基于ANSYS的大型铝挤压机挤压筒的强度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挤压加工是使金属处于三向压应力的状态而产生塑性变形的加工方法。现代化社会需要大量的大型薄壁、宽幅、高精度、复杂断面的铝合金型材,所以大型铝材挤压机是国内外市场的一种急需。穿孔系统决定着挤压机所挤压制品的质量,挤压筒是穿孔系统的主要部件。其结构、强度影响着生产效率、挤压产品的精度、机器性能等。挤压筒的研究对进一步提高挤压管材、空心型材的性能有十分重要的意义。挤压筒通常在高温、高压、高摩擦的恶劣条件下工作,经常发生开裂。由于大型挤压筒的正确设计与制造技术问题一直没有得到很好的解决,为了提高挤压筒的强度,延长其使用寿命,应对挤压筒的受力、变形状况和设计方法进行科学的分析研究。
     本文以挤压筒为研究对象,综合采用数值模拟和物理模拟方法。首先运用大型有限元ANSYS软件三维建模,采用有限元分析方法,对挤压筒进行静力学分析,接触非线性分析;接着系统研究了组合式挤压筒在仅受预紧力状态下的变形和应力分布状态,又对挤压筒在预紧力与工作载荷共同作用下的变形、应力分布状态做出了系统的研究。在此基础上,由于挤压筒处于高温和高压的工况,对挤压筒做耦合状态下的力—热有限元分析,得出其受力规律,为挤压筒的强度设计提供依据。
     在材料选择上,采用专项研制的4Cr5MoSiVl(Hl3)优质高强度钢,其韧性、耐磨性都比通常使用的3Cr2W8V钢明显提高,使用寿命可提高2倍到3倍。
     本文的研究成果可以为挤压筒设计、优化和模型的建立提供技术帮助,对于完善型材挤压设计理论具有指导意义。大型挤压机在研制中采用了本文的研究成果,经调试、运行成功,挤压筒的强度达到了设计要求,各项技术参数均达到了预期指标,现已正式投入使用。
Aluminum has some advantages such as light mass, high precision, fine airtightness, unfailing performance, which makes it used broadly in manufacture increasingly. The combined flat receptacle is the key part of extruder which produces the aluminum, and often cracks under severe condition of high temperature, high pressure, high friction. The appropriate design and manufacture technology of large flat receptacle is not resolved until now, so in order to enhance the strength of flat receptacle and prolong life, we should analyze its stress and deformation distribution with accuracy.
     The thesis takes the combined flat receptacle as subject investigated with numerical simulation and physical simulation. Firstly, models in three-dimension using large finite element ANSYS software, analyzes the flat receptacle in statics and contact non-linearity. Then researches the deformation and stress distribution of flat receptacle under shrink condition systematically, and does systematic study on the deformation and stress distribution under shrink and work load. On the base of mentioned above, owing to the receptacle works under the condition of high temperature and high pressure, the thesis does finite element analysis of force-heat in coupling and educes stress rule which provides gist for strength design of flat receptacle.
     Comparing with 3Cr2W8V material used before, the thesis selects high quality steel 4Cr5MoSiV1 (H13) with high strength. Its toughness and fine airtightness are better than 3Cr2WSV, so the life increases one or two times.
     The research results provide technology help on the design, optimization and modeling and have some instruction for perfecting the design theory about profile extrusion. The large-scale extruder has adopted the result of the thesis and has debugged and run successfully. The strength design of flat receptacle reaches demands. Its every technique parameter reaches prospective indexes. Now the extruder has run in the production.
