基于融雪化冰的传导沥青路面优化设计及粘弹性响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用沥青混凝土自身的优势,设计出高传导沥青路面用于冬季路面融雪是目前国内外专家学者普遍研究的课题。本文运用有限单元法利用传热学基本原理分析沥青路面的热传导系数、换热管道的埋管深度及埋管间距等对传导沥青路面夏季降温、冬季融冰的影响效果,确定出合理的埋管深度及埋管间距,并进行了室内外试验评价;对合理换热管道布置的传导沥青路面在移动荷载作用下的粘弹性响应进行分析,预估其设计疲劳寿命。本文预期的研究成果,不仅对机场跑道、道路、桥面的夏季降温、冬季融雪化冰方法具有重要的现实意义,而且对传导沥青路面的结构设计起到一定的指导作用。
     利用有限元软件ANSYS对传导沥青路面融雪性能进行优化设计。传导沥青路面融雪化冰时间与沥青混凝土材料导热系数呈幂指数关系;埋管越深,提高沥青混凝土的导热系数对融雪化冰效果越明显。传导沥青路面中换热管道可根据沥青铺装层的厚度分两种方式进行布置(沥青混凝土导热系数≥3.0W/(m·℃)):
     (1)埋管深度为10cm时埋管间距为0.1m;(2)埋管深度为4cm时埋管间距为0.15m。
     通过对传导沥青路面在夏季炎热条件下温度场分布研究得出:沥青路面最高温度出现在路表以下2cm处。传导沥青混凝土材料的选择可使得沥青路面最高温度降低3.8%以上。在换热管道内通入助冷剂(水)可有效降低道路表面及内部温度。对于导热系数为3.0W/(m·℃)的传导沥青路面而言,夏季在换热管道内通入助冷剂(25℃水)可使道路表面温度降幅达20%以上。
     采用有限元软件ABAQUS对埋管型传导沥青路面在移动荷载作用下的粘弹性响应进行了研究。得出了将沥青混合料粘弹性本构关系转换为Prony级数的方法。无论是埋有换热管道的传导沥青路面还是普通沥青路面,在行车荷载作用下最大拉应变均发生在铺装层下面层底部。换热管道可有效削弱中面层底部产生的最大拉应变。道路结构埋管与否以及埋何种换热管道对路面疲劳寿命影响不大,埋管型传导沥青路面可按普通沥青路面设计方法进行设计。
It is a common research topic of many experts and scholars at present to design a type of conductive asphalt pavement which can be used to melting snow and ice in winter on the basis of the advantages of asphalt pavement itself. In the study, how some parameters affect the cooling in summer and melting snow of asphalt pavement in winter is analyzed. The parameters involve the thermal conductivity of asphalt pavement, the depth of heat exchange tubes and distances between tubes etc. And the logical depth of interred tubes and distance are given. Especially, the cooling and melting snow experiments of asphalt slabs are done in laboratory. The viscoelastic response of the conductive asphalt pavement with the logical depth of interred tubes and distances is analyzed in moving load. And the design fatigue life of the conductive asphalt pavement is forecasted. The study is expected to play a guiding role in structural design of the conductive asphalt pavement and have important practical significance in the cooling and melting snow of airport runway, road and bridge.
     The melting snow and ice performance of the conductive asphalt pavement with different interred tubes' ways is studied using the finite element software ANSYS. And the design of the heat exchange tubes' arrangement is optimized. The relation of the beginning melting-ice time of the conductive asphalt pavement and the thermal conductivity of asphalt pavement can be described by exponential function. The deeper the tubes are interred, the better to increase the thermal conductivity of asphalt pavement may improve the performance of melting snow and ice. The logical arrangement ways of the heat exchange tubes in the conductive asphalt pavement whose thermal conductivity is more than≥3.0W/(m·℃may be the following:(1) The distance between tubs is 0.1m when the depth of interred tubes is 10cm; (2) The distance between tubs is 0.15m when the depth of interred tubes is 4cm.
