武汉市城市森林生态网络多目标规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市化的快速发展,造成了资源紧张、生态环境破坏等诸多城市问题,尤其是森林景观的破碎化严重制约了区域的可持续发展。结构功能完善的城市森林生态网络能够发挥生态、环境、社会等多种功能,在土地资源十分有限的城市实现生态保护与经济开发之间的平衡,促进人与自然的可持续发展。如何构建多功能整合的城市森林生态网络成为亟待解决的重要问题。
     本研究以武汉市为例,应用景观生态学理论方法及RS、GIS技术,对武汉市城市森林生态网络的多目标整合规划展开了探索研究。通过武汉市的主要功能需求分析,确定生物多样性保护、水环境保护、城市森林游憩服务为规划目标。以功能目标为导向构建了单一目标的生态网络,并将单一目标的网络规划方案进行叠加整合,形成武汉市综合多功能的城市森林生态网络规划方案。主要研究结果如下:
     (1)以黄鼬、白冠长尾雉和乌鸫为代理目标物种,集成应用多标准生境分析、最小费用路径分析构建了单一目标物种的理想保护网络。并进一步应用核密度分析规划了整体生物多样性保护的优先网络。理想网络构型中黄鼬的生境斑块共195个、面积560.66 km2,潜在廊道数量为3125条,总长达4021.58km;白冠长尾雉的生境斑块250个、面积560.65 km2,潜在廊道3970条,长度总计4711.5km;乌鸫的生境斑块627个、面积632.96 km2,共有9287条潜在廊道,总长度为7403.58km。在现有的城市森林斑块中,有将近一半面积的城市森林需要作为生境斑块予以保护。三个物种的生境均集中分布于北部、东北部的山区、南部的山岗丘陵一带以及武汉市各森林公园等地,但在主城区基本没有分布,在近郊也只有零星分布。三者的廊道分布状况也相似,基本分布在郊区,以北部、东南部、西南部的潜在廊道密度较大。最终经核密度分析,整合构建整体生物多样性保护的优先网络。整体网络表现为环形与树枝状结合的形态,在外环线附近形成一个大的环形,而在环形外部则主要是树枝状的廊道连接生境斑块。大环形的潜在利用率较高,是生物多样性保护网络建设的重中之重。
     (2)通过缓冲区分析结合土地利用类型规划了武汉市主要水资源的保护廊道。规划后水环境保护廊道的总体建设情况得到了较大改善。>10 km2的水资源的保护廊道面积达10617.98 hm2,占理想构型的面积比例达45.91%;1-10 km2的水资源保护廊道面积达5870.15 hm2,面积建设比例为57.87%;0.2-1 km2的水资源保护廊道建设面积达831.94 hm2,占理想构型面积的29.83%;总体水环境保护廊道建设面积比例达48.03%,以林地作为廊道的主要构成类型。其中对河流保护廊道进行了重点规划建设,长江和汉江的保护廊道建设率达60%以上,其余的滠水、倒水、举水、金水、东荆河、通顺河、沙河等主要河流的廊道建设率达80%以上。
     (3)基于城市森林游憩过程的源、汇分析,构建最小费用路径模型,规划了武汉市城市森林自驾游网络。廊道总长度达888.91km,其布局以外环线和中环线形成两个明显的环形,与放射状的对外公路、城市主干道一起形成有效连通城区内外的绿色通道网络。通过游憩资源及其环境背景分析确定了自行车游憩廊道的选线。规划建设4条自行车游憩廊道,总计110.78km。即常青——柏泉农场,全长23.56km:沌口——九真山森林公园,全长31.44kmm;光谷——龙泉山风景旅游区,全长25.04km:环东湖风景区自行车道,全长30.74km。
     (4)将单一目标网络规划方案进行叠加整合,形成复杂强壮网络构型,实现多功能目标的集成。生物多样性保护和水环境保护网络可以相互促进,而游憩网络则需采取积极措施降低人类干扰,与其他功能取得协调。
     通过武汉市的实例研究,探索了生态网络单目标规划及网络多功能整合的实现途径,为武汉市的生态建设提供了科学决策依据,也为其他城市的森林生态网络规划建设提供了实例参考。
The rapid urbanization triggers various urban problems, such as resources shortage and ecological environment deterioration. Especially, the fragmentation of forest landscape severely restricts the regional sustainable development. Urban forest ecological network with optimized structure and function can play ecological, environmental, social and other functions. It can achieve a balance between ecological protection and economic development in cities with very limited land resources, and promote the sustainable development of man and nature. Thus how to construct a multi-functional integrated urban forest ecological network has become an important issue to be solved.
