壳聚糖复合碳纳米管修饰电极的制备及其在电分析化学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNT)独特的一维分子结构和奇特的物理、化学特性,成为世界范围内的研究热点之一。相对于其它领域,CNT在分析化学中的应用研究起步相对较晚。本论文对这种新型的纳米材料进行壳聚糖功能化,研究了它在分子的电催化、分离方面的应用。本工作对于进一步开拓纳米材料的应用基础研究具有较大的意义。
     本论文的工作分为两大部分:
     一、碳纳米管的羧基化及壳聚糖功能化。
     1.以浓硝酸和浓硫酸的混合物作为氧化剂对多壁碳纳米管(MWNT)的氧化程度进行了研究。结果表明,同等强度的酸对不同制备方法获得的MWNT的氧化程度和截短程度不同。针对实验中使用的MWNT,系统的研究了酸强度和氧化时间对于MWNT的羧基化程度的影响。一般超声3~5 h,采用不同强度的酸可以获得不同氧化程度的羧基化MWNT。
     2.对壳聚糖功能化MWNT的分散性进行了研究,发现功能化后的MWNT水溶液能长时间保持均匀的悬浮状态。通过红外光谱、扫描电镜及电化学方法对壳聚糖功能化的碳纳米管进行了表征。研究了它们之间的相互作用及机理。
     二、构置了壳聚糖复合碳纳米管修饰电极,并研究了其在电分析化学领域的应用。
     壳聚糖复合碳纳米管修饰层内壳聚糖与碳纳米管相互缠绕,形成了多孔的界面结构,即发挥了碳纳米管的独特性能又体现了壳聚糖的吸附、络合性能。重点研究了对生物分子多巴胺的识别和选择性灵敏测定;对无机离子:碘离子、铅离子、亚锡离子的电催化测定。
Studies on carbon nanotubes (CNT) become a hot topic in the world due to the uniqueone-dimensional tubular structure and subtle physical and chemical properties of CNT.Compared with other area, the application of CNT in analytical chemistry has beenstudied recently. In the present dissertation, the electro catalysis and separation ability ofCTs/CNT modified electrodes were studied firstly by using CNT and CTs as materials ofelectrode. This work may be of great signification for applying nano-material further. Themain achievements obtained in this research include:
     1. Carboxyl and chitosan (CTS) functionalized of multi-wall carbon nanotubes(MWNT)
     (1) The MWNTs was oxidized with mixture of concentrated sulfuric acid and nitric acid.It was showed that the degree of oxidation and truncation was different even using thesame acids as oxidant. The difference was mainly caused by the preparation methods ofMWNT. According to the properties of the MWNT used in this study, the relationbetween the degree of carboxyl and oxidation time or acids strength was systematicallystudied. Usually the MWNT Was ultrasonic in different acids for 3 to 5 hours, and theproper oxidized carboxyl MWNT can be obtained.
     (2) The dispersancy of CTs functionalized MWNT was studied, and found that the watersolution of it could be keep symmetrical suspend state for a several days. The CTsfunctionalized MWNT was characterized by FT-IR, SEM and electrochemistry. The effectand mechanism of them was also studied.
     2. A new kind of CTs/CNT modified electrode was constructed and it's applications inelectrical analytical chemistry were investigated.
     A lacunaris interface was formed in which CTs and CNT were intertwisted. And theunique performance of CNT and adsorption, complexation effect of CTs were combined.The modified electrode applied to the sensitive and selective determination DA from AAand electrocatalytic determination of I~-, Pb~(2+), Sn~(2+).
引文
[1] Singh H, Srivastava M. Fullerenes-Synthesis, Separation, Characterization, Reaction Chemistry, and Appllications-a Review. Energ. Source, 1995, 17 (6): 615-640.
    [2] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58.
    [3] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363: 603~605.
    [4] Thostenson E T, Ren Z F, Chou T W. Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology, 2001, 61: 1899-1912.
    [5] Ebbesen T W, Hirua H, Fujita J, et al. Patterns in the bulk growth of carbon nanotubes.Chem.Phys. Chem.Phys. Lett. 1993, 209: 83-90.