     The temperature distribution of the conductive asphalt pavement in summer is simulated by ANSYS. The results show that the 2cm from the surface to bottom is the maximum temperature of the asphalt pavement. To choose the conductive asphalt pavement can decrease the maximum temperature more than 3.8%. The road surface and internal temperature can be reduced effectively when the heat exchange tubes are full of cooling agent-water. And the decreasing temperature range is more than 20% when the thermal conductivity is 3.0W/(m·℃).
     The viscoelastic response of the conductive asphalt pavement with the logical depth of interred tubes and distances is analyzed in moving load using the finite element software ABAQUS. The transition method from viscoelastic constitutive relation of asphalt mixture to Prony series is given. The maximum tensile strain appears in the bottom of the bottom asphalt layer whether the pavement is conductive with interred tubes or common. The heat exchange tubes can weaken the maximum tensile strain of the bottom of the middle layer effectively. Whether the heat change tubes are interred in asphalt pavement has little effect on the fatigue life of the asphalt pavement. The asphalt pavement with tubes can be designed using the same method as the asphalt pavement without tubes.
引文
[1]林红梅.截至09年底中国高速公路通车总里程达6.5万公里[N].今日中国,2010.1.15.
    [2]沈金安.国外沥青路面设计方法总汇[M].北京:人民交通出版社,2004.
    [3]常魁和.公路沥青路面养护新技术[M].北京:人民交通出版社,2001.
    [4]徐世法,季节,罗晓辉,高建立.沥青铺装层病害防治与典型实例[M].北京:人民交通出版社,2005.
    [5]Inofrmation on:http://www.cclndx.com/show.asp?textid=6243.
    [6]Information on:http://www.9811.com.cn/news/2008/228369.php.中国公路网,2008.1.21.
    [7]王庆艳.太阳能-土壤蓄热融雪系统路基得热和融雪机理研究[D]:硕士学位论文.辽宁:大连理工大学,2007.
    [8]李国平,韩伟华.当前道路融雪方法及未来发展趋势[J].科技信息,2008,21:55.
    [9]Marcel Loomans, Henk Oversloot. Design Tool for the Thermal Energy Potential of Asphalt Pavements[C]. Eighth International IBPSA Conference proceeding,2003:745-752.
    [10]李波.导热沥青混凝土及其性能研究[D]:[硕士学位论文].武汉:武汉理工大学,2008.
    [11]W.T. van Bijsterveld, L.J.M.Houben, A.Scarpas, and A.A.A Molenaar. Using Pavement as Solar Collector:Effect on Pavement Temperature ans Structural Response[R]. Transportation Research Reconrd,2001,1778:140-148.
    [12]Information on:http://www.roadenergysystems.nl/.道路能量系统官网.
    [13]Dr.ir. A.H. de Bondt. Generation and Saving of Energy via Asphalt Pavement Surfaces[R]. Ooms Nederland Holding bv, the Netherlands, November,2006.
    [14]Information on:http://www.ooms.nl/.荷兰Ooms Avenhorn holding公司官网.
    [15]Information on:http://www.groundmed.eu/hp best_practice_database/database/568/.
    [16]Gordon. S. Energy from the ground up[interseasonal heat transfer][J]. Power Engineer.2005, 19(4):20-23.
    [17]Invisible Heating Systems-Road Energy System. Scottish Sustainable Development Forum, E-Bulletin. January 2007.
    [18]Information on:http://www.invisibleheating.co.uk/.苏格兰隐形加热公司官网.
    [19]M. Hasebel, Y. Kamikawa and S. Meiarashi. Thermoelectric Generators using Solar Thermal Energy in Heated Road Pavement[C]. International Conference on Thermoelectrics,2006: 697-700.
    [20]Wendel, Ion L. Paving and Solar Energy System and Methos. United States Patent,4132074, January 2,1979.
    [21]Rajib B. Mallick, Baoliang Chen and Sankha Bhowmick. Capturing Solar Energy from Asphalt Pavements[C]. International ISAP Symposium on Asphalt Pavements and Environment, Zurich, Switzerland,18th-20th August,2008:161-167.