     Took Wuhan as a case study, with the application of the theory and method of landscape ecology and the technology of remote sensing and geographical information systems, we explored the multi-objective integrated planning of urban forest ecological network in Wuhan. By analyzing the needs of Wuhan, we determined the biodiversity conservation, water environment protection and urban forest recreation services as the planning targets. Firstly, we constructed the single target-oriented ecological network, and then overlaid and integrated these planning schemes, finally we obtained the multi-functional integrated planning scheme of urban forest ecological network in Wuhan. The main results are as follows:
     (1) Took the Mustela sibirica, Syrmaticus reevesii, Turdus merula as surrogate-target species, integrated multi-criteria analysis of habitats and least-cost path model, we constructed an ideal conservation network for single target species. Furthermore, we applied kernel density estimate to plan a priority network for overall biodiversity conservation. The ideal network configuration of Mustela sibirica contains 195 habitat patches with an area of 560.66 km2 and 3125 potential corridors with a total length of 4021.58km. The ideal network of Syrmaticus reevesii consists of 250 habitat patches and 3970 potential corridors. The total area of habitat patches reaches to 560.65 km2, and the corridor length is 4711.5km. While for Turdus merula, the ideal network is composed of 627 habitat patches and 9287 potential corridors, its habitat area is 632.96 km2 and the total corridor length reaches to 7403.58km. Approximately half of the area of the existing urban forest patches need to be protected as habitat. The habitats of three target species are all concentrated in the north, northeast and southern hills and forest parks of Wuhan, but there is little distribution in the main urban areas, only scattered in the suburbs. Also their corridors distribution are similar, mostly distribute in the suburbs, and in the north, southeast, southwest the corridor density is higher. Finally, based on kernel density estimating, we generated a priority network for overall biodiversity conservation. The form is a combination of ring structure and dendritic morphology. Near the Out Ring Road forms a big ring, beyond which is the dendritic corridors connecting habitats patches. The potential utilization of this ring is the most highest, so it has the top priority for biodiversity conservation network construction.
     (2) Combined the buffer analysis and land use types, we planned protection corridors for main water resources in Wuhan. Then the overall construction of water environment protection corridors has been greatly improved. For water resources with an area bigger than 10 km2, its corridor area reaches 10617.98 hm2, accounting for 45.91% of the ideal configuration area. For water resources with an area between 1 and 10km2, the corridor area is 5870.15 hm2, the construction proportion is 57.87%. While for those with an area between 0.2 and 1 km2, the corridor area is up to 831.94 hm2, taking up 29.83% of the ideal configuration area. The construction ratio of overall water environment protection corridors is up to 48.03%, and the main components are forests. And we mainly constructed the river protection corridors. The construction proportion of Yangtze River and Han River are both more than 60%, others such as the Sheshui River, Daoshui River, Jushui River, Jinshui River, Dongjing River, Tongshun River, Sha River and other major rivers are more than 80%.
     (3) Based on the source and sink analysis of urban forest recreation process, we constructed the least-cost path model and then planned the urban forest recreation network by self-driving in Wuhan. The total length of corridors is 888.91km. The Out Ring and Middle Ring Road form two obvious rings, combined with the radial highways and urban main roads form a green network connecting inside and outside the city effectively. Through recreational resources and environment background analysis, we determined the bicycle recreation corridors. We planned four bicycle recreation corridors with a total length of 110.78km. They are Changqing-Boquan Farm, length of 23.56km; Zhuankou-Nine really Forest Park, length of 31.44km; Optical Valley - Longquan Mountain Scenic Area, length of 25.04km; bicycle ring road of East Lake Scenic, length of 30.74km.
     (4) Overlaid and integrated the single target-oriented ecological network and then generated a strong and complex network configuration, we expected to achieve multi-functional objectives. Biodiversity conservation and water protection networks will have bilateral promotion; while for recreational network, we need to take proactive measures to reduce human disturbances, and then coordinate with other functions.
