基于荧光信号放大技术的蛋白质和核酸检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,人们一直致力于发展和完善生物大分子的研究和分析方法,使其更加灵敏、精确、便捷、经济,以满足各个领域对其越来越高的要求。生物分子信号放大检测技术是近年来发展起来的一种利用各种工具酶和纳米颗粒等手段,并结合电化学、光学等技术建立起来的高灵敏检测方法,可实现对生物分子的直接高灵敏检测,是生物分析科学领域中的一个研究重点和热点。如何利用现有分子生物学技术和手段将生物分子的含量、相互作用等信息实时、灵敏、特异地转化为易于检测的物理量并拓展其在分子生物学及生物医学中的应用,如何设计新的信号转换手段和建立新的生物分子信号放大检测技术平台来解决生命研究过程中的新问题,仍然是生物医学和分析化学工作者所面临的重大研究科题。
     本工作以上述科学问题为目标,以蛋白质和核酸这两类组成生命的最主要生物大分子为研究对象,利用多种核酸工具酶、纳米颗粒和荧光核酸探针技术,建立了一系列的生物大分子荧光信号放大检测技术平台,在蛋白质和核酸定量分析方面得到了重要的应用。主要内容归纳如下:
     1、单球体积荧光放大法检测生物大分子
     近年来,随着纳米材料科学的发展,不同组成、大小、形状的磁性纳米颗粒已经广泛应用于生物分析研究领域。功能化的磁性纳米颗粒作为标记探针,已经越来越引起人们的关注。磁性纳米颗粒具有磁性、粒径小、表面积大且表面可修饰等特点。功能化的纳米磁性纳米颗粒标记生物分子时,一方面能够作为载体起到富集、固定的作用,同时还保持了标记生物分子的生物化学活性。另一方面,纳米磁性纳米颗粒在外加磁场的作用下,能够快速有效地实现免疫复合物与未结合物的分离。所以,在免疫测定中,应用纳米磁性纳米颗粒和磁分离技术能够降低假阳性信号,提高信噪比,从而提高蛋白质检测方法的灵敏度。在本文中,我们基于信号双重扩增(DNA扩增、SYBR Green I/BT-DNA结合物荧光信号扩增)结合磁分离技术,利用落射荧光显微术建立了一种超灵敏的靶蛋白荧光免疫测定方法。在高浓度时,荧光强度与靶抗原在5.0×10-13~8.0×10-15mol L-1的浓度对数范围内呈良好的线性关系。在低浓度时,一个功能化得磁纳米球对应一个蛋白分子,这时我们通过计数单个磁纳米球定量检测单个生物分子。磁纳米球的数目和抗体的浓度在8.0×10-14~3.0×10-15mol L-1的范围内呈良好的线性关系。
     2、多重标记结合RCA技术构建免疫分析新方法用于蛋白质定量检测
     为了提高蛋白检测的灵敏度,人们已经努力发展了一些新的蛋白检测技术。其中,荧光检测技术联合信号扩增技术是最流行的检测技术。特定核酸序列的扩增是分子生物学的一项基本技术,随着分子生物学的发展与生物化学、生物物理学等交叉学科在该领域的广泛应用,新的核酸扩增技术不断涌现。其中,滚环扩增(Rolling Circle Amplification, RCA)技术凭借其高特异性、高灵敏度和易操作性在近几年中逐渐引起人们的注意,并越来越多的用于基础研究和临床诊断分析及医药领域中。与其他核酸扩增技术相比,RCA技术具有高灵敏度、高特异性、多元性和高通量、等温反应和操作简单等优势。为了满足低浓度蛋白检测的需要和解决多重荧光标记和纳米探针的信号放大存在的问题,本章提出了一种基于链霉亲和素-生物素多重结合和滚环扩增辅助组装的级联荧光DNA纳米标签作为信号标记的新型级联荧光信号放大技术超灵敏检测靶蛋白目标分子。荧光强度与人IgG浓度的对数成线性关系,并且动态范围从1×10-12molL-1-1×10-15mol L-1。超过3个数量级。线性相关系数为0.995。检测限达到0.9×10-15mol L-1(采用3倍的信噪比)。实验结果出示了该方法具有较宽的动态范围,超高的灵敏度、可接受的重现性、好的特异性和较低的基质效应影响。另外更重要的是,该方法不需要复杂的接合化学并且该方法出示了快的反应动力学和简单的操作在组装荧光DNA标签。与功能化纳米粒子的标签相比,该策略标记物避免了复杂和繁琐的合成工艺。因此该策略将在免疫靶蛋白的超灵敏检测中会成为一个强有力的检测工具。
     3、磁性纳米颗粒结合RCA技术构建免疫分析新方法用于蛋白质定量检测
     在荧光免疫测定法中,为了定量检测样品中低浓度的靶蛋白,实现超灵敏分析,一个关键因素在于获取强的、稳定的光信号强度。但由于有机染料荧光强度低、易发生光漂白,限制了单个有机染料标记靶目标检测时分析灵敏度的提高。为了解决这一问题,采用信号扩增技术,即多个荧光探针标记物对单个靶分子同时识别。这样能够增强荧光信号的强度,提高灵敏度,实现超灵敏分析。典型的高灵敏的分析标记物包括酶、或者它们的聚合形式、以及功能化的纳米粒子比如染料填充的纳米粒子、金纳米粒子、量子点(QD)。尽管这些技术起了很重要的作用,但是这些技术标记的信号放大能力仍然是有限的。
     特定核酸序列的扩增是分子生物学的一项基本技术。其中,滚环扩增(RCA)技术凭借其高特异性、高灵敏度和易操作性在近几年中逐渐引起人们的注意,并越来越多的用于基础研究和临床诊断分析及医药领域中。与其他核酸扩增技术相比,RCA技术具有高灵敏度、高特异性、多元性和高通量、等温反应和操作简单等优势。
     随着核酸序列越来越多的被应用于生物蛋白质标记物,本章中,为了发展具有最大信号放大功能和最小非特异性吸附的信号标记物来高灵敏的检测蛋白。我们首次报道了一种基于磁纳米颗粒富集DNA的RCA扩增免疫分析新方法用于蛋白检测,磁纳米颗粒-RCA免疫分析方法,该方法出示了很多优点:(1)磁分离技术的运用明显的降低了磁纳米颗粒免疫探针的非特异性吸附:(2)三次信号放大技术(磁纳米颗粒富集DNA引物、RCA放大、荧光DNA纳米标签荧光放大)的联用极大的提高了方法的灵敏度。另外,该技术方法可以比较容易的制备卸载DNA的抗体检测试剂和并且操作比较简单。因此,发展的该免疫分析方法将成为一种强有力的工具用于高灵敏的蛋白检测。在对数范围内,荧光强度与人IgG浓度的成线性关系,并且动态范围从1×10-12mol L-1-1×10-17molL-1超过6个数量级。线性相关系数为0.997。检测限达到8.3×10mol L-1(采用3倍的信噪比)。实验证明,该方法具有较宽的动态范围,超高灵敏度、可接受的重现性、好的特异性和较低的基质效应影响。该技术作有望成为一种超灵敏的蛋白质检测技术用于蛋白质组学和临床诊断。
     4、基于核酸外切酶辅助的免分离和内切酶介导的循环放大荧光法检测凝血酶
     核酸适配体作为一种分子识别元件,越来越受到人们的关注,目前,应用核酸适配体荧光检测蛋白主要是基于适配体与目标蛋白作用后产生的荧光偏振度或荧光强度的改变来检测蛋白。这类方法也是信号变化范围较小,荧光背景较大,线性范围不宽,对于低浓度的蛋白测定存在一定困难。