    [6] Ebbesen T W, Ajayan P M. Large scale synthesis of carbon nanotubes. Nature, 1992, 358: 220-222.
    [7] Thess A, Lee R, Nikolaev P. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273: 483-487.
    [8] Cheng H M, Li F, Sun X. Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem. Phys. Lett., 1998, 289: 602-610.
    [9] Kong J, Cassel A M, Dai H J. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett., 1998, 292: 567-574.
    [10] Muller T E, Reid D G, Hsu W K. Synthesis of nanotubes via catalytic pyrolysis of acetylene: A SEM study. Carbon, 1997, 35: 951-966.
    [11] Ruckenstein E, Hu Y H. Catalytic preparation of narrow pore size distribution mesoporous carbon. Carbon, 1998, 36: 269-275.
    [12] 梁奇,刘宝春,唐水花.La_2NiO_4催化制备纳米碳管.化学学报,2000,58(11):1336-1339.
    [13] 梁奇,李庆,陈栋梁.甲烷部分氧化气氛制备碳纳米管.高等学校化学学报,2000,21(4):623-625.
    [14] Matveev A. T, Golberg D, Novikov V P. Synthesis of carbon nanotubes below room temperature. Carbon, 2001, 39: 155-158.
    [15] Fan S S, Liang W J, Dang H Y, et al. Carbon nanotube arrays on silicon substrates and their possible application. Physica E, 2000, 8: 179-183.
    [16] 李欢军,王贤宝,宋延林,等.超疏水多孔阵列碳纳米管薄膜.高等学校化学学报,2001,22(5):759-761.
    [17] Pan Z W, Xie S S, Chang B H. Very long carbon nanotubes. Nature, 1998, 394: 631-632.
    [18] Sun L F, Xie S S, Liu W. Materials-Creating the narrowest carbon nanotubes. Nature, 2000, 403: 384-384.
    [19] 杨占红,李新海,李晶,等.碳纳米管纯化技术研究.中南工业大学学报,1999,13(4):389-391.
    [20] 李新海,杨占红,陈至国.新型碳材料,1999,14(3):32-36.
    [21] 杨占红,李新海,王红强,等.炭纳米管的提纯-重铬酸钾氧化法.新型碳材料,1999,14(2):67-70.
    [22] Ajayan P M, Ebbesen T W, lchihashi T. Opening carbon nanotubes with oxygen and implications for filling. Nature, 1993, 362: 522-525.
    [23] Mizoguti E, Nihey F, Yudasaka M. Purification of single-wall carbon nanotubes by using ultrafine gold particles. Chemical Physics Letters, 2000, 321: 297-301.
    [24] Zhang Y, Shi Z, Gu Z. Structure modification of single-wall carbon nanotubes. Carbon, 2000, 38: 2055-2059.
    [25] 杨占红,吴浩青,李晶.碳纳米管的纯化—电化学氧化法.高等学校化学学报,2001,22(3):446-449.
    [26] Someya T, Kim P, Nuckolls C. Conductance measurement of single-walled carbon nanotubes in aqueous environment. Appl Phys Lett, 2003, 82: 2338.
    [27] Klinke C, Chen J, Afzali A, et al. Charge Transfer. Induced Polarity Switching in Carbon Nanotube Transistors. Nano Lett, 2005, 5 (3): 555.
    [28] Saito R, Dresselhaus G, Dressehaus M S. Tunneling conductance of connected carbon nanotubes. Phys. Rev. B, 1996, 53 (4): 2044-2050.
    [29] Yong S, Chang C Z, Wang Q and Li X. Large area screen-printing cathode of CNT for FED. Diamond and Related Materials. 2003, 12(9): 1449-1452.
    [30] Ajayan P M, Iijima S. Capillarity-induced filling of carbon nanotubes. Nature, 1993, 361: 333-334.
    [31] Rinzler A G, Hafner J H, Nikolaev P, et al. Unraveling nanotubes - field-emission from an atomic wire. Science, 1995, 269: 1550-1553.
    [32] Pilip Ball著,徐俊培 译。世界科学,1997,3:17.