     Through case study in Wuhan, we explored the approach to achieve the target-oriented planning of urban forest ecological network and multi-functional network integration. We expect to provide a scientific basis for decision making of ecological construction in Wuhan, in addition, to provide an example for other cities in the planning and construction of urban forest ecological network.
引文
1.车生泉.城市绿地景观结构分析与生态规划——以上海市为例.南京:东南大学出版社,2003
    2.车生泉.城市绿色廊道研究.城市规划,2001,25(11):44-48
    3.程鹏,桑和会,罗宁.安徽省森林生态网络指标体系及其评价方法的探讨.林业科学,2004,40(4):27-32
    4.程鹏,桑和会,唐丽影,等.安徽省森林生态网络体系.南京林业大学学报(自然科学版),2002,26(5):44-48
    5.达良俊,陈克霞,辛雅芬.上海城市森林生态廊道的规模.东北林业大学学报,2004,32(4):16-18
    6.冯维波,陈鹏,蒋坤富,等.多中心组团式城市森林生态网络格局的构建——以重庆都市区“森林城市”建设为例.重庆师范大学学报(自然科学版),2010,27(2):69-73
    7.韩西丽.多目标城市自行车道网络规划设计探索——以台州市椒江区为例.北京大学学报(自然科学版),2008,44(4):604-610
    8.胡望舒,王思思,李迪华.基于焦点物种的北京市生物保护安全格局规划.生态学报,2010,30(16):4266-4276
    9.黄庆丰,吴泽民,王嘉楠,等.安徽怀宁新城森林生态网络体系建设.中国城市林业,2003,1(1):22-25
    10.康博文,侯琳,刘建军,等.黄土丘陵沟壑区城市森林生态网络体系建设——以延安市为例.中国农学通报,2005,21(6):160-163
    11.孔阳.基于适宜性分析的城市绿地生态网络规划研究.[硕士学位论文].北京:北京林业大学,2010
    12.李锋,刘旭升,王如松.城市森林研究进展与发展战略.生态学杂志,2003,22(4):55-59
    13.李海梅,何兴元,陈玮,等.中国城市森林研究现状及发展趋势.生态学杂志,2004,23(2):55-59
    14.李纪宏,刘雪华.基于最小费用距离模型的自然保护区功能分区.自然资源学报,2006,21(2):217-224
    15.李晶竹.基于生态与水文过程的城镇绿网构建.[硕士学位论文].天津:天津大学,2009
    16.李晓文,张玲,方精云.指示种,伞护种与旗舰种:有关概念及其在保护生物学中的应用.生物多样性,2002,10(1):72-79
    17.李秀芬,朱金兆,顾晓君,等.农业面源污染现状与防治进展.中国人口·资源与环境,2010,20(4):81-84
    18.刘滨谊,王鹏.绿地生态网络规划的发展历程与中国研究前沿.中国园林,2010,(3):1-5
    19.刘滨谊,温全平.城乡一体化绿地系统规划的若干思考.国际城市规划,2007,22(1):84-89
    20.刘常富,李海梅,何兴元,等.城市森林概念探析.生态学杂志,2003,22(5):146-149
    21.刘常富,李小马,韩东.城市公园可达性研究——方法与关键问题.生态学报,2010,30(19):5381-5390
    22.刘海龙.基于过程视角的城市地区生物保护规划——以浙江台州为例.生态学杂志,2010,29(1):8-15
    23.刘雪华,Bronsveld M C,Toxopeus A G,等.数字地形模型在濒危动物生境研究中的应用.地理科学进展,1998,17(2):50-58
    24.罗春润.黄鼬的生态观察与捕捉.动物学杂志,1960,(7):325-327
    25.罗坤.崇明岛河岸植被缓冲带宽度规划研究.[硕士学位论文].上海:华东师范大学,2009
    26.彭镇华,江泽慧.中国森林生态网络系统工程.应用生态学报,1999,10(1):99-103
    27.千少蓉,姚冬梅,曹明红.宜昌城市森林生态网络建设的现状与对策.湖北林业科技,2002,(2):45-46
    28.曲艺,栾晓峰.基于最小费用距离模型的东北虎核心栖息地确定与空缺分析.生态学杂志,2010,29(9):1866-1874
    29.盛和林,杨圭璋.黄鼬的习性与驯化.毛皮动物饲养,1979,(1):24-26
    30.孙全辉,张正旺,朱家贵,等.白冠长尾雉冬季夜栖行为与夜栖地利用影响因子的研究.北京帅范大学学报(自然科学版),2002,38(1):108-112
    31.谭晓鸽.绿道网络理论与实践.[硕士学位论文].天津:天津大学,2007
    32.滕明君,周志翔,王鹏程,等.景观中心度及其在生态网络规划与管理中的应用.应用生态学报,2010,21(4):863-872
    33.王成,蔡春菊,陶康华.城市森林的概念、范围及其研究.世界林业研究,2004,17(2):23-27
    34.王良民,王彦辉.植被过滤带的研究和应用进展.应用生态学报,2008,19(9):2074-2080
    35.王铭子.基于连接度的城市绿地生态网络研究.[硕士学位论文].北京:北京林业大学,2010
    36.王鹏.城市绿地生态网络规划研究.[硕士学位论文].上海:同济大学,2007
    37.魏万红,周文扬,樊乃昌.香鼬的活动节律和巢区.兽类学报,1996,16(1):35-42
    38.吴昌广,周志翔,王鹏程,等.基于最小费用模型的景观连接度评价.应用生态学报,2009,20(8):2042-2048
    39.吴良镛.中国城市发展的科学问题.城市发展研究,2004,11(1):9-13
    40.吴咏蓓,张恩迪.景观物种的理论与实践.四川动物,2001,20(4):192-196
    41.肖笃宁,李秀珍,高峻,等.景观生态学.北京:科学出版社,2003
    42.肖亮,张立明,王剑.武汉市居民城市森林游憩需求特征调查.林业调查规划,2007,32(1):124-127
    43.肖胜,叶功富,倪志荣,等.应用3S技术研究厦门市森林生态网络布局.中国城市林业,2003,1(3):10-13
    44.徐基良,张晓辉,张正旺,等.白冠长尾雉育雏期的栖息地选择.动物学研究,2002,23(6):471-476
    45.闫水玉,赵柯,邢忠.美国、欧洲、中国都市区生态廊道规划方法比较研究.国际城市规划,2010,25(2):91-96
    46.杨学军,许东新,金为民,等.上海城市森林生态网络系统工程体系建设初探.上海农学院学报,2000,18(2):132-137