     核酸外切酶Exonucleasel (Exol)可以按照3’→5’方向水解单链DNA核苷酸,产生5’单磷酸脱氧核苷和末端二磷酸二核苷。核酸内切酶可以对双联DNA中某一段核苷酸基因位点进行特异识别切割,从而释放出靶目标物。本章基于此巧妙的设计了一段凝血酶的核酸适配体、将核酸外切酶和切割内切酶连用,发展了一种快速、高灵敏的基于核酸外切酶辅助的免分离和核酸内切酶介导的循环放大荧光法检测凝血酶。在这个方法中,我们首先合成一段含有凝血酶适体和一段含有识别序列的寡核苷酸即适体检测探针,当把探针与凝血酶一起孵育时,其可以识别凝血酶并与其结合。然后加入ExoI酶切除未结合的适体探针,而与凝血酶结合的探针则被保护下来;进而对被保护的探针的其中一段序列进行与分子灯塔MB杂交,从而打开分子灯塔发出荧光,然后加入切割内切酶去特定识别双联核苷酸的特定位点从而进行切割,释放出被保护的探针,在进行下一轮的循环放大。通过建立荧光强度与凝血酶浓度的相关曲线,我们可以实现对凝血酶的定量。检测限的灵敏度达到了5×10-11mol L-1。实验证明,该方法具有高的灵敏度、可接受的重现性、好的特异性和较低的基质效应影响。该技术在改变相应蛋白的核酸适体情况下,有望用于对多种蛋白进行高灵敏和高特异性的检测。
     5、基于RCA辅助诱导的G四倍体构型免标记荧光信号放大策略超灵敏检测DNA
     G-四倍体DNA是由富含G的单链DNA,在特定的离子强度和pH条件下,单链内或单链之间对应的G碱基通过Hoogsteen氢键的配对,使4段或4条富G的DNA片段相互结合形成一段四倍体DNA。卟啉衍生物(NMM),是一种阴离子卟啉化合物。能选择性的与G-四倍体DNA结合。游离的NMM发出很弱的光,但是在与G-四倍体DNA结合后展现出很强的荧光信号增强。
     磁球是指含有磁性金属或金属氧化物的超细粉末而具有磁响应的高分子微球,它除了具有纳米颗粒的特性外,还可以通过表面的功能基团进行功能修饰。并因具有磁性,可在外加磁场的作用下方便迅速地分离。滚环复制(rolling circle replication)为噬菌体感染细菌后进行自我复制而普遍采取的一种形式。这种复制形式可在等温下以环状单链DNA为模板进行相对无限单链扩增,产生多个单元拷贝的长单链DNA分子。滚环扩增(RCA)即是基于这样一个原理的信号放大检测技术,有线性扩增和指数扩增两种形式。
     为了设计方便、便宜、快速、易操作、灵敏度高、选择性好的核苷酸检测方法,本章基于卟啉衍生物(NMM)与G-四倍体DNA的相互作用,将其与RCA技术连用,巧妙的设计了两种免标记信号放大方法检测DNA,第一种:我们发展了一种基于磁纳米颗粒,核酸外切酶辅助循环放大和RCA扩增辅助的G-四倍体与卟啉衍生物(NMM)相互作用联用的的功能化传感器用于信号放大检测DNA。该方法应用了三次信号放大技术(磁纳米球富集、核酸外切酶辅助循环放大、RCA扩增放大),一方面提高了检测的灵敏度,一方面提高了方法的选择性。第二种:为了进一步简化实验步骤,缩短反应时间,避免污染,我们巧妙的设计了一种哑铃型的RCA模版、将卟啉衍生物(NMM)与RCA的产物(双向G-四倍体DNA)相互作用,发展了一种快速、简便、高灵敏的基于哑铃型探针诱导RCA扩增辅助的G-四倍体免标记荧光信号放大策略超灵敏检测DNA。
With the development of genome project and protein project, more sensitive, accurate, convenient and economic detection methods for biological macromolecules have been the focus of biology, medicine and chemistry. In recent years, signal amplification detection technologies based on electrochemical, optical, piezoelectric technologies and the use of various enzymes and nanoparticles, have realized highly sensitive detections of biological macromolecules. How to utilize the existing molecular biology techniques and tools to convert the information of biological molecules to detectable signals with high sensitivity and specificity, how to further expand the use of signal amplifying methods in molecular biology and biomedical application, and how to design novel signal conversion means and develop novel signal amplification detection technology platform to address the research process to life in the new issue, are still significant topics for researches in biomedical and analysis chemical area.
     In this thesis, a series of fluorescence signal amplifying detection technology platforms based on a variety of nucleic acid enzymes, nanoparticles and fluorescent nucleic acid probes have been developed for quantitative analysis of protein and DNA detection. The main researches included in this dissertation are presented as following:
     1. Ultrasensitive Fluorescence immunosensor for Detection of Protein Based on a Combination of the Magnetic Nanobeads and the assembly of fluorescent DNA nanotags