    [33] Hafner J H, Cheung C L, Lieber C M. Growth of nanotubes for probe microscopy tips. Nature, 1999, 398 761-762.
    [34] Lin C, Fan Y Y, Liu M, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 1999, 286: 1127-1129.
    [35] Chen J, Hamm M A, Hu H, et al. Solution properties of single-walled carbon nanotubes. Science, 1998, 282(5386): 95-98.
    [36] Wang Z H, Xiao S, Chen Y. Electrocatalytic and Analytical Response of β-Cyclodextrin Incorporated Carbon Nanotubes-Modified Electrodes Toward Guanine. Electroanalysis, 2005, 17(22): 2057-2061.
    [37] Filho, N. L. D, do Carmo, D. R. Stripping Voltammetry of Mercury(Ⅱ) with a Chemically Modified Carbon Paste Electrode Containing Silica Gel Functionalized with 2,5-Dimercapto-1,3,4,thiadiazole. Electroanalysis. 2005, 17(17): 1540.
    [38] Jiang L, Song F, et al. An In Situ Copper Plated Boron-Doped Diamond Microelectrode Array for the Sensitive Electrochemical Detection of Nitrate. Electroanalysis, 2005, 17(10): 901-905.
    [39] Heller, Kong J, Heering H A. Individual Single-Walled Carbon Nanotubes as Nanoelectrodes for Electrochemistry. Nano. Lett, 2005, 5:137-142.
    [40] Poggi M A, Bottomley L A, Lillehei P T. Scanning Probe Microscopy. Anal. Chem, 2002, 74: 2851-2862.
    [41] Zhu N, Chang Z, He P, et al. Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes. Anal. Chim. Acta, 2005, 545: 21-26.
    [42] Merko(?)i A, Pumera M, Llopis X. New materials for electrochemical sensing Ⅵ: Carbon nanotubes. Trends Anal. Chem, 2005, 24(9): 826-838.
    [43] Zhang M, Gorski W. Electrochemical Sensing Based on Redox Mediation at Carbon Nanotubes. Anal. Chem., 2005, 77: 3960-3965.
    [44] Wang J, Liu G D, Jan M R, et al. Electrochemical detection of DNA hybridization based on carbon-nanotubes loaded with CdS tags. Electrochem. Commun, 2003, 5:1000-1004.
    [45] Heller, Kong J, Heering H A. Individual Single-Walled Carbon Nanotubes as Nanoelectrodes for Electrochemistry. Nano. Lett, 2005, 5: 137-142.
    [46] LU G, MARAGAKIS P, KAXIRAS E. Carbon Nanotube Interaction with DNA. Nano Lett, 2005,5 (5): 897-900.
    [47] Pierard N, Fonseca A, Konya Z, et al. Production of short carbon nanotubes with open tips by ball milling. Chemical Physics letters, 2001, 335: 1-8.
    [48] Tagmatarchis N, Georgakilas V, Prato M, et al. Sidewall functionalization of single-walled carbon nanotubes through electrophilic addition. Chem. Commun., 2002, 18: 2010-2011.
    [49] Hamon M A, Hui H, Bhowmik P, et al. Ester-functionalized soluble single-walled carbon nanotubes. Appl. Phys., 2002, 74(3): 333-338.
    [50] Pompeo F, Resasco D E. Water solubilization of single-walled carbon nanotubes by functionalization with glucosarnine. Nano Lett., 2002, 2(4): 369-373.
    [51] Kooi S E, Schlecht U, Burghard M, et al. Electrochemical modification of single carbon nanotube. Chem. Int. Ed., 2002, 41(8): 1353-1355.
    [52] 肖奇,王平华,司知蠢.碳纳米管共价功能化。化学进展,2007,19(1):101-106.
    [53] Unger E, Graham A, Kreupl F, et al. Electrochemical functionalization of multi-walled carbon nanotubes for solvation and purification. Current Applied Physics, 2002, 2:107-111
    [54] Hamon M A, Chen J, Hu H, et al. Dissolution of single-walled carbon nanotubes. Adv. Mater, 1999, 11: 834-840.