引文
1 杨大祥,杨红娟.125MN双动铝挤压机液压控制系统的研制及其技术特点.科苑论坛,2006,3(8):35~38
    2 王祝堂,田荣璋.铝及其合金加工手册.长沙中南工业大学出版社,1989:514~515
    3 魏军.金属挤压机.化学工业出版社,2006:1~211
    4 王祝堂,王治国,卢载浩.中国铝型材挤压工业回眸与展望.轻合金加工技术,1999,27(1):5~9
    5 王自焘.中国铝型材工业的发展与现状.轻合金加工技术,2002,30(2):11~15
    6 刘俊英,蒋伯平,刘金海.热作模具钢的发展与作用.工程机械,2006,(6):48~50
    7 储伯温,韩炳涛,成先飚.100MN双动铝挤压机配置及技术特点分析.重型机械,2003,(2):6~11
    8 邓小民.提高穿孔针抗弯强度减少挤压断针.轻金属,2001,(12):8~50
    9 赵云路,刘静安.挤压针优化设计.轻合金加工技术,1996,24(9):37~41
    10 邓小民.铝合金双动挤压机穿孔系统工具的优化设计探讨.轻合金加工技术,2003,31(10):31~36
    11 Rodrigues, F. C., Saldanha, A.C.. Nonlinear Analysis of Steel Plane Frames with Semi-rigid Connections. Journal of Constructional Steel Research, 1998, 46(1~3): 94~97
    12 马怀宪.金属塑性加工学—挤压、拉拔与管材冷轧.北京冶金工业版社,1991:38~44
    13 邓小民.铝合金管材无润滑挤压穿孔针拉力的计算.中国有色金属学报,2000,10:257~261
    14 杨守山.有色金属塑性加工学.冶金工业出版社,1982:252
    15 邓小民.用空心锭挤压管材时在墩粗过程中穿孔针受力研究.铝加工,2003,(153):4~8
    16 谢汝升.冲压模具设计与制造技术.中国标准出版社,1997:9
    17 吴德海,任家烈,陈森灿.近代材料加工原理.清华大学出版社,1997: 248
    18 邓小民.铝管材挤压时影响穿孔针断裂的主要因素.轻会属,2001,(6):54~56
    19 刘静安.轻合金挤压工具与模具(上).北京冶金工业出版社,1990:244~252
    20 刘鸿文.材料力学(上).北京人民教育出版社,1979:181~185
    21 贺德昂.连续挤压机主轴部件强度分析与计算.大连铁道学院硕士论文,2003:40~41
    22 谢建新,刘静安.金属挤压理论与技术.北京冶金工业出版社,2001:86~88
    23 ANSYS Finite Element Analysis Design Optimization Series. Swanson Analysis System INC, 1989: 3~6
    24 徐之纶.弹性力学.高等教育出版社,2005:1~43
    25 傅永华.有限元分析基础.武汉大学出版社,2003:10~54
    26 Martikka H.. Optimum Design of Locomotive Frames Using Fuzzy Goals and FE Methods. Advances in Engineering Software, 2000, 31 (6): 411~415
    27 卢耀祖,周中坚.机械与汽车结构的有限元分析.同济大学出版社,1997:63~85
    28 Zhao Jianzhong. Mathematical Expressions of Saint-Venant's Principle for Two Categories of Elastic Bodies. Journal of Yunnan University, 2001, 23(5): 379~382
    29 陈精一,蔡国忠.电脑辅助工程分析ANSYS使用指南.北京中国铁道出版社,2001
    30 倪栋,段进,徐久成.通用有限元分析ANSYS7.0实例精解.电子工业出版社,2003:306~323
    31 宋勇,艾宴清,梁波.精通ANSYS7.0有限元分析.清华大学出版社,2003:267~280
    32 Johnson K L.接触力学.徐秉业.北京高等教育出版社,1992
    33 Karaoglu, Cicek, Sefa Kuralay, N.. Stress Analysis of a Truck Chassis with Riveted Joints. Finite Elements in Analysis and Design, 2002, 38(12): 1115~1130
    34 刘海蓉.冷却运输机滚子输送链的有限元分析.兰州理工大学硕士论文,2006:51~56
    35 ANSYS Engineering Analysis System Theoretical Manual. Swanson Analysis System INC, 1988: 2~4
    36 黄春峰.国外新型热作模具钢及其热处理工艺.模具技术,2000,(3):89~93
    37 王金,田世新,刘孔钧.机械设计课程设计.东北大学出版社,1994:53~55
    38 C.H., Trethewey, M.W.. Rapid Structural Design Change Evaluation With Experiment Based FEM. Journal of Sound and Vibration, 1998, 211(3): 335~353
    39 Xue Mingde, Cheng Lejin. The Stress Analysis of Sandwich Shells Faced with Composite Sheets Based on 3D FEM. Composite Structures, 2003, 60(1): 33~41
    40 邱宣怀.机械设计.高等教育出版社,1997:13~17
    41 Peter Kohnke, Ph.D. ANSYS Inc. Theory Release 5.7. 2001, 20:1~18
    42 林清安.Pro/Engineer Wildfire高级操作与范例.电子工业出版社,2006:132~168
    43 张胜民.基于有限元ANSYS7.0的结构分析.清华大学出版社,2003:8~251
    44 Vernon, P.J., Mackin. Fatigue Failure Analysis of a Leg Press Exercise Machine. Engineering Failure Analysis, 1999, 6(1): 1~12
    45 邓小民,孙中建,李胜抵,方木云,曹杰.铝合金挤压时的摩擦与摩擦因数.中国有色金属学报,2003,13(3):559~605
    46 代秀红.Z611O型柴油机缸盖结构强度分析.大连理工硕士论文,2003:42~45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700