     Along with the efficient magnetic nonparticle amplifying strategy for sensitive detecting biomolecules, magnetic nanoparticle-based label sensors toward targets have been developed with its enrichment and magnetic separation properties. Sensor based on functionalized magnetic nonparticle has gained much attention as a new type tool of non-isotopic immunoassay labels. Magnetic particles act as a carrier and a bridge when functionalized magnetic particles are used to be as signal labels. On one hand, the significant signal intensity could be gained due to the application of amplification strategy. On the other hand, the background signals from labels nonspecific adsorption could be reduced due to the application of magnetic particles. In immunoassay, the application of the sensor based on magnetic nanoparticles can improve the sensitivity by reducing false positive signals with magnetic separation technology and increasing label signal intensity by its enrichment as a carrier.
     In this paper, aiming at the detection need of low abundant proteins, we report an ultrasensitive fluorescence immunoassay based on a novel and sensitive fluorescence biosensor by the combination of MNB and assembly of fluorescent DNA nanotags (SYBR Green I/BT-DNA conjugates) for detection of target protein. Highly amplified fluorescence signal and low background signal are achieved by using a double amplification (DNA amplification and the signal amplification feature of SYBR Green I/BT-DNA) and magnetic separation. In the high concentration, on logarithmic scales, the fluorescence intensity was found to exhibit a linear correlation to human IgG concentration from5.0×10-13mol L-1to8.0×10-15mol L-1with a linear correlation coefficient of0.995. In the low concentration, one protein brings one MNB onto the substrate. The linear relationship between the number of beads and human IgG concentration is in the range of50to3.0fM. The linear regression equation for human IgG in the range of50to3.0fM was determined to be y=13.135+7.684×1015x(R=0.996).
     2. Sensitive Detection of Proteins Using Assembled Cascade Fluorescent DNA Nanotags Based on Rolling Circle Amplification
     Sensitive proteins detection is critically important in basic discovery research and clinical practice because a few molecules of protein are sufficient to affect the biological functions of cells and trigger pathophysiological processes. To improve the sensitive, Great efforts have been made to develop some new protein detection techniques. Among them, fluorescence detection techniques combined with signal amplification are one of the most popular techniques. Specific nucleic acid sequences amplification is a basic technology of molecular biology. With the development of molecular biology and the application of the cross subject biochemistry and biophysics in the field, new nucleic acid amplification technologys have emerged. Among them, RCA (Rolling Circle Amplification) technology with high specificity, high sensitivity and simple operational gradually draw people's attention in recent years. And RCA is more and more used in basic research, clinical diagnosis analysis and the field of medicine. Compared with other nucleic acid amplification technology, RCA technology has the following advantages:high sensitivity, high specificity, diversity and high throughput, isothermal reaction and simple operation and so on.