    [22]Chen, Baoliang, S Bhowmick and Rajib B Mallick. A laboratory study on reduction of heat island effect of pavements[C]. Association of Asphalt Paving Technologists(AAPT),2009 annual meeting, March 15-18,2009.
    [23]Rajib B.Mallick, Baoliang Chen and Sankha Bhowmick. Reduction of Urban Heat Island Effect through Harvest of Heat Energy from Asphalt Pavements. Information on: http://heatisland2009.lb1.gov/docs/211420-mallick-doc.pdf.
    [24]吴少鹏,李波等.一种导热型沥青路面太阳能集热系统及其应用.中国专利,200610019477.X,2008.9.17.
    [25]Rees S J, J D Spitler, X Xiao. Transient Analysis of Snow-melting System Performance [J].ASHRAE Transactions,2002,108(2):406-424.
    [26]Sean Lynn Hockersmith. Experimental and computational investigation of snow melting on heated horizontal surfaces[D]:Bachelor of Science. Oklahoma State University. Stillwater, Oklahoma.1999.
    [27]Chiasson A D, J D Spitler, S J Rees, M D Smith. A Model for Simulating the Performance of a Pavement Heating System as a Supplemental Heat Rejecter With Closed-Loop Ground-Source Heat Pump Systems[J]. ASME Journal of Solar Energy Engineering,2000, 122(4):183-191.
    [28]Xiaobing Liu. Development and experimental validation of simulation of hydronic snow melting systems for bridges[D]:Doctor of Philosophy. Oklahoma State University, USA, May,2005.
    [29]Mariuse Owczarek, Roman Domanski. Application of dynamic solar collector model for evaluation of heat extraction from the road bridge[C].9th International Conference on Thermal Energy Storage. Warsaw in Poland, Vol.Ⅱ,2003.
    [30]侯作富.融雪化冰用碳纤维导电混凝土的研制及应用研究[D]:[博士学位论文].武汉:武汉理工大学,2003.
    [31]武海琴.发热电缆用于路面融雪化冰的技术研究[D]:[硕士学位论文].北京:北京工业大学,2005.
    [32]李炎峰,武海琴,王贯明等.发热电缆用于路面融雪化冰的实验研究[J].北京工业大学学报,2006,32(3):217-222.
    [33]李炎峰,胡世阳,武海琴等.发热电缆用于路面融雪化冰的模型[J].北京工业大学学报,2008,32(12):1298-1303.
    [34]Huajun Wang, Jun Zhao and Zhihao Chen. Experimental investigation of ice and snow melting process on pavement utilizing geothermal tail water[J]. Energy Conversion and Management,2008,49:1538-1546.
    [35]Huajun Wang, Zhihao Chen. Study of critical free-area ratio during the snow-melting process on pavement using low-temperature heating fluids[J]. Energy Conversion and Management, 2009,50:157-165.
    [36]王庆艳.太阳能—土壤蓄热融雪系统路基得热和融雪机理研究[D]:[硕士学位论文].大连:大连理工大学,2007.
    [37]管数园.电缆加热系统进行融雪的数值分析研究[D]:[硕士学位论文].上海:上海交通大学,2008.
    [38]逯彦秋.钢桥桥面铺装层温度场的研究[D]:[博士学位论文].哈尔滨:哈尔滨工业大学,2007.
    [39]近藤佳宏.日本土木工程学会论文报告集[R].同济大学道路与交通研究所,1976.
    [40]秦健,孙立军.国外沥青路面温度预估方法综述[J].中外公路,2005,25(6):19-23.
    [41]Huber G.A. Weather Database for the Superpave Mix Design System[R]. Strategic Highway Research Program, SHRP-A-648A, National Research Council, Washington, DC,1994.
    [42]Barber E.S. Calculation of maximun pavement temperature from weather reports [R]. Transportation Research Record, Washington, D.C.,1957,168:1-18.
