集中供热系统热力工况动态特性仿真及控制优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着集中供热的大规模应用,许多学者对集中供热系统进行了大量的研究,但是目前对集中供热系统整体实时性的研究较少,本文通过构建的仿真系统对供热管网进行了实时仿真,并对供热系统的优化调节及PID自动控制进行了研究。
     本文首先对将供热一次网分为热源、管道、节点、加热器、水泵等子系统,并针对各子系统分别建立数学模型:根据供热管网管道的特点,将其视为一元管道,然后对管道的流动、传热建立了求解方程;热网循环水泵采用了变频水泵,对其数学模型进行了推导和求解;建立改进的节点方程,对其的动态特性进行了研究;建立板式换热器的换热模型,并求解动态响应。
     随后,本文将各子系统有机地结合,组成了热网的整体实时仿真系统,对不同工况下的流动和换热进行了研究,并对供热系统事故的发生进行了讨论,仿真结果表明:当某一支路的流量发生大幅度变化时,其它支路可能会发生水力失调和热力失调等现象,因此必须限制支路流量的调节在一定范围内;在不同的工况下,由于工质的流动滞后性和传热滞后性,用户出口温度会出现峰值或谷值等不同的现象;当循环水泵和蒸汽加热器发生故障,停止工作时,由于管道、水、换热器等的蓄热作用,供热系统的加热作用需要经过一段较长时间才会逐渐消失,不过这种事故将会导致汽化等现象的发生;当节点发生泄露时,泄露位置的不同,各支路用户的流量和温度会出现上升、下降等不同的变化,这对于从运行变化上发现泄露是非常有帮助的。
     为了实现供热系统支路的自动控制,本文设计了基于二自由度的PID一次热网支路控制器,对PID参数进行优化整定,并使用MATLAB/SIMULINK进行了控制仿真。通过与普通PID调节的对比,发现二自由度PID控制器的调节更加准确,稳定性较好。
     在考虑管网热损失、漏水热损失等因素的情况下,本文建立一次热网运行能耗方程,对质调节、量调节以及质量并调三种热网运行调节方式进行了经济性比较;利用遗传算法对该能耗方程进行最优求解,得到了不同运行工况下的最优供水温度及相应的循环水流量。
With the rapid development of the urbanization, District Heating System has play an even more important role in our life. Many researchers have done much for the DHS.
     Dynamic models of district heating systems are essential for simulation and control design. Subsystem models have to be developed for the heat source, pipelines, heat exchangers, and pump. The pipe can be regarded as one dimension and the equations for the heat transfer and flow of the pipe are evolved and resolved. The pump models adopt the variable frequency pump and the math model is deduced and resolved. The node equation is also constructed and the dynamic performance of the node is also studied. The math model of the heat exchanger is established and the dynamic response is also settled.
     The subsystems constitute the whole DHS simulation system. The variable flow and the heat transfer conditions are researched in the system. The impact of the leak of the node is also discussed. When the pump frequency changes or the flux in some pipe changes, the movement trend of other pipes is alike in the gross. When the frequency decreased, the temperature of the cycle water firstly rises and then fall down. Mean while the temperature of the nodes share the same trend. When the resistance is reduced in one pipe, the flux of others soars up.. the return water temperature increases and the supply water temperature of heat consumer also increased. When the leak of some node happened, the flux of out of pump get a raise and the temperature gets down if the temperature and the flux of heat source keep constant. The flow and the heat transfer far from leak point experience little influence. The flux of pipe near to the leak point decreased and the return water of heat exchanger and the supply water of the heat consumer decreased also when the pipe is in the front of leak point. When in the behind, the flux increased and the temperature also rise.
     To implement the automatic control of the branches of the district heating system, the two-degree-of-freedom PID controller is developed in this paper and the parameters are optimized too. MATLAB/SIMULINK is applied to simulate the new PID controller. Compared with the traditional PID, the new controller is more accurate and stable.
     With considering the thermal loss and the leak loss, the primary district heating system energy consumption equation is set up and the three regulation modes for the district heating system are compared for economic analysis. The GA is used to optimize and solve the equation to obtain the optimized supply temperature and supply water flow in different operation conditions.
引文
[1]黄以明.集中供热管网优化设计[D]西安理工大学硕士论文2007:2-3
    [2]王梵.集中供热系统动态仿真与优化调节[D]哈尔滨工业大学硕士论文2006:1-2
    [3]姜红.集中供热变流量系统的研究与应用[D]北京建筑工程学院硕士论文2008:1-2
    [4]田永铮.计量供热下户群热力工况的动态模拟[D]哈尔滨工业大学硕士论文2006:2-3
    [5]Zhang Zhilong. Temperature Control Strategies for Radiant Floor Heating System,Concordia University,2001,pp 16-84
    [6]M.Zaheer-Uddin, R.V.Patel. The Design and Simulation of a Sub-Optimal Controller for Space Heating,ASHEAE Trans, vol.99,part 1,1993,pp554-564
    [7]Chen Tingyao. A methodology for Thermal Analysis and Predictive Control of Building Envelope Heating Sytem, Corcordia University,1997,pp47-105
    [8]Zheng Guorong. Dynamic Modeling and Global Optimal Operation of Multi-Zone Variable Air Volume HVAC Systems, Concordia University,1997,pp35-184
    [9]A.Benonysson. Dynamic Modeling and Operational Optimization of District Heating Systems.PhD Thesis at Laboratory of Heating and Air Conditioning, Technical University of Denmark.1991:42-87
    [10]H.Zhao.Analysis. Modeling and Operational Optimization of District Heating Systems.PHD Thesis at Laboratory of Heating and Air Conditioning, Technical University of Denmark.1995: 30-41
    [11]Bohm B, Sunden B. Modelling temperature dynamics of a district heating system in Naestved, Denmark-a case study.Energy Convers Manage 2007;48:78-86.