     Aiming at the detection need of low abundant proteins and the problems existing in the amplification techniques by multiple fluorophores and nanoparticle probes, this work proposed a novel cascade fluorescence signal amplification strategy for ultrasensitive detection of protein, which based on the rolling circle amplification (RCA)-aided and assembled cascade fluorescent DNA nanotags as signal label and multiplex binding of the biotin-streptavidin system. The designed strategy was successfully demonstrated for the ultrasensitive detection of protein target. The results revealed that the strategy exhibited a dynamic response to human IgG over a3-decade concentration range from1.0pM to1.0fM with a limit of detection as low as0.9fM. It was demonstrated that the proposed strategy shows a broad dynamic range, ultra-high sensitivity, acceptable reproducibility, excellent specificity and a low matrix effect. Futhermore, the method does not require complicated conjugation chemistry and shows fast reaction kinetics and simply manipulating in assembly of fluorescent DNA nanotags. Compared with functionalized nanoparticles labels, it avoids the complicated and tedious synthesis process. The proposed strategy would become a powerful tool to be applied for the ultrasensitive detection of target protein in immunoassay.
     3. A Versatile Platform for Ultrasensitive Detection of Protein:DNA enriching magnetic nanoparticles-Based Rolling Circle Amplification Immunoassay
     In fluorescence immunoassay, for the detection of trace amounts of biological analytes, a key factor of the detection and quantification of trace levels of protein analytes is to increase label fluorescence signal intensity to improve sensitivity. Great efforts have been made to develop some new protein detection techniques relying on labeling with different probes to improve sensitivity. In general, high-sensitivity assay labels involve the use of certain signal amplification strategies by which a single signal-reporting tag is able to incorporate numerous detectable elements. Typical high-sensitivity assay labels include enzymes or their polymeric forms as well as nanoparticles such as dye-doped nanoparticles, gold nano-particles and quantum dots. Notwithstanding the importance of these techniques, the signal amplification capacity of these assay labels is still limited.
     With the development of molecular biology and the application of the cross subject biochemistry and biophysics in the field, new nucleic acid amplification technologys have emerged. Among them, RCA (Rolling Circle Amplification) technology with high specificity, high sensitivity and simple operational gradually draw people's attention in recent years. And RCA is more and more used in basic research, clinical diagnosis analysis and the field of medicine. Compared with other nucleic acid amplification technology, RCA technology has the following advantages: high sensitivity, high specificity, diversity and high throughput, isothermal reaction and simple operation and so on.
     Along the direction of implementation of oligonucleotide-based immunoassay labels, to develop signal-reporting labels with maximized signal amplification and minimized nonspecific adsorption for highly sensitive proteins detection, we reported for the first time a DNA enriching magnetic nanoparticles and assembled fluorescent DNA nanotags based RCA immunoassay, magnetic nanoparticles-RCA immunoassay, as an alternative strategy. On logarithmic scales, the fluorescence intensity at the maximum emission wavelength was found to exhibit a linear correlation to human igG concentration over a6-decade concentration range from1pM to10aM with a linear correlation coefficient of0.997. The calculated limit of lower detection is8.3aM in a3s rule. The ultrahigh sensitivity and the broad dynamic range were attributed to the following reasons:(ⅰ) the primary amplification via functionalized magnetic nanoparticle detection probe attaching numerous primer DNAs for RCA, that is to say, a high ratio of primer DNAs are attached to an antigen;(ⅱ) the released numerous primer DNAs initiate a secondary RCA amplification;(ⅲ) a tertiary "assembled fluorescent DNA nanotags" amplification;(iv) a low nonspecific adsorption of functionalized magnetic nanoparticle detection probe by magnetic separation. This technique also enabled easy preparation of the detection probe, and isothermal end-point detection with simple instrumentation. It was demonstrated that the technique gave high specificity, low matrix effect and dose-response sensitivity. This technique holds great promise as an ultrasensitive, specific, powerful technology for protein detection in proteomics and clinical diagnostics.
     4. Sensitive and Homogeneous protein detection based on Exo I assisted separation-free and Nicking Enzyme assisted fluorescence signal amplification
     Aptamers, which are novel in vitro selected functional DNA or RNA structures from random-sequence nucleic acids libraries, possess high recognition ability to specific targets. Due to their inherent selectivity, affinity and their multifarious advantages over the traditional recognition elements, aptamers can rival antibodies for molecular recognition and detection. Compared with antibodies, the biggest advantage of aptamer-based methods is that oligonucleotides can be synthesized chemically with ease and extreme accuracy at low cost nowadays. Furthermore, they are thermally stable, reusable, and show good stability during long-term storage. At present, aptamers sensor for fluorescent detecting protein is mainly based on the change of fluorescence polarization degree or the fluorescence signal intensity after aptamer and the target protein binding. In this method, signal change is in the small areas, fluorescence background is bigger, linear range is not wide. It is difficult for low concentration of protein determination in some degree.