    [43]Christison J.T., K.O. Anderson. The Response of Asphalt Pavement to Low Temperature Climatic Environment[C]. Proceeding of the 3th International Conference on the Structure Design of Asphalt Pavement, London, England, September 11-15,1972.
    [44]Hermansson Ake. Simulation Model for Calculating Pavement Temperature Including Maximum Temperature[J]. Transportation Research Record,2000,1699:134-141.
    [45]Yavuzturk C., Ksaibati K. and Chiasson A.D. Assessment of Temperature Fluctuations in Asphalt Pavements Due to Thermal Environmental Conditions Using a Two Dimenstional, Transient Finite-Difference Approach[J]. Journal of Materials in Civil Engineering,2005,17: 465-475.
    [46]Minhoto M.J.C., Pais J.C.and Paulo A.A. Predicting Asphalt Pavement Temperature with a Three-Dimensional Finite Element Method[R]. Transportation Research Record, Washington, D.C.,2005,1919:96-110.
    [47]Marcel Loomans, Henk Oversloot, Arian de Bondt, Rob Jansen and Hans van Rij. Design Tool for the Thermal Energy Potential of Asphalt Pavements[C]. Eighth Interntional IBPSA Conference, Eindhoven, Netherlands, August 11-14,2003:745-752.
    [48]方福森.路面工程[M].北京:人民交通出版社,1993.
    [49]韩子东.道路结构温度场研究[D]:[硕士学位论文].西安:长安大学,2001.
    [50]吴赣昌.半刚性路面温度应力分析[M].北京:科学出版社,1995.
    [51]吴赣昌.半刚性基层沥青路面温度场的解析理论[J].应用数学和力学,1997,18(2):169-176.
    [52]吴赣昌,凌天清.半刚性基层温缩裂缝的扩展机理分析[J].中国公路学报,1998,11(1):21-28.
    [53]吴赣昌.层状路面体系温度场分析[J].中国公路学报,]992,5(4):]7-25.
    [54]吴赣昌,黄国顺.自然条件下沥青路面结构的温度分布[J].佛山科学技术学院学报(自然科学版),1998,16(1):47-53.
    [55]贾璐.沥青路面高温温度场数值分析和实验研究[D]:[硕士学位论文].长沙:湖南大学,2004.
    [56]张兴军,白成亮.沥青路面温度应力有限元分析[J].华东公路,2006,5:83-86.
    [57]罗桑,李勇,舒富民,陈磊磊.沥青路面结构非线性瞬态温度场数值模拟[J].交通与计算机,2008,26(1):92-95.
    [58]罗桑,钱振东,白琦峰.沥青路面结构非线性瞬态温度场模型研究[J].交通运输工程与信息学报,2009,7(3):33-39.
    [59]A.T. Papagiannakis, N. Amoach and R. Taha. Formulation for Viscoelastic Response of Pavements under Moving Dynamic Loads[J], Journal of Transportation Engineering,1996, 122(2):140-145.
    [60]A.T. Papagiannakis, A. Abbas, E. Masad. Micromechanical analysis of viscoelastic properties of asphalt concretes[R]. Transportation Research Record,2002,1789:113-120.
    [61]Raj V. Siddharthan, Jian Yao, and Peter E. Sebaaly. Pavement Strain from Moving Dynamic 3D Load Distribution[J]. Journal of Transportation Engineering,1998,124(6):557-566.
    [62]Pengmin Lv, Runli Tian, and Xiaoyun Liu. Dynamic Response Solution in Transient State of Viscoelastic Road under Moving Load and Its Application[J]. Journal of Engineering Mechanics,2010,136(2):168-173.
    [63]罗辉.沥青路面粘弹性响应分析及裂纹扩展研究[D]:[博士学位论文].武汉:华中科技大学,2007.
    [64]叶勇.基于ABAQUS软件的沥青路面结构非线性分析[D]:[硕士学位论文].衡阳:南华大学,2007.