    47.尹海伟,孔繁花.济南市城市绿地可达性分析.植物生态学报,2006,30(1):17-24
    48.俞孔坚.生物保护的景观生态安全格局.生态学报,1999,19(1):8-15
    49.俞孔坚,段铁武,李迪华,等.景观可达性作为衡量城市绿地系统功能指标的评价方法与案例.城市规划,1999,23(8):8-11
    50.俞孔坚,李迪华,段铁武.生物多样性保护的景观规划途径.生物多样性,1998,6(3):205-212
    51.岳隽,王仰麟.国内外河岸带研究的进展与展望.地理科学进展,2005,24(5):33-40
    52.曾立雄,黄志霖,肖文发,等.河岸植被缓冲带的功能及其设计与管理.林业科学,2010,46(2):128-133
    53.张贵,肖化顺.广州市城市森林生态网络体系规划研究.河南科技大学学报(农学版),2003,23(4):49-53
    54.张伟,葛亮,沈广爽.长白山地区黄鼬冬季生境选择.野生动物杂志,2008,29(4):192-194
    55.张笑笑.城市游憩型绿道的选线研究.[硕士学位论文].上海:同济大学,2008
    56.张正旺,丁长青,丁平,等.中国鸡形目鸟类的现状与保护对策.生物多样性,2003,11(5):414-421
    57.周菁,李迪华,张蕾.菏泽市游憩网络的构建——探索整合各类游憩资源的城市绿地系统规划途径.中国园林,2006,(8):51-55
    58.朱强,俞孔坚,李迪华.景观规划中的生态廊道宽度.生态学报,2005,25(9):2406-2412
    59.朱文泉,何兴元,陈玮.城市森林研究进展.生态学杂志,2001,20(5):55-59
    60.诸葛亦斯,刘德富,黄钰铃.生态河流缓冲带构建技术初探.水资源与水工程学报,2006,17(2):63-67
    61.祝勇.皖北濉溪县域景观生态网络规划与设计.[硕士学位论文].苏州:苏州大学,2009
    62. Adriaensen F, Chardon J P, De Blust G, et al. The application of least-cost'modelling as a functional landscape model. Landscape and Urban Planning,2003,64 (4): 233-247
    63. Ahern J. Greenways as a planning strategy. Landscape and Urban Planning,1995,33 (1-3):131-155
    64. Andresen T, de Aguiar F B, Curado M J. The Alto Douro Wine Region greenway. Landscape and Urban Planning,2004,68 (2-3):289-303
    65. B.-M. Vought L, Pinay G, Fuglsang A, et al. Structure and function of buffer strips from a water quality perspective in agricultural landscapes. Landscape and Urban Planning,1995,31 (1-3):323-331
    66. Brooker L. The application of focal species knowledge to landscape design in agricultural lands using the ecological neighbourhood as a template. Landscape and Urban Planning,2002,60 (4):185-210
    67. Bruinderink G G, Van Der Sluis T, Lammertsma D, et al. Designing a coherent ecological network for large mammals in northwestern Europe. Conservation Biology,2003,17 (2):549-557
    68. Chetkiewicz C L B, Clair C C S, Boyce M S. Corridors for conservation:Integrating pattern and process. Annual Review of Ecology Evolution and Systematics,2006.37: 317-342
    69. Conine A, Xiang W N, Young J, et al. Planning for multi-purpose greenways in Concord, North Carolina. Landscape and Urban Planning,2004,68 (2-3):271-287
    70. Cook E A. Landscape structure indices for assessing urban ecological networks. Landscape and Urban Planning,2002,58 (2-4):269-280
    71. Driezen K, Adriaensen F, Rondinini C, et al. Evaluating least-cost model predictions with empirical dispersal data:A case-study using radiotracking data of hedgehogs (Erinaceus europaeus). Ecological Modelling,2007,209 (2-4):314-322
    72. Epps C W, Wehausen J D, Bleich V C, et al. Optimizing dispersal and corridor models using landscape genetics. Journal of Applied Ecology,2007,44 (4):714-724
    73. Estrada E, Bodin O. Using network centrality measures to manage landscape connectivity. Ecological Applications,2008,18 (7):1810-1825
    74. Fabos J G. Greenway planning in the United States: its origins and recent case studies. Landscape and Urban Planning,2004,68 (2-3):321-342