     Exonuclease I catalyzes the removal of nucleotides from single-stranded DNA in the3'to5'direction. The single-stranded DNA chains would be degraded to5'-terminal dinucleotides with the release of deoxyribonucleoside5'-monophosphates from the3'-termini of the single-stranded DNA chains. Nicking Enzyme can identify and cleave double-stranded nucleotides specific sites. In this work, we developed a sensitive and homogeneous protein detection based on Exo I assisted separation-free and Nicking Enzyme assisted fluorescence signal amplification. In this study, we firstly synthesize a protein detection probe containing a thrombin aptamer sequence and an ex-DNA recognition probe sequence. The ex-DNA was designed to be complementary to the MB-quenching fluorescence (MB). The MB probe is a short oligo-DNA, which carried the recognition sequences and cleavage site for the nicking endonuclease Nb.BbvcI, and was labeled with the fluorescent dye6-carboxyfluorescein (6-FAM) and its quencher DABCYL at the5'-and3'-ends, respectively. Nicking endonuclease is an enzyme that binds to its asymmetrical recognition sequence in double-stranded DNA and nicks only one specific strand of the duplex. When thrombin and its aptamer incubated together, the thrombin bound an aptamer and thereby was protected from degraded by exonuclease I. The protected protein detection probes hybridize with MB probe. Therefore, a fluorescence signal appears only when the MB probe was cleaved by Nb.BbvCI. After nicking, the hybrid MB probe became less stable, and the cleaved strand dissociated from the target, thus resulting in the complete disconnection of the fluorophore from the quencher. The released target strand could then hybridize to another MB probe and initiated the second cycle of cleavage. Finally each target strand could go through many cycles, resulting in cleavage of many probes. The detect limit was estimated to be PM. It was demonstrated that the proposed strategy shows an ultra-high sensitivity, acceptable reproducibility, excellent specificity and a low matrix effect. In addition, the strategy has promising application in the monitoring of many other proteins with high sensitivity and excellent specificity.
     5. A facile, label-free amplified DNA detection system based on rolling circle amplification strategy assisted quadruplex formation
     In particular ionic strength and pH conditions, G-quadruplexes is comprised of single nucleotide with rich G basic groups through the counterpart of the Hoogsteen hydrogen bonding. N-methyl mesoporphyrin IX (NMM) is an anionic porphyrin characterized by a pronounced structural selectivity for G-quadruplexes. It is weakly fluorescent by itself, but exhibits a dramatic fluorescence enhancement upon binding to quadruplex DNA.
     Magnetic nanoparticle-based sensors have gained much attention with its enrichment and magnetic separation properties as a new type tool of assay sensor. RCA (Rolling Circle Amplification) technology with high specificity, high sensitivity and simple operational gradually draw people's attention in recent years. In a typical RCA process, DNA polymerase replicates the circular template hundreds to thousands of times. Therefore, the end products of an RCA reaction are extremely long ssDN A molecules. RCA has a wide range of applications in the biochemical analysis and clinical diagnosis due to its high sensitivity and specificity, isothermal operation and many other advantages.
     In order to design convenient, cheap, fast, easy operation, high sensitivity, good selectivity nucleotide detection method, in this work, we developed two facile, label-free amplified DNA detection systems.(1) A magnetic bead-based label-free fluorescent turn-on enzymatic amplification assay for DNA detection using RCA assistant ligand-responsive G-quadruplex formation. The developed assay exploits three amplifications (Exo III cleavage cycle amplification, RCA, a dramatic fluorescence enhancement of G-quadruplex/NMM). Here, the integration of a series of amplification techniques further improves the sensitivity. In addition, the developed assay realizes label-free DNA detection, which is important for retaining the high target binding activity.(2) In order to further simplified experimental steps, shorten the reaction time, avoid vulnerability to contamination, we developed a facile, label-free amplified DNA detection system based on a dumbbell probe-mediated rolling circle amplification assisted quadruplex formation for highly sensitive DNA detection.
引文
[1]Woyehik R P, Klebig M L. Functional genomie in the post-genomeera. Mutation Research,1998,400(1-2):3-14.
    [2]Williams G T, Smith C A. Molecular Regulation of Apoptosis:Genetic Controls on Cell Death. Cell,1993,74(5):777-779.
    [3]钟碧玲,宋永生.鼻咽癌中p53蛋白积聚对瘤细胞有丝分裂和凋亡的影响.癌症,2000,19(5):432-435.
    [4]费素娟,黄水平,周力新等.食管癌组织中COX-2、p53和PCNA的表达及意义.中国癌症杂志,2003,13(1):17-21.
    [5]Mikami T, Yanagisawa N, Baba H, et al. Association of Bcl-2 protein expression with gallbladder carcinoma differentiation and progression and its relation to apoptosis. Cancer,1999,85(2):318-325.
