结合景观遗传学的滇金丝猴栖息地景观连接度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球变化下的物种栖息地丧失和破碎化给生物多样性保护带来了新的问题和挑战。由景观生态学和种群遗传学结合而成的景观遗传学,在定量确定栖息地景观特征对种群遗传结构的影响方面是一个有力的工具,并且在生物多样性保护和自然保护区管理方面有巨大的潜力。通过关联基因流构型与景观结构,来评估景观对物种运动的促进程度(景观连接度)已成为当前景观遗传学研究的焦点。
     滇金丝猴是我国特有的珍稀濒危物种之一。滇金丝猴栖息地丧失及破碎化的严峻问题,使得滇金丝猴的基因交流受阻,遗传多样性水平受到严重威胁。论文总结论述了景观遗传学的概念、方法和应用,从而为利用景观遗传学对生物多样性保护和自然保护区管理提供理论、方法的支撑和参考;对滇金丝猴栖息地景观格局进行了分析,选取景观总体面积特征、周长特征、斑块面积、周长特征,景观多样性与均匀度等指标对研究区景观格局和破碎化程度进行定性、定量分析和评价。以阐明各景观组分的差异,评价其景观破碎化程度,进一步了解滇金丝猴生境的分布状况和重要性;结合景观遗传学方法,优化最小费用距离模型,对栖息地景观连接度及潜在扩散廊道进行分析,从而实现景观连接度的定量分析和潜在廊道,敏感区域的定位,在生物多样性保护和自然保护区管理规划方面,为廊道恢复及连接度改善提供实际可行的参考。
     研究结果表明:(1)整个研究区景观是以林地为主导的景观格局。研究区景观格局已经出现了一定程度的景观破碎化,适宜生境的破碎化程度在所有景观组分中处在一个较低的水平。但由于其他景观组分,尤其是人工斑块的存在及扩张,滇金丝猴各个种群栖息地斑块之间仍面临着被孤立的情况。滇金丝猴生境植被的保护和恢复有待进一步加强。
     (2)研究区内的5个亚群中,仅S3亚群内的5个种群保持着较好的连接度,有利于各种群的扩散交流。其余无论是亚群内种群的连接度,还是各亚群间的连接度水平都较低。总体来说,亚群内的连接度相对于各亚群间连接度保持的较好。除S3亚群中的G6、G7、G8、G9、G10种群间的潜在扩散廊道最为理想外,其余种群间的潜在扩散廊道均不甚理想,受人工斑块的影响,多数廊道被人工障碍阻断,或面临即将被阻断的情况,对于滇金丝猴的扩散交流影响较大。
     (3)敏感区域多集中在中南部的三个亚群当中。S3亚群与S4亚群间定位了三个敏感区域;S4亚群与S5亚群间,G11与G13种群间定位了两个敏感区域,G12与G13种群间定位了三个敏感区域;S5亚群内的G14与G15种群间定位了一个敏感区域。这些敏感区域应作为景观恢复及保护区规划的重要优先区域。
Biodiversity conservation is becoming more challenging and imminent due to rapid habitat loss and fragmentation under ever growing global natural resource demanding. Habitat loss and fragmentation can lower migration rate between populations of a species, thereby reducing gene flow and genetic variability, leading to increased risk of extinction. Because of the relationship between genetic diversity and landscape characters, biodiversity conservation should involve the study of landscape characteristics and their changes. Thus, conservation efforts should not only focus on single species but also should consider all components of its habitats. Landscape genetics is the interdisciplinary of population genetics, landscape ecology, and spatial statistics. It is used to quantify the effects of landscape characters on population genetic structures. Results from such studies may have great implications for biodiversity conservation and reserve management. The current focus of the research is landscape connectivity combining with genetic data.
     Yunnan Snub-nosed Monkeys (Rhinopithecus bieti) is one of the rarest species in severe danger. Due to habitat loss and fragmentation, its gene communication was blocked and genetic diversity was threatened. Major concepts and techniques of landscape genetics were discussed in this paper, aimed to provide theories and methods for biodiversity conservation and reserve management. By the landscape pattern analysis, area properties index, perimeter properties index, patch area properties index, patch shape properties index, and landscape diversity index were selected to illustrate the differences of various landscape types. Landscape pattern and fragmentation of habitat were analyzed quantitative and evaluated.
     Meanwhile, the method utilizing least-cost model and genetic data is developed to evaluate landscape connectivity. To demonstrate the use and potential of this method, the paper presented an example of application to a case study for the Yunnan snub-nosed monkeys, and evaluated the landscape connectivity, identified those habitat areas that were sensitive to overall landscape connectivity. This method can guide biodiversity conservation and reserve management more effectively and practically.