    [55] 李博,廉永福,施祖进.单壁碳纳米管的化学修饰.高等学校化学学报,2000,21(11):1633-1635.
    [56] Shi Z J, Liu Y F, Zhou X H, et al. Single-wall carbon nanotube colloids in polar solvents. Chem. Commu., 2000, 6: 461-462.
    [57] Ang L M, Hor T S A, Xu G O, et al. Decoration of activated carbon nanotubes with copper and nickel. Carbon, 2000, 38 (3): 363-372.
    [58] Hazani M, Naaman R, Hennrich F, et al. Confocal fluorescence imaging of DNA-functionalized carbon nanotubes. Nano Lett., 2003, 3 (2): 153-155.
    [59] Stevens J L, Huang A Y, Peng H, et al. Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines. Nano Lett., 2003, 3 (3): 331-336.
    [60] Saini R K, Chiang I W, Peng H, et al. Covalent sidewall functionalization of single wall carbon nanotubes. J. Am. Chem. Soc., 2003, 125 (12): 3617-3621.
    [61] Huang W J, Fernando S, Allard L F, et al. Solubilization of single-walled carbon nanotubes with diamine-terminated oligomeric poly(ethylene glycol) in different functionalization reactions. Nano Lett., 2003, 3 (4): 565-568.
    [62] O'Connell M J, Boul P, Ericson L M, et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett., 2001, 342: 265-271.
    [63] Wang J, Musameh M, Lin Y. Solubilization of carbon nanotubes by Nation toward the preparation of amperometric biosensors. J. Am. Chem. Soc., 2003, 125 (9): 2408-2409.
    [64] Star A, Stoddart J F, Steuerman D, et al. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Chem. Int. Ed., 2001, 40: 1721-1725.
    [65] Star A, Steuerman D W, Heath J R, et al. Starched carbon nanotubes. Angew. Chem. Int. Ed., 2002, 41: 2508-2512.
    [66] Kim O-K, Je J, Baldwin J W, et al. Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose. J. Am. Chem. Soc., 2003, 125 (15): 4426-4427.
    [67] Wang, Z. H.; Wang, Y. M.; Luo, G. A. A selective voltammetric method for uric acid detection at β-cyclodextrin modified electrode incorporating carbon nanotubes. Ananlyst[J]. 2002, 127: 1353-1358.
    [68] Xiao S. F., Wang Z. H., Wang Y. M., Luo G. A. VOLTAMMETRIC BEHAVIOR OF ASCORBIC ACID AT α-CYCLODEXTRIN INCORPORATED CARBON NANOTUBES-COATED ELECTRODE. Journal of Qingdao University [J]. 2002, 15(4): 1-6.
    [69] 王宗花,罗国安,肖素芳,王歌云,王义明.α-环糊精复合碳纳米管电极对异构体的电催化行为。高等学校化学学报[J],2093,5(24):811-813.
    [70] 肖素芳,王宗花,罗国安。L-半胱氨酸在环糊精复合碳纳米管电极上的伏安测定。高等学校化学学报[J].2004,24(10):1833-1835.
    [71] Wang Z H, Wang Y M, Luo G A. Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid. Analyst[J].2002, 127: 653-658.
    [72] Azamian B R, Davis J J, Coleman K S, et al. Bioelectrochemical single-walled carbon nanotubes. J. Am. Chem. Soc., 2002, 124: 12664-12665.
    [73] Dieckmann G R, Dalton A B, Johnson P A, et al. Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices. J. Am. Chem. Soc., 2003, 125 (7): 1770-1777.
    [74] Chen R J, Zhang Y G, Wang D W, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc., 2001, 123: 3838-3839.
    [75] Zhang J, Lee J K, Wu Y, et al. Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes. Nano Lett. 2003, 3 (3): 403-407.
    [76] Hazani M, Naaman R, Hennrich F, Kappes M. M. Confocal Fluorescence Imaging of DNA-Functionalized Carbon Nanotubes. Nano Lett, 2003, 3(2): 153-155.
    [77] Ravindran S, Chaudhary S, Colburn B. Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic de, vice applications. Nano Lett., 2003, 3 (4): 447-453.