    [6]景丽,张建中,郭凤英等.Cyclin D1、p53及c-mye基因表达与胃癌生物学行为的关系.中国癌症杂志,2003,13(1):27-29.
    [7]Osada M, Ohba M, Kawahara C, et al. Cloning and funcdtional analysis of human p51 which structurally and functionally resembles p53. Nature Medicine,1998, 4(7):839-843.
    [8]Shi S T, Yang G Y, Wang L D, et al. Role of p53 gene mutations in human esophageal carcinogenesis:results from immurohislochemical and mutation analyses of carcinomas and nearby non-eareerous lesions. Carcinogenesis,1999, 20(4):591-597.
    [9]蔡卫民,胡敏君.基因诊断与基因治疗.浙江中西医结合杂志,2002,12(1])661-666.
    [10]曾溢滔.血红蛋白疾病的诊断和治疗.中华血液学杂志,1996,17(8):393-394.
    [11]Marton M J, Derisi J L, Bennett H A, et al. Drug target validation and identification of secondary drug target effect using DNA microarray. Nature Medicine,1998,4(11):1293-130.
    [12]Mulbry W W, Karns J S, Kearney P C, et al. Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by southern hybridization with opd from Pseudomonas diminuta. Applied and Environmental Microbiology, 1986,51(5)926-930.
    [13]Correa R R, Mariash C N, Rosenberg M E. Loading and transfer control for Northern hybridization, Biotechniques,1992,12(2):154-158.
    [14]Yang H, Mcleese J, Weisbart M, et al. Simplified high throughput protocol for northern hybridization, Nucleic Acids Research,1993,21(14):3337-3338.
    [15]Erica Golemis蛋白质-蛋白质相互作用:分子克隆手册.贺福初,钱小红,张学敏等译.北京:中国农业出版社,2004,1-5.
    [16]Voller A, Bartlett A, Bidwell D E. Enzyme immunoassays with special reference to ELISA techniques. Journal of Clinical Pathology,1978,31(6):507-520.
    [17]Blake M S, Johnston K H, Russell J G J, et al. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots, Analytical Biochemistry,1984,136(1):175-179.
    [18]Schaeffer M, Orsi E V, Wide lock D. Applications of immuno fluorescence in public health virology. Bacteriological Reviews,1964,28(4):402-408.
    [19]Matkowskyj K A, Cox R, Jensen R T, et al. Quantitative immunohistochemistry by measuring cumulative signal strength accurately measures receptor number. Journal of Histochemistry and Cytochemistry,2003,51(2):205-214.
    [20]Cummings T J, Brown N M, Stenzel T T. TaqMan junction probes and the reverse transcriptase polymerase chain reaction:detection of alveolar rhabdomyosarcoma, synovial sarcoma and desmoplastie small round cell tumor. Annals of Clinical and Laboratory Science,2002,32(3):219-224.
    [21]Yesilkaya H, Meacci F. Niemann S. et al. Evaluation of molecular-beacon, taqman and fluorescence resonance energy transfer probes for detection of antibiotic resistance-conferring single nucleotide polymorphisms in mixed mycobacterium tuberculosis DNA extracts. Journal of Clinical Microbiology, 2006,44(10):3826-3829.
    [22]Shi M M, Myrand S P, Bleavins M R, et al. High throughput genotyping for the detection of a single nucleotide polymorphism in NAD(P)H quinine oxidoreductase (DT diaphorase) using TaqMan probes. Molecular Pathology, 1999,52(5):295-299.
    [23]Liu H P, Wang H, Tan W H, et al. TaqMan probe array for quantitative detection of DNA targets. Nucleic Acids Research,2006.34(1):e4.
    [24]Wang L, Gaigalsa A K, Blasic J, et al. Flurescence energy transfer between Donor-acceptor pair on two oligonucleotides hybridized adjacently to DNA template. Biopolymers,2003,56(6):401-412.
    [25]Turin L, Behe P, Plonsky I, et al. Hydrophobie ion transfer between membranes of adjacent hepatocytes:a possible probe of tight junction structure. Proceedings of the National Academy of Sciences of the United States of America,1991, 88(20):9365-9369.
    [26]Wang J K, Li T X, Guo X Y, et al. Exonuclease Ⅲ protection assay with FRET probe for detecting DNA-binding proteins. Nucleic Acids Research,2005,33(2): e23.
    [27]Sando S. Kool E T. Quencher as leaving group:efficient detection of DNA-joining reactions. Journal of the American Chemical Society,2002, 124(10):2096-2097.
    [28]Sando S, Abe H, Kool E T. Quenched auto-ligating DNAs:multicolor identification of nucleic acids at single nucleotide resolution. Journal of the American Chemical Society,2004,126(4):1081-1087.
    [29]Sando S, Kool E T. Imaging RNA in bacteria with selfligating quenched probes. Journal of the American Chemical Society,2002,124(33):9686-9687.