     All results show that:(1) Forest land area, including suitable habitat was 2/3 of the total landscape area, and it is the dominant landscape type. The landscape pattern of study area was influenced by human activity less, but a certain extent fragmentation had appeared. The suitable habitat area was 308212.44 hm2,18.86% of the total landscape area, and its fragmentation degree was relative low. But it was still essential to control the arisen fragmentation, and protect the habitat of Yunnan snub-nosed monkeys through habitat restoring and corridor rebuilding. (2) Among the five subpopulations, only monkey groups in S3 were connected better, the landscape connectivity of the others was rather low. The landscape connectivity among subpopulations was worse compared to connectivity in the monkey subpopulation. And the subpopulations north to S3 were affected by anthropogenic barriers less than the subpopulations south to S3. (3) The potential dispersal corridor between populations was protracted and the important area to restore was located. The sensitive areas were concentrated in subpopulations of central and south. Three sensitive areas were located between S3 and S4; two sensitive areas were located between G11 and G13; three sensitive areas were located between G12 and G13; one sensitive area was located between G14 and G15. These sensitive areas should be protect and restore preferential.
引文
[1]Lande R. Genetics and demography in biological conservation [J]. Science,1988,241:1455-1460.
    [2]Olivier H, Els C, Jan B, Dries A, Sabine V G, Isabel R R. Low impact of present and historical landscape configuration on the genetics of fragmented Anthyllis vulneraria populations [J]. Biological Conservation,2006,27:411-419.
    [3]李晓文,胡远满,肖笃宁.景观生态学与生物多样性保护[J].生态学报,1999,19(3):399-407.
    [4]Storfer A, Murphy M A, Evans J S, Goldberg C S, Robinson S, Spear S F, Dezzani R, Delmelle E, Vierling L, Waits L P. Putting the 'landscape' in landscape genetics[J]. Heredity,2007,98 (3): 128-142.
    [5]傅伯杰,吕一河,陈利顶,苏常红,姚雪玲,刘宇.国际景观生态学研究新进展[J].生态学报,2008,28(2):798-804.
    [6]Stephanie M, Michael K S, Gordon L, Pierre T. Landscape genetics:combining landscape ecology and population genetics [J]. Trends in Ecology and Evolution,2003,18:189-197.
    [7]Crandall KA, Bininda-Emonds ORP, Mace GM, et al. Considering evolutionary processes in conservation biology[J]. Trends in Ecology and Evolution,2000,15:290-295
    [8]Moritz C. Strategies to protect biological diversity and the evolutionary processes that sustain it [J]. Systematic Biology,2002,5:238-254
    [9]葛颂,洪德元.遗传多样性及其检测方法.//中国科学院生物多样性委员会编,生物多样性研究的原理和方法[M].北京:中国科学技术出版社,1994:123-140.
    [10]Soule E M. Introduction.//Soule E M ed. Viable Population Conservation [M]. Cambridge: Cambridge University Press,1987:1-9.
    [11]Reed D H, Frankham R. Correlation between fitness and genetic diversity [J]. Conservation Biology,2003,17:230-237.
    [12]Debinski D M, Holt R D. A survey and overview of habitat fragmentation experiments [J]. Conservation Biology,2000,14:342-355.
    [13]Hanski I, Eralahti C, Kankare M, Ovaskainen O, Siren H. Variation in migration propensity among individuals maintained by landscape structure[J]. Ecology Letters,2004,7:958-966.
    [14]Vandewoestijne S, Martin T, Liegeois S, Baguette M. Dispersal, landscape occupancy and population structure in the butterfly Melanargia galathea [J]. Basic and Applied Ecology,2004, 5:581-591.
    [15]Rhodes O E, Chesser R K. Genetic concepts for habitat conservation:the transfer and maintenance of genetic variation [J]. Landscape and Urban Planning,1994, (28):55-62.
    [16]陈小勇.景观生态学与生物多样性保护[C].//第二届景观生态学学术讨论会论文集.北京:国际景观生态学会中国分会,1996.5.
    [17]Manel S, Segelbacher G. Perspectives and challenges in landscape genetics [J]. Molecular Ecology,2009,9:1821-1822.
    [18]Smouse P E, Peakall R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure [J]. Heredity,1999,82:561-573.
    [19]Brown J H, Lomolino M V. Biogeography [M].2nd ed. Sunderland:Sinauer Associates, 1998.
    [20]Smouse P E, Peakall R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure [J]. Heredity,1999,82:561-573.
    [21]Balkenhol N, Gugerli F, Cushman S A, Waits L P, Coulon A, Arntzen J W, Holderegger R, Wagner H H. Identifying future research needs in landscape genetics:where to from here? [J]Landscape Ecology,2009,4:455-463.
    [22]Pavlacky D C, Goldizen A W, Prentis P J, Nicholls J A, Lowe A J. A landscape genetics approach for quantifying the relative influence of historic and contemporary habitat heterogeneity on the genetic connectivity of a rainforest bird. [J] Molecular Ecology,2009,14:2945-2960.