    [78] Dwyer C, Guthold M, Falvo M, et al. DNA-functionalized single-walled carbon nanotubes. Nanotechnology, 2002, 13 (5): 601-604.
    [79] Pengfei Q F, Vermesh O, Grecu M, et al. Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Left., 2003, 3 (3): 347-351.
    [80] Chattopadhyay D, Galeska L, Papadimitrakopoulos F. A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes. J. Am. Chem. Soc., 2003, 125 (11): 3370-3375.
    [81] Ikeda T. Prospects of Bioelectrochemistry in 21st century. Kyoto, Japan, 2000.
    [82] 董绍俊,车广礼.化学修饰电极.科学出版社,1995
    [83] Miller L L, Mark M R. A poly-p-nitrostyrene electrode surface, potential development at conducting and electrocatalytic properties. J. Am. Chem. Soc., 1978, 100: 3223-3231.
    [84] Walton D J, Hall O E. Characterization of poly(pyrroles) by cyclic voltammetry. Analyst, 1992, 117: 1305-1311.
    [85] Ofer D, Crooks R M, Wrighton M S. Potential dependence of the conducting of highly oxidized polythiophenes, polypyroles and polyanilne. J. Am. Chem. Soc., 1990, 112: 7869-7873.
    [86] Sittamplama G, Wilson G S. Surface modified electrochemical detection for LC. Anal. Chem., 1983, 55: 1608-1613.
    [87] Cheek G, Wales C P. pH response of Pt and Vitreous carbon electrode modified with electropolymerical films. Anal. Chem., 1983, 55: 380-388.
    [88] Maskus M, Pariente F, Wu Q, et al. Electrocatalytic reduction of nitric oxide at electrodes modified with electropolymerized films of [Cr(v-tpy)(2)](3+) and their application to cellular NO determinations. Anal Chem., 1996, 68: 3128-3134.
    [89] Costa M. Special issue-conduCting polymer on electrodes. Electrochim Acta, 1994, 39: 171-171.
    [90] Vicente F. Electrochemical reduction of the nitrite to ammomium ions in presence of [MoO_2(O_2CC(s)C_6H_5)_2]~(2-). Electrochim Acta, 1995, 40: 1121-1126.
    [91] Rolison D R. In Advanced zeolite science and application series. Elsevier Amsterdam, 1994, 85: 543-551.
    [92] Dostal A, Meyer B. Electrochemical study of microcrystalline solid prussian Blue particles mechanically attached to graphite and gold electrode. J. Phys. Chem., 1995, 385: 241-254.
    [93] Bedioui F, Devynck. Immobilization of metallopophyrins in electropolymerized film.J. Acc. Chem. Res, 1995, 28: 30-36.
    [94] Th. Wink, Zuilen S J van, Bult A. Self-assembly monolayers. Electroanalysis, 2001, 13(16): 1342-1346.
    [95] Gao H, Luo G A, Feng J, et al. Fabrication and photoelectric properties of self-assembled bilayer lipid membranes on conducting glass. Journal of Photochemistry and Photobiology B: Biology, 2000, 59: 87-91.
    [96] 蒋挺大.甲壳素,北京:化学工业出版社,2003,2-3.
    [97] Gao Y, Lee K H, O shima M, et al. Adsorption Behavior of Metal Ions on Cross-linked Chitosan and the Determination of Oxoanions after Pretreatment with a Chitosan Column. Analytical Sciences, 2000, 16(12): 1303-1308.
    [98] Sun S L, Wang L and Wang A Q. Adsorption properties of crosslinked carboxymethyl-chitosan resin with Pb (Ⅱ) as template ions. Journal of Hazardous Materials, 25(3), 2006: 930-937.
    [99] W.S. Wan Ngah, S. Ab Ghani and A. Kamari. Adsorption behaviour of Fe(Ⅱ) and Fe(Ⅲ) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresource Technology, 96(4), 2005: 443-450.
    [100] Majeti N V, Kumar R. A review of chitin and chitosan applications. Reactive & Functional Polymers, 2000, 46: 1-27.