    [30]Abe H, Kool E T. Flow cytometrie detection of specific RNAs in native human cells with quenched autoligating FRET probes. Proceedings of National Academy of Sciences of the United States ofAmerica,2006,103(2):263-268.
    [31]Li Q G, Luan G Y, Guo Q P, et al. A new class of homogeneous nucleic acid probes based on specific displacement hybridization. Nucleic Acids Research, 2002,30(2):e5.
    [32]Tan W H, Wang K M, Drake T J. Molecular beacons. Current Opinion in Chemical Biology,2004,8(5):547-553.
    [33]Broude N E. Stem-loop oligonucleotides:a robust tool for molecular biology and biotechnology. Trends Biotechnology,2002,20(6):249-256.
    [34]Tang Z W, Wang K M, Tan W H, et al. Real-time monitoring of nucleic acid ligation in homogenous solutions using molecular beacons. Nucleic Acids Research,2003,31(23):e148.
    [35]Tang Z W, Wang K M, Tan W H, et al. Real-time investigation of nucleic acids phosphorylation process using molecular beacons. Nucleic Acids Research,2005, 33(11):e97.
    [36]Sokol D L, Zhang X, Lu P, et al. Real time detection of DNA-RNA hybridization in living cells. Proceedings of National Academy of Sciences of the United States of America,1998,95(20):11538-11543.
    [37]Santangelo P J, Nix B, Tsourkas A, et al. Dual FRET molecular beacons formRNA detection in living cells. Nucleic Acids Research,2004,32(6):e57.
    [38]Li J J, Geyer R, Tan W H. Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA. Nucleic Acids Research, 2000,28(11):e52.
    [39]Fang X H, Li J J, Tan W H. Using molecular beacons to probe molecular interactions between lactate dehydrogenase and single-stranded DNA. Analytical Chemistry,2000,72(14):3280-3285.
    [40]Rizzo J, Gifford L K, Zhang X, et al. Chimeric RNA-DNA molecular beacon assay for ribonuclease H activity. Molecular and Cellular Probes,2002,16(4): 277-283.
    [41]Heyduk T, Heyduk E. Molecular beacons for detecting DNA binding proteins. Nature Biotechnology,2002,20(5):171-176.
    [42]Drewes G, Bouwmeester T. Global approaches to protein-protein interactions. Current Opinion on Cell Biology,2003,15(2):199-205.
    [43]Yang C J, Jockusch S, Vicens M, et al. Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proceedings of the National Academy of Sciences of the United States of America,2005,102(48): 17278-17283.
    [44]Geiger A, Burgstaller P, Eltz H, et al. RNA aptamers that bind L-arginine with Sub-micro molar dissociation constants and high enantio selectivity. Nucleic Acids Research,1996,24(6):1029-1036.
    [45]Nieuwlandt D, Wecker M, Gold L, et al. In vitro selection of RNA ligands to substance P. Biochemistry,1995,249(16):5651-5659.
    [46]Stoj anovic M N, Prada P'Landry D W. Aptamer-based folding fluorescent sensor for cocaine. Journal of the American Chemical Society,2001,123(21): 4928-4931.
    [47]Sulay D J, Romy K, Ellington R C. Designed signaling aptamers that transducer molecular recognition to changes in fluorescence intensity. Journal of the American Chemical Society,2000,122(11):2469-2473.
    [48]Baker B R, Lai,R Y, Wood M S, et al. An electronic,aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. Journal of the American Chemical Society,2006 128(10):3138-3139.
    [49]Xiao Y, Piorek B D, Plaxco K W, et al. A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. Journal of the American Chemical Society,2005,127(51):17990-17991.
    [50]Beyer S, Simmel F C. A modular DNA signal translator for the controlled release of a protein by an aptamer. Nucleic Acids Research,2006,34(5):1581-1587.
    [51]Kawakami J, Imanaka H, Sugimoto N, et al. In vitro selection of atpamers that act with Zn2+. Journal of Inorganic Biochemistry,2000,82(2):197-206.
    [52]Mullis K B, Falcona F A, Scharf S. Specific amplification of DNA in vitro:the polymerase chain reaction. Cold Spring Harbor Symposia on Quantitative Biology,1985,51(1):263-273.
    [53]Krokene P, Barnes I, Wingfield B D, et al. A PCR-RFLP based diagnostic technique to rapidly identify Seiridium species causing cypress canker. Mycologia,2004,96(6):1352-1354.
    [54]Shekhar M S, Gopikrishna G, Azad I S. PCR-RFLP analysis of 12s and 16s mitochondrial rRNA genes from brackishwater finfish and shellfish species. Asian fisheries science,2005,18(1):39-48.
    [55]Krokene P, Barnes I, Wingfield B D, et al. A PCR-RFLP based diagnostic technique to rapidly identify Seiridium species causing cypress canker. Mycologia,2004,96(6):1352-1354.
    [56]Dergam J A, Paiva S R, Schaeffer C E, et al. Phylogeography and RAPD-PCR variation in Hoplias malabaricus (Bloch,1794) (Pisces, Teleostei) in southeastern Brazil. Genetics and Molecular Biology,2002,25(4):379-387.