    [65]滕旭秋.柔性基层沥青路面设计指标及性能预估模型研究[D]:[博士学位论文].西安:长安大学,2009.
    [66]赵镇南.传热学[M].北京:高等教育出版社,2002.
    [67]张朝晖.ANSYS8.0热分析教程与实例解析[M].北京:中国铁道出版社,2005.
    [68]唐兴伦,范群波等.ANSYS工程应用教程(热与电磁学篇)[M].北京:中国铁道出版社,2003.
    [69]F.P.Incropera, D.P.DeWitt, T.L.Bergman and A.S.Lavine著.葛新石,叶宏译.Foundamentals of Heat and Mass Transfer[M].北京:化学工业出版社,2007.
    [70]ANSYS Users Manuals for ANSYS 10.0, Analysis Guides.
    [71]Information on:http://www.weather.com.cn/.中国天气网.
    [72]Information on:http://en.wikipedia.org/wiki/Thermal_conductivity.
    [73]国家技术监督局,建设部.民用建筑热工设计规范(GB50176-93)[S].北京:中国建筑工业出版社,1999.
    [74]严作人.层状路面温度场分析[D]:[硕士学位论文].上海:同济大学,1982.
    [75]周淑贞.气象学与气候学[M].北京:高等教育出版社,1997.
    [76]葛绍岩,那鸿恍.热辐射性质及其测量[M].北京:科学出版社,1989.
    [77]Delmonte J.著.碳纤维和石墨纤维复合材料技术[M].北京:科学出版社,1987.
    [78]张容,李竑松,向艳红等.KFTA太阳模拟器研制[J].航天器环境工程,2009,26(6):548-553.
    [79]Information on:http://zdz.hbqx.gov.cn/.湖北省气象与生态自动监测网.
    [80]Information on:http://www.acecrc.sipex.aq/access/page/?page=1. Sea Ice Physics and Ecosystem experiment.
    [81]沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版社,2001.
    [82]Finn F., Saraf Cl, Kulkarni R., Nair K., Smith W. and Abdullah A. Development of pavement structural subsystems[R]. Transportation Research Record, Washington, D.C.,1986,291.
    [83]R.M. Mulungye, P.M.O. Owende and K. Mellon. Finite element modeling of flexible pavements on soft soil subgrades[J]. Materials & Design,2007,28:739-756.
    [84]刘立新.沥青混合料粘弹性力学及材料学原理[M].北京:人民交通出版社,2006.
    [85]郑传超,王秉纲.道路结构力学计算(上)[M].北京:人民交通出版社,2003.
    [86]周键炜,王大明,白琦峰.沥青混合料动态模量主曲线研究[J].公路工程,2009,34(5):60-62.
    [87]叶群山.纤维改性沥青胶浆与混合料流变特性研究[D]:[博士学位论文].武汉:武汉理工大学,2007.
    [88]Mostafa A. Elseifi, Imad L. Al-Qadi, F.ASCE and Pyeong Jun Yoo. Viscoelastic modeling and field validation of flexible pavements[J]. Journal of Engineering Mechanics,2006,2: 172-178.
    [89]Hyun-Jong Lee, Y.Richard Kim. Viscoelastic constitutive model for asphalt concrete under cydlic loading[J]. Journal of Engineering Mechanics,1998,1:32-40.
    [90]Tzikang Chen. Determing a Prony Series for a Viscoelastic Material From Time Varying Strain Data[R]. Technical Report:NASA-2000-tm210123, May,2000.
    [91]ABAQUS Users Manuals for ABAQUS 6.0, Abaqus Guides.
    [92]Hibbitt, Karlsson & Sorensen著.朱以文,蔡元奇译.ABAQUS/Standard[M].武汉:武汉大学出版社,2003.
    [93]孙训方,方孝淑,关来泰.材料力学(Ⅰ)[M].北京:高等教育出版社,2009.
    [94]中华人民共和国交通部.JTG D50-2006.公路沥青路面设计规范.北京:人民交通出版社,2006.
    [95]王金昌,陈页开.ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700