    [101] 刘斌(Liu B),孙向英(Sun X Y),徐金瑞(xu J R).Application of Chitosan lo Analytical Chemistry.华侨大学学报(自然科学舨)(Journal of Huaqiao University,Natrual Science),2003,24(3):225-233.
    [102] 陈加希(Chen J X),章月莹(Zhang Y Y).壳聚糖及其在分析化学中的应用.理化检验-化学分册(Physical Testing and Chemical Analysis,Part B),2003,39(11):689-690.
    [103] Ye X Z, Yang Q H, Wang Y. Electrochemical behaviour of gold, silver, platinum and palladium on the glassy carbon electrode modified by chitosan and its application. Talanta, 1998, 47(5): 1099-1106.
    [104] 刘斌(Liu B),孙向英(Sun X Y),徐金瑞(Xu J R).氰乙基壳聚糖修饰电极的制作及其应用.应用化学(Chinese Journal of Applied Chemistry),2003,20(10):963-967.
    [105] Choong J, Wolfgang H. Chemical modification of chitosan and equilibrium study for mercury ion removal. Water Research, 2003, 37(19):4770-4780.
    [106] Lu G H, Yao X, Wu X G. Determination of the total iron by chitosan-modified glassy carbon electrode. Microchemical Journal, 2001, 69(1): 81-87.
    [107] Kim, H. S. Thermodynamic Studies of Interaction between Chitosan and Metal Ions by Isothermal Titration Calorimetry (Ⅰ). Journal of industrial and engineering chemistry-seoul, 2004, 10(2): 273.
    [108] 张名楠(Zhang M N),陈东方(Chen D F),刘斌(Liu B),徐金瑞(Xu J R).壳聚糖修饰电极测定锡.华侨大学学报(自然科学版)(Journal of Huaqiao University,Natrual Science),2004,25(4):383-386.
    [109] 曾艳(zeng Y),王丽荣(Wang L R),李雅兰(U Y L)等.壳聚糖在分析化学中的应用.应用化学,2003,20(10):963-967.
    [110] 刘伟利(Liu W L),吴庆生(Wu Q S),丁亚萍(Ding Y P).壳聚糖修饰铂电极半微分伏安法测定微量碘.理化检验-化学分册(Physical Testing and Chemical Analysis,Part B),2004,40(3):145-147.
    [111] 刘斌(Liu B),孙向英(Sun X Y),徐金瑞(Xu J R).壳聚糖修饰电极测定碘的研究.电化学(Electrochemistry),2004,10(1):59-64。
    [112] 崔胜云(Cui S Y),袁勇(Yuan Y),刘立春(Liu L C),金花(Jin H).对氨基水杨酸钠在壳聚糖修饰碳糊电极上的伏安行为研究.延边大学学报(自然科学版)(Journal of Yanbian University,Natural Science),2004,30(4):263-266.
    [113] 谭学才(Tan X C),麦智彬(Mai Z M),邹小勇(Zou X Y)等.壳聚糖与茜素红相互作用的电化学研究.高等学校化学学报(Chem.J.Chinese Universities),2005,26(6):1055-1057.
    [114] 陈刚(chen G),张剑霞(zhang J X),张欣(zhang X).壳聚糖修饰石墨电极半微分伏安法测定L-抗坏血酸.分析化学(Chinese Journal of Analytical Chemistry),2000,28(10):1220-1223.
    [115] 刘斌(Liu B),孙向英(Sun X Y),徐金瑞(Xu J R).席夫碱壳聚糖修饰电极的制作及其在对苯二酚测定中的应用.分析化学(Chinese Journal of Analytical Chemistry),2003,31(9):1048-1052.
    [116] 赵常志(Zhao C Z),郭震(Guo Z),赫春香(He C X),潘玉珍(Pan Y Z),宿艳(Su Y),孙立成(Sun L C).壳聚糖修饰玻碳电极卷积伏安法测定环境水中的EDTA.分析实验室(Analytical Laboratory),2003,22(3):38-40.
    [117] 赵常志,郭震,赫春香。壳聚糖修饰玻碳电极卷积伏安法测定环境水中的EDTA.分析试验室,2003,22(3):38-40.