    [57]Odin E, Larsson L, Aran M, et al. Rapid quantitative PCR determination of relative gene expression in tumor specimens using high-pressure liquid chromatography. Tumor Biology,1998,19(3):167-175.
    [58]Shea P Y. Single-tube multiplex PCR-SSCP analysis distinguishes 7 common ABO alleles and readily identifies new alleles. Blood,2000,95(4):1487-1492.
    [59]Kammann M, Laufs J, Schell J, et al. Rapid insertion al mutagenesis of DNA by polymerase chain reaction(PCR). Nucleic Acids Research,1989,17(13):5404.
    [60]Walker G T, Little M C, Nadeau J G, et al. Isothermal in vitro amplification of DNA by a restriction enzymePDNA polymerase system. Procedings of the National Academy of Sciences of the United States of Amercia,1992,89(1): 392-396.
    [61]周薇薇刘云庆陈振栋等,PCR技术在临床医学中的应用.黑龙江:黑龙江教育出版社,1996,55-241.
    [62]Dongen J J M, Macintyre E A. Gabert J A, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection ofminimal residual disease. Leukemia,1999,13(12):1901-1928.
    [63]Shen Z Y, Wells R L. Liu J M, et al. Identification of a cytochrome P450 gene by reverse transcription PCR using degenerate primers containing inosine. Proceedings of the National Academy of Sciences,1993,90(24):11483-11487.
    [64]Rose T M, Schuttz E R, Henikoff J G, et al. Consensus-de-generate hybrid oligonucleotide primers for amplification of distantly-related sequences. Nucleic Acids Research,1998,26(7):1628-1635.
    [65]Richmond T, Designing degenerate PCR primer. CoDEHoP: consensus-degenerate hybrid oligonucleotide primers. Genome Biology,2000, 1(1):240-245.
    [66]王洪振,周晓馥,宋朝霞等.简并PCR技术及其在基因克隆中的应用.遗传,2003,25(2):201-204.
    [67]Fisher P J, Gardner R C and Richardson T E, Single locus microsatellites isolated using 5'-anchored PCR. Nucleic Acids Research,1996,24(21):4369-4371.
    [68]Murray G I, In situ PCR. The Journal of Pathology,1993,169(2):187-188.
    [69]Tani K, Kurokawa K and Nasu M. Development of a direct in situ PCR method for detection of specific bacteria in natural environments. Applied and Environmental Microbiology,1998,64(4):1536-1540.
    [70]Niemeyer CM, Adler M. Wacker R. Immuno-PCR:high sensitivity detection of proteins by nucleic acid amplification. TRENDS in Biotechnology,2005,23, 208-216.
    [71]Barletta J M, Edelman D C, Constantine N T. Lowering the detection limits of HIV-1 viral load using real-time immuno. PCR for HIV-1 p24 antigen. American Journal of Clinical Pathology,2004,122(1):20-27.
    [72]Gundersen D E and Lee I M. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Journal Phytopathologia Mediterranea,1996,35(3):144-151.
    [73]Sandhu G S, Aleff R A and Kline B C. Dual asymmetric PCR:one-Step construction of synthetic genes. Biotechniques,1992.12(1):14-16.
    [74]Yang F L. Development of quantitative real-time polymerase chain reaction for duck eateritiz virus DNA. Avian Diseases.2005,49(3):337-400.
    [75]欧阳松应,杨冬,欧阳红生等.实时荧光定量PCR技术及其应用.生命的化学,2004,24(1):74-76.
    [76]Pallad I S, Kay I and Fonte R. Use of real-time PCR and light cycler system for the rapid detection of pneumocystis carina in respiratory specimens. Diagnostic Microbiology and Infectious Disease,2001,39(4):233-236.
    [77]Bertsch Z, Zimmer W and Casarin W. Real-time PCR assay with fluorescent hybridization probes for rapid Interleukin-6 promoter genotyping. Clinical Chemistry,2001,47(10):1873-1874.
    [78]Walker G T, Fraiser MS, SchramJ L, et al. Strand displacement amplification-an isothermal, in vitro DNA amplification technique. Nucleic Acids Research,1992, 20(7):1691-1696.
    [79]Spargo C A, Haaland P D, Jurgensen S R, et al. Chemiluminescent detection of strand displacement amplified DNA from species comprising the Myeobacterium tuberculosis complex. Molecular and Cellular Probes,1993,7(5):395-404.
    [80]Spargo C A, Fraiser M S, Van C M, et al. Detection of M. tuberculosis DNA using thermophilie strand displacement amplification. Molecular and Cellular Probes,1996,10(4):247-256.
    [81]Walker G T. Empirical aspects of strand displacement amplification. PCR Methods Applications,1993,3(1):1-6.
    [82]Compton J. Nucleic acid sequence-based amplification. Nature,1991,350(7): 91-92.
    [83]Deiman B, Aarle P and Sillekens P. Characteristics and Applