩.求解Packing问题的拟物方法.应用数学学报,1979,2(2):176-180.
    [54]滕弘飞,葛文海.旋转锥体空间中圆柱体群布局优化.计算机学报,1993,16(7):519-525.
    [55]王金敏,简其和,喻宏波.针对目标的布局启发式算法.天津大学学报,2005,38(6):499-502.
    [56]Liew C W.Using feedback to improve VLSI designs.Proceedings of the Conference on Artificial Intelligence Application,1995:109-116.
    [57]Bahrami A,Dagli C H.Hybrid intelligent packing system(HIPS) through integration of artificial neural networks,artificial intelligence,and mathematical programming.Applied Intelligence,1994,4(4):321-336.
    [58]晏敏,张昌期.平面布局专家系统的自学习智能回溯搜索策略.华中理工大学学报,1989,17(4):45-50.
    [59]曹斌,谭建荣,伊国栋.管线布局设计的约束因素分析及建模方法研究.中国机械工程,2002,13(15):1318-1323.
    [60]王英林,杨东,张申生等.基于粒度分层的布局设计模型.上海交通大学学报,2000,34(7):873-876.
    [61]Dilvan A M.Using software agents to generate VLSI layout.IEEE Experts,1997,(11):26-32.
    [62]Han S Y,Kim Y S,Lee T Yet al.A framework of concurrent process engineering with agent-based collaborative design strategies and its application on plant layout problem.Computers & Chemical Engineering,2000,24(2):1673-1679.
    [63]Goldstein D,Kaminski R.Multi-agent planning for network layout:CBR,CLIPS,Java,knowledge base management work together.PC AI,2001,15(6):43-46.
    [64]Grabska E.Designing floor-layouts with the assistance of curious agents.Proceedings of the 5th International Conference on Computer Recognition Systems,2006:883-886.
    [65]张刚,殷国富,邓克文等.基于多组件智能体技术的布局问题求解方法研究.计算机工程,2005,31(19):6-8.
    [66]钟伟才,刘静,刘芳等.组合优化多智能体进化算法.计算机学报,2004,27(10):1341-1353.
    [67]Park K W,Grierson D E.Pareto-optimal conceptual design of the structural layout of buildings using a multu-criteria genetic algorithm.Computer Aided Civil and Infrastructure Engineering,1999,14(3):163-170.
    [68]Hamamoto S,Yih Y,Salvendy G.Development and validation of genetic algorithm-based facility layout-a case study in the pharmaceutial industry.International Journal of Production Research,1999,37(4):749-768.
    [69]Krishnakumar K,Meikote S N.Machining fixture layout optimization using the genetic algorithm.International Journal of Machine Tools and Manufacture,2000,40(4):579-598.
    [70]Nakajima T,Hashimoto S.Office layout support system using interactive genetic algorithm.IEEE Congress on Evolutionary Computation,2006:56-63.
    [71]Rahim H A,Rahman A,Ahmad R et al.The performance study of two genetic algorithm approaches for VLSI macro-cell layout area optimization.Second Asia International Conference on Modeling&Simulation,2008:207-212.
    [72]于洋,查建中,唐晓君.基于学习的遗传算法及其在布局中的应用.计算机学报,2001,24(12):1242-1249.
    [73]翟金刚,冯恩民,李振民等.带性能约束布局问题的不干涉遗传算法.大连理工大学学报,1999,39(3):352-357.
    [74]马成业,李永礼.基于遗传算法求解复杂时间-空间布局问题.兰州理工大学学报,2007,33(1):151-154.
    [75]Cagan J.Shape annealing solution to the constrained geometric knapsack problem.Computer Aided Design,1994,6(10):763-770.
    [76]Szykman S,Cagan J.Constrained three-dimensional component layout using simulated annealing.Journal of Mechanical Design,Transactions OftheASME,1997,119(1):28-35.
    [77]李刚,查建中,陆一平.基于并行模拟退火算法的复杂机电产品的布局设计.微电子学与计算机,2006,23(增刊):111-113.
    [78]王金敏,刘季烨.机械产品布局设计研究.机械设计,2007,24(2):27-29.
    [79]Gallardo A,Lowther D A.Some aspects of niching genetic algorithms applied to electromagnetic device optimization.IEEE Transactions on Magnetism,2000,36(4):1076-1079.
    [80]Cho D H,Jung H K,Lee C G.Induction motor design for electric vehicle using a niching genetic algorithm.IEEE Transactions on Industry Applications,2001,37(4):994-999.
    [81]林焰,郝聚民,纪卓尚等.隔离小生境遗传算法研究.系统工程学报,2000,15(1):86-91.
    [82]侯胡的,朱灯林,康艳军.基于小生境技术的任意多边形优化排样.机械制造与研究,2004,33(1):10-17.
    [83]Lenat D B,Feigenbaum E A.On the thresholds of knowledge.Artificial Intelligence,1991,47(1):185-230.
    [84]钱学森,于景元,戴汝为.一个科学新领域-开放的复杂巨系统及其方法论.自然杂志,1990,13(1):3-10.