    [23]Sork V L, Nason J, Campbell D R, Fernandez J F. Landscape approaches to historical and contemporary gene flow in plants. [J] Trends in Ecology and Evolution,1999,14:219-224.
    [24]Reed D H, Frankham R. How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis [J]. Evolution,2001,55:1095-1103.
    [25]Mantel N. The detection of disease clustering and a generalized regression approach [J]. Cancer Research,1967,27:209-220.
    [26]Barbujani G. Geographic patterns:how to identify them and why [J]. Human Biology,2000, 72:133-153.
    [27]Cornuet J M, Piry S, Luikart G, Estoup A, Solignac M. New methods employing multilocus genotypes to select or exclude populations as origins of individuals [J]. Genetics,1999, 153:1989-2000.
    [28]Angers B, Magnan P, Plante M, Bernatchez L. Canonical correspondence analysis for estimating spatial and environmental effects on microsatellite gene diversity in brook charr (Salvelinus fontinalus) [J]. Molecular Ecology,1999,8:1043-1053.
    [29]Gram W K, Sork V L. Association between environmental and genetic heterogeneity in forest tree populations [J]. Ecology,2001,82:2012-2021.
    [30]Stephen F S, Charles R P, Marjorie D M, Andrew S. Landscape genetics of the blotched tiger salamander(Ambystoma tigrinum melanostictum) [J]. Molecular Ecology,2005,14:2553-2564.
    [31]Liu Z J, Ren B P, Wei F W, Long Y C, Hao Y L, Li M. Phylogeography and population structure of the Yunnan snub-nosed monkey (Rhinopithecus bieti) inferred from mitochondrial control region DNA sequence analysis [J]. Molecular Ecology,2007,16:3334-3349.
    [32]Liu Z J, Ren B P, Wu R D, Zhao L, Hao Y L, Wang B S, Wei F W, Long Y C, Li M.The effect of landscape features on population genetic structure in Yunnan snub-nosed monkeys (Rhinopithecus bieti) implies an anthropogenic genetic discontinuity[J]. Molecular Ecology,2009, 18:3831-3846.
    [33]Holzhauer S I J, Ekschmitt K, Sander A C, Dauber J, Wolters V. Effect of historic landscape change on the genetic structure of the bush-cricket Metrioptera roeseli [J]. Landscape Ecology, 2006,21:891-899.
    [34]Neville H M, Dunham J B, Peacock M M. Landscape attributes and life history variability shape genetic structure of trout populations in a stream network [J]. Landscape Ecology,2006, 21:901-916.
    [35]Broquet T, Ray N, Petit E, Fryxell J M, Burel F. Genetic isolation by distance and landscape connectivity in the American marten (Martes americana) [J]. Landscape Ecology,2006,21:877-889.
    [36]王红芳,葛剑平,邬建国.景观遗传学概论[C].//第三届现代生态学讲座暨国际学术研讨会论文集.北京:国家自然科学基金委员会,2005:251-267.
    [37]Vandergast A G, Bohonak A J, Weissman D B, Fisher R N. Understanding the genetic effects of recent habitat fragmentation in the context of evolutionary history:phylogeography and landscape genetics of a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae:Stenopelmatus) [J]. Molecular Ecology,2007,5:977-992.
    [38]Holderegger R, Wagner H H. Landscape genetics [J]. Bioscience,2008,3:199-207.
    [39]Epps C W, Wehausen J D, Bleich V C, Torres S G, Brashares J S. Optimizing dispersal and corridor models using landscape genetics [J]. Journal of Applied Ecology,2007,4:714-724.
    [40]Wang I J, Savage W K, Shaffer H B. Landscape genetics and least-cost path analysis reveal unexpected dispersal routes in the California tiger salamander (Ambystoma californiense) [J]. Molecular Ecology,2009,7:1365-1374.
    [41]Vandepitte K, Jacquemyn H, Roldan-Ruiz I, Honnay O. Landscape genetics of the self-compatible forest herb Geum urbanum:effects of habitat age, fragmentation and local environment [J]. Molecular Ecology,2007,19:4171-4179.
    [42]Cook W M, Lane K T, Foster B L, Holt R D. Island theory, matrix effect and species richness patterns in habitat fragments[J]. Ecology Letters,2002,5:619-623.
    [43]Krauss J, Schmitt T, Seitz A, Steffan-Dewenter I, Tscharntke T. Effects of habitat fragmentation on the genetic structure of the monophagous butterfly Polymmatus coridon along its northern range margin[J]. Molecular Ecology,2004,13:311-320.
    [44]Lienert J, Diemer M, Schmid B. Effects of habitat fragmentation on population structure and fitness components of the wetland specialist Swertia perennis L. (Gentianaceae) [J]. Basic and Applied Ecology,2002,3:101-114.