    [118] Shi Z, Lian Y, Zhou X, Chem Commun, 2000, 6:461-462
    [119] Saito T, Matsushige K, Tanaka K. Chemical treatment and modification of multi-walled carbon nanotubes. Physica B, 2002, 323 (1-4): 280-283
    [120] Tsang S C, Chen Y K, Harris P J F. Nature. 1994, 372 (6502) : 159-162
    [121] 杨占红,李新海,陈志国,等.碳纳米管的纯化.化工新型材料,1998,27(2):22-24.
    [122] 王正元,贾志杰,徐才录,梁吉,朱绍文.用红外光谱研究硝酸处理对多壁碳纳米管表面羧基的影响.炭素技术,1999,5:14
    [123] R. Maruca, B. J. Suder, J. P. Wigutman, J. Appl. Polym. Sci. 1982, 27, 4827.
    [124] G. Mckay, H. S. Blair, A. Findon. Ind. J. Chem. A 1989, 2, 356.
    [125] C. A. Eidan, C. A. Jewell, J. P. Wightman, J. Appl. Polym.Sci. 1980, 25, 1587.
    [126] B. Li, Y. F. Lian, Z. J. Shi, N. O. Li, Chem. J. Chin. Univ. [J]2000, 21, 1633.
    [127] Guibal E, Von Offenberg Sweeney N, Vincent T, et al. Reactive & Functional Polymers, 2002,50: 149.
    [128] Yoshinari Baba ,Hiroshi Noma ,Rie Nakayama ,et al. Analytical Sciences, 2002,18(3): 359.
    [129] Ruey- Shin J uang, Huey-Jen Shao. Adsorption, 2002,8:71.
    [130] 李佳,徐金瑞,孙向英。壳聚糖共价键合化学修饰电极测定亚硝酸根。分析化学,2002,30(2):206~209.
    [131] Gilman A G, GoodmanL S, Rad TW, et al. The PharmacologicalBasis of Therapeutics(7 th Edition) [M]. Macmillan, New York, 1985, 964.
    [132] Diego Gamallo - Lorenzo, Maria del Carmen Barciela - Alonso, AntonioMoreda - Pifieiro, etc. Microwave - assisted alkaline digestion combined with microwave - assisted distillation for the determination of iodide and total iodine in edible seaweed by catalytic spectrophotometry. Analylica Chimica Acta, 2005, 542 (2): 287-295.
    [133] 邹冈.基础神经药理学[M].北京科学出版社,1999:203-205.
    [134] Sun Y X, Ye B X, Zhou X Y et al, Microchemical Journal[J], 1998,58: 182.
    [135] Wang J. Voltammetry[J]. Chem. Abstr, 1994,121: 27-40.
    [136] 李在均,虞学俊,朱振中。Meso-4-(3,5-二溴-4-羟基苯)卟啉分光光度测定食品中的铅[J].分析科学学报,1999,15(1):43-45.
    [137] 宫尾益英著,周形海,等译。微量元素与疾病[M].北京:人民军医出版社,1987,215-218.
    [138] 王夔。声明科学中的微量元素[M].北京:中国计量出版社,1992,156-159.
    [139] 倪刚,袁丽,高锦章。固相分光光度测定食品中的痕量锡[J].光谱学与光谱分析,2002,22(1):118-120.
    [140] 龙晖,李益恒。锡IV-3,4-二羟基苯甲酸-钒V体系极谱吸附催化波的研究[J].分析试验室,1999,18(3):40-42.
    [141] 姚丽珠,杨红苗,宋义等。火焰原子吸收光谱法测定脱氢催化剂中的铂、锡、锂的含量[J]。冶金分析,2003,23(5)14-16.
    [142] 谢德芳,彭黎明,冯信平。氢化物发生-原子荧光光谱法测定热带水果中的锡[J]。热带作物学报,2001,22(11):67-69.
    [143] 赵贵芬,滕晓雯,李超等。ICP-AES法测定钢铁中的锡[J].山东冶金,2002,24(6):25-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700