    [85]戴汝为.“人机结合”大成智慧.模式识别与人工智能,1994,7(3):181-190.
    [86]杨灿军,陈鹰,路甬祥.人机一体化智能系统理论及应用研究探索.机械工程学报,2000,36(6):42-47.
    [87]Hower W.Placing computations by adaptive measures.Artificial Intelligence in Engineering,1997,11(3):307-317.
    [88]He W Q,Marriott K.Constrained graph layout.Constraints,1998,3(4):289-314.
    [89]Goetschalckx M.Interactive layout heuristic based on hexagonal adjacency graphs.European Journal of Operational Research,1992,63(2):304-321.
    [90]胡静,李金龙,陈恩红等.交互式遗传算法中用户评估方法研究.小型微型计算机系统,2001,22(5):562-564.
    [91]钱志勤,滕弘飞,孙治国.人机交互的遗传算法及其在约束布局优化中的应用.计算机学报,2001,24(5):553-559.
    [92]刘占伟,滕弘飞.基于人智-图形-计算的布局设计方法.大连理工大学学报,2006,46(2):228-234.
    [93]FU M C,East E W.Virtual design review.Computer Aided Civil and Infrastructure Engineering,1999,14(1):25-35.
    [94]Smith R P,Heim J A.Virtual facility layout design:the value of an interactive three-dimensional representation.International Journal of Production Research,1999,37(17):3941-3957.
    [95]Iqbal M,Hashmi M S J.Design and analysis of a virtual factory layout.Journal of Materials Processing Technology,2001,118(1):403-410.
    [96]周前祥,陈善广,姜国华等.航天器座舱布局工效学仿真实验系统—虚拟座舱的研究.系统仿真学报,2001,13(3):291-293.
    [97]唐晓君,查建中,陆一平.基于虚拟现实的人机结合方法及其在布局中的应用.机械工程学报,2003,39(8):95-100.
    [98]龚全胜.基于遗传算法的制造系统虚拟设备布局设计:(硕士学位论文).武汉:华中科技大学,2004.
    [99]张煜,王少梅.虚拟现实技术在码头布局设计中的应用.计算机工程与设计,2006,27(23):421-423.
    [100]卢桂萍,何汉武,罗辑.虚拟车间设备布局优化的三维可视化研究.重庆工学院学报,2007,21(1):105-109.
    [101]汪成为,高文,王行仁.灵境(虚拟现实)技术的理论、实现及应用.北京:清华大学出版社,1997.
    [102]刘宏增,黄靖远.虚拟设计.北京:机械工业出版社,1999.
    [103]周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社,1999.
    [104]康立山,谢云,尤矢勇等.非数值并行算法—模拟退火算法.北京:科学出版社,2000.
    [105]潘中良,熊银根.一种基于小生境的遗传算法及其应刚.中山大学学报,2001,40(5):44-51.
    [106]胡舜耕,张莉,钟义信.多Agent系统的理论、技术及其应用.计算机科学,1999,26(9): 20-24.
    [107]Burmeister B,Haddadi A,Matylis G.Applications of multi-agent systems in traffic and transportation.IEEE Transaction on Software Engineering,1997,144(1):51-60.
    [108]夏冰,胡坚明,张佐等.基于多智能体的城市交通诱导系统可视化模拟.系统工程,2002,20(5):72-78.
    [109]Aylett R,Luck M.Applying artificial intelligence to virtual reality:Intelligent Virtual Environments.Applied Artificial Intelligence,2000,14(1):3-32.
    [110]Mary L M,Pak S L.An agent approach to supporting collaborative design in 3D virtual worlds.Automation in Construction,2005,14(3):189-195.
    [111]徐冰.智能虚拟环境Agent技术研究:(博士学位论文).杭州:浙江大学,2005.
    [112]卜克明,郝建平,刘英华.液压集成块的空间管路设计与造型.系统仿真学报,2006,18(增刊1):287-290.
    [113]张滢,杨者青,苏达仁等.STL、DXF等通用文件格式图形的真实感显示.小型微型计算机系统,2001,22(10):1277-1280.
    [114]林锐,石教英.基于OpenGL的可复用软构件库与三维交互设计.计算机研究与发展,2000,37(11):1360-1366.
    [115]艾萌.一种基于语音交互的虚拟设计系统:(硕士学位论文).西安:西安电子科技大学,2005.
    [116]彭群生,鲍虎军,金小刚.计算机真实感图形的算法基础.北京:科学出版社,1999.
    [117]秦绪佳,纪风欣,欧宗瑛.基于B-Rep模型的三维实体的真实感显示.机械科学与技术,2001,20(2):283-285.
    [118]刘惠义,邱云,张春红.虚拟视景交互漫游系统的实时碰撞检测方法研究.河海大学学报,2005,33(3):339-342.
    [119]侯守明,朱雅丽.基于OpenGL的虚拟漫游技术研究.图形图像,2007,257(4):43-45.
    [120]熊壮.复杂型液压集成块CAD/CAM系统的研究与实践:(博士学位论文).武汉:华中理工大学,2000.
    [121]霍军周.人机结合协同进化设计方法及其应用:(博士学位论文).大连:大连理工大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700