    75. Giordano L, Riedel P. Multi-criteria spatial decision analysis for demarcation of greenway:A case study of the city of Rio Claro, Sao Paulo, Brazil. Landscape and Urban Planning,2008,84 (3-4):301-311
    76. Gurrutxaga M, Lozano P J, del Barrio G. GIS-based approach for incorporating the connectivity of ecological networks into regional planning. Journal for Nature Conservation,2010,18 (4):318-326
    77. Harrison S. Local extinction in a meta-population context:An empirical evaluation. Biological Journal of the Linnean Society,1991,42:73-88
    78. Hepcan S, Hepcan C C, Bouwma I M, et al. Ecological networks as a new approach for nature conservation in Turkey:A case study of Izmir Province. Landscape and Urban Planning,2009,90 (3-4):143-154
    79. Imam K Z E. Role of urban greenway systems in planning residential communities:a case study from Egypt. Landscape and Urban Planning,2006,76 (1-4):192-209
    80. Jim C Y, Chen S S. Comprehensive greenspace planning based on landscape ecology principles in compact Nanjing city, China. Landscape and Urban Planning,2003,65 (3):95-116
    81. Jongman R H G. Nature conservation planning in Europe:developing ecological networks. Landscape and Urban Planning,1995,32 (3):169-183
    82. Jongman R H G, Kulvik M, Kristiansen I. European ecological networks and greenways. Landscape and Urban Planning,2004,68 (2-3):305-319
    83. Kong F H, Yin H W, Nakagoshi N, et al. Urban green space network development for biodiversity conservation:Identification based on graph theory and gravity modeling. Landscape and Urban Planning,2010,95 (1-2):16-27
    84. Laita A, Monkkonen M, Kotiaho J S. Woodland key habitats evaluated as part of a functional reserve network. Biological Conservation,2010,143 (5):1212-1227
    85. Lambeck R J. Focal Species:A Multi-Species Umbrella for Nature Conservation. Conservation Biology,1997,11 (4):849-856
    86. Lee P, Smyth C, Boutin S. Quantitative review of riparian buffer width guidelines from Canada and the United States. Journal of Environmental Management,2004, 70(2):165-180
    87. Levins R. Extinction. In:Gerstenhaber M ed. Some mathematical problems in biology. Providence:American Mathematical Society,1970,77-107
    88. Lewis P H. Quality corridors for Wisconsin. Landscape Architecture,1964,54 (2): 100-107
    89. Li F, Wang R S, Paulussen J, et al. Comprehensive concept planning of urban greening based on ecological principles:a case study in Beijing, China. Landscape and Urban Planning,2005,72 (4):325-336
    90. Li H, Li D, Li T, et al. Application of least-cost path model to identify a giant panda dispersal corridor network after the Wenchuan earthquake--Case study of Wolong Nature Reserve in China. Ecological Modelling,2010,221 (6):944-952
    91. Linehan J, Gross M, Finn J. Greenway planning:developing a landscape ecological network approach. Landscape and Urban Planning,1995,33 (1-3):179-193
    92. Little C E. Greenways for America. Baltimore:Johns Hopkins University Press, 1990
    93. MacArthur R H, Wilson E O. The theory of island biogeography. Princeton: Princeton University Press,1967