    [45]Schmitt T, Varga Z, Seitz A. Forests as dispersal barriers for Erebia medusa (Nymphalidae, Lepidoptera) [J]. Basic and Applied Ecology,2000,1:53-59.
    [46]Schweiger O, Frenzel M, Durka W. Spatial genetic structure in a metapopulation of the land snail Cepaea nemoralis (Gastropoda:Helicidae) [J]. Molecular Ecology,2004,13:3645-3655.
    [47]Wan Q H, Fang S G, Wu H, Fujihara T. Genetic differentiation and subspecies development of the giant panda as revealed by DNA fingerprinting [J]. Electrophoresis,2003,24:1353-1359.
    [48]Holderegger R, Wagner H H. A brief guide to landscape genetics [J]. Landscape Ecology, 2006,21(6):793-796.
    [49]http://baike.baidu.com/view/19207.htm
    [50]龙永诚,钟泰,肖李.滇金丝猴地理分布、种群数量与相关生态学的研究[J].动物学研究,1996,17(4):437-441.
    [51]年波,王金亮,杨士剑.滇金丝猴生境破碎化研究中的遥感影像预处理[J].贵州大学学报(自然版),2003,2:190-195.
    [52]江晓波,周启刚,李爱农.三江并流区域云南省迪庆州景观格局研究[J].山地学报,2004(增):164-168
    [53]邓芳,秦军,李鉴.提高遥感影像分类精度方法的研究[J].铁路航测,2003,2:4-7.
    [54]Long YC, Kirkpatrick C, Zhong T et al..Report on the distribution, population, and ecology of the Yunnan snub-nosed monkey. Primates,1994,35,241-250.
    [55]李纪宏,刘雪华.基于最小费用距离模型的自然保护区功能分区[J].自然资源学报,2006,21(2):217-224.
    [56]Ray N, Lehmann A & Joly P. Modeling spatial distribution of amphibian populations:a GIS approach based on habitat matrix permeability [J]. Biodiversity and Conservation,2002,11, 2143-2165.
    [57]Sutcliffe OL, Bakkestuen V, Fry G. & Stabbetorp OE. Modelling the benefits of farmland restoration:methodology and application to butterfly movement [J]. Landscape and Urban Planning,2003,63,15-31.
    [58]Nikolakaki P. A GIS site-selection process for habitat creation:estimating connectivity of habitat patches [J]. Landscape and Urban Planning,2004,68,77-94.
    [59]Ray N. PATHMATRIX:a GIS tool to compute effective distances among samples [J]. Molecular Ecology Notes,2005,5:177-180
    [60]曲若竹,侯林,吕红丽,李海燕.群体遗传结构中的基因流[J].遗传,2004,26(3):377-382.
    [61]吴昌广,周志翔,王鹏程等.景观连接度的概念、度量及其应用[J].生态学报,2010,30(7):1903-1910.
    [62]Saura S, Torne J. Conefor Sensinode 2.2:A software package for quantifying the importance of habitat patches for landscape connectivity [J]. Environmental Modelling & Software,2009, 24:135-139.
    [63]吴昌广,周志翔,王鹏程,肖文发,滕明君,彭丽.基于最小费用模型的景观连接度评价[J].应用生态学报,2009,20(8):2042-2048.
    [64]李正玲,陈明勇,吴兆录.生物保护廊道研究进展[J].生态学杂志,2009,28(3):523-528.
    [65]武正军,李义明.生境破碎化对动物种群存活的影响[J].生态学报,2003,23(11):2424-2435.
    [66]亓兴兰,李宝银,刘健,胡宗庆,余坤勇.基于RS与GIS的闽江流域土地利用景观格局变化分析.福建农林大学学报(自然科学版)[J],2008,37(5):539-543.
    [67]Xiao W, Ding W, Cui L W et al. Habitat degradation of Rhinopithecus bieti in Yunnan,China[J]. International Journal of Primatology,2003,24(2):389-398.
    [68]年波.基于RS和GIS的滇金丝猴生境适宜性评价和景观规划研究[D].昆明:云南师范大学,2004.
    [69]武瑞东,周汝良,龙勇诚,杜勇,叶江霞,魏晓燕.滇金丝猴适宜栖息地的遥感分析[J].理论研究,2005(6):24-28.
    [70]Excoffier, Laval LG, Schneider S. Arlequin ver.3.0:An integrated software package for population genetics data analysis [J]. Evolutionary Bioinformatics Online,2005,1:47-50.
    [71]葛桃安.金丝猴的野外行为生态学的初步研究[J].长沙水电师院学报,1988,3(2):71-76.
    [72]Holderegger R, Wagner HH. A brief guide to landscape genetics [J]. Landscape Ecology, 2006,21(6):793-796.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700