    [12]O.P.Palsson,H.Madsen, H.T. Sogaard. Predictor-based optimal control of supply temperature in district heating systems. Control Engineering Practice 1993;01:81-85.
    [13]石兆玉.供热系统运行调节与控制[M].清华大学出版社,1994:237-238
    [14]付林.热电(冷)联供系统电力调峰运行模式的研究[D].北京:清华大学,1999
    [15]周国兵,张于峰,田琦等.变流量间接供热系统的调节.暖通空调,2001,31(6):11-12
    [16]袁涛.计量供热单热源枝状网运行调节策略[D].清华大学硕士论文。2004:15-22
    [17]王美萍.换热器动态特性及热力站能量控制系统研究[D].太原理工大学硕士论文2003:23-25
    [18]刘利梅.燃气调峰供热系统水力及热力工况研究[D] 北京建筑工程学院硕士学位论文.2008:12-15
    [19]刘铜.大型集中供热管网先进控制仿真与实现[D].北京建筑工程学院硕士学位论 文.2008:16-18
    [20]陈瑜.自整定PID控制技术在供热系统中的应用[D].山东大学硕士学位论文.2005.
    [21]刘金琨.先进PID控制MATLAB仿真.电子工业出版社.2004.
    [22]孙洁.神经网络PID算法在流量控制中的应用与仿真研究[D].合肥工业大学硕士学位论文.2007.
    [23]滕琳琳.神经网络PID控制器在热网流量调节中的应用[D].大连理工大学硕士学位论文.2005.
    [24]李丽.集中供热系统研究与优化[D].华北电力大学硕士学位论文.2009.
    [25]K.Larsson,Y.EL Mahgary. Urban District Heating Using Nuclear Heat:An Energy Model for Overall Optimization of a Nuclear Based District Heating System,, International Atomic Energy Agency Vienna,1977,pp45-67
    [26]Reijo Kohoner. Intermittent Heating of Buildings,Performance of HVAC Systems and Controls in Building, Proceeding of a CIB International Symposium at the Building Research Establishment, Garston,1984,pp233-246
    [27]王俊红,常全旺.浅谈供热系统的平衡调节.区域供热.2010.02:60-62
    [28]王洋,田贯三,张明光.集中供热换热站优化配置及运行分析.山东建筑大学学报.2009.24(06):575-579
    [29]唐玉峰,田茂诚,张冠敏,姜波.集中供热远程网络监控系统优化设计.山东大学学报(工学版)2009.39(05):153-158
    [30]王书中,由世俊,董玉平.基于Matlab的板式换热器动态特性建模与仿真.计算机仿真.2004.21(10):44-47
    [31]蔡瑞忠,王威,吕崇德.基于流体网络的模块化建模方法.清华大学学报(自然科学版)1999,39(12):62-64
    [32]宋杨,程芳真,蔡瑞忠,杨旭.蒸汽供热管网的动态仿真建模.清华大学学报(自然科学版)2001,41(10):101-104
    [33]高建强.大型循环流化床锅炉实时仿真模型与运行特性研究[D].华北电力大学博士学位论文.2005.
    [34]贺平,孙刚.供热工程[M]中国建筑工业出版社2007.6:55-59
    [35]沙毅,闻建龙.泵与风机[M]中国科技大学出版社2005.8:1-10
    [36]石兆玉.再议供热系统的水力平衡.区域供热2010.01:4-8
    [37]王昭俊,董立华,姜永成,方修睦,赵加宁.热计量变流量供热系统室外管网动态水力失调与控制.哈尔滨工业大学学报.2010.42(2):218-222
    [38]姜军.计量供热系统水力失调原因分析及供热潜力的开发[D].天津大学硕士学位论.2003.12:18-22
    [39]田雨辰.计量供热相关问题的研究[D].天津大学硕十学位论文2006.08:76-80
    [40]臧洪泉.集中供热系统节能运行的评价体系[D].天津大学硕士学位论文2007.05:17-18
    [41]安连锁.泵与风机[M].中国电力出版社.2001.08:72-75
    [42]李善化,康慧.集中供热设计手册[M].中国电力出版社.2000.
    [43]陆卫东,刘文亮.C++Builder6程序设计教程[M].科学出版社.2005.01:5-17.
    [44]贺兴旺.大高差支状管网的动态模拟和仿真[D].太原理工大学硕士学位论文.2008
    [45]薛会梅.智能控制在热网热量平衡中的控制研究[D].大连海事大学硕士学位论文.2006.
    [46]韩嵘.遗传算法调节器在热网流量控制中的应用[D].大连理工大学硕士学位论文.2006.
    [47]宋新玲.基于神经网络解耦控制器的热网控制研究[D].大连理工大学硕士学位论文.2007.
    [48]蒋毅,古天祥.一种新的二自由度PID调节器的设计方法.四川大学学报(自然科学版).2004.41.(10):264-268.
    [49]倪维斗.热动力系统建模与控制的若干问题[M].科学出版社,1996.122-127
    [50]王维杰,李东海,高琪瑞,王传峰.一种二自由度PID控制器参数整定方法.清华大学学报(自然科学版)2008,48(11):1786-1790
    [51]袁军.大庆油田集中供热系统优化与管理研究[D].大庆石油大学博士学位论文.2010.
    [52]王庆峰.集中供热系统运行调节优化及热负荷预测[D].山东大学硕士学位论文.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700