    94. Miller W, Collins M G, Steiner F R, et al. An approach for greenway suitability analysis. Landscape and Urban Planning,1998,42 (2-4):91-105
    95. Mugavin D. Adelaide's greenway:River Torrens Linear Park. Landscape and Urban Planning,2004,68 (2-3):223-240
    96. Opdam P, Steingrover E, van Rooij S. Ecological networks:A spatial concept for multi-actor planning of sustainable landscapes. Landscape and Urban Planning, 2006,75 (3-4):322-332
    97. Opdam P, Verboom J, Pouwels R. Landscape cohesion:an index for the conservation potential of landscapes for biodiversity. Landscape Ecology,2003,18 (2):113-126
    98. Palomino D, Carrascal L M. Threshold distances to nearby cities and roads influence the bird community of a mosaic landscape. Biological Conservation,2007,140 (1-2): 100-109
    99. Pascual-Hortal L, Saura S. Comparison and development of new graph-based landscape connectivity indices:towards the priorization of habitat patches and corridors for conservation. Landscape Ecology,2006,21 (7):959-967
    100. Puckett L J, Hughes W B. Transport and Fate of Nitrate and Pesticides: Hydrogeology and Riparian Zone Processes. Journal of Environmental Quality. 2005,34 (6):2278-2292
    101. Roberge J M, Angelstam P. Usefulness of the umbrella species concept as a conservation tool. Conservation Biology,2004,18 (1):76-85
    102. Rouget M, Cowling R M, Lombard A T, et al. Designing large-scale conservation corridors for pattern and process. Conservation Biology,2006,20 (2):549-561
    103. Shen G Z, Feng C Y, Xie Z Q, et al. Proposed Conservation Landscape for Giant Pandas in the Minshan Mountains, China. Conservation Biology,2008,22 (5): 1144-1153
    104. Tan K W. A greenway network for Singapore. Landscape and Urban Planning,2006, 76 (1-4):45-66
    105. Taylor P D, Fahrig L, Henein K, et al. Connectivity is a vital element of landscape structure. Oikos,1993,68 (3):571-573
    106. Urban D L, Minor E S, Treml E A, et al. Graph models of habitat mosaics. Ecology Letters,2009,12 (3):260-273
    107. Uy P D, Nakagoshi N. Analyzing urban green space pattern and eco-network in Hanoi, Vietnam. Landscape and Ecological Engineering,2007,3 (2):143-157
    108. Viles R L, Rosier D J. How to use roads in the creation of greenways:case studies in three New Zealand landscapes. Landscape and Urban Planning,2001,55 (1):15-27
    109. von Haaren C, Reich M. The German way to greenways and habitat networks. Landscape and Urban Planning,2006,76 (1-4):7-22
    110. Weller D E, Jordan T E, Correll D L. Heuristic Models for Material Discharge from Landscapes with Riparian Buffers. Ecological Applications,1998,8 (4):1156-1169
    111. Yokohari M, Amemiya M, Amati M. The history and future directions of greenways in Japanese New Towns. Landscape and Urban Planning,2006,76 (1-4):210-222
    112. Zhang L Q, Wang H Z. Planning an ecological network of Xiamen Island (China) using landscape metrics and network analysis. Landscape and Urban Planning,2006, 78 (4):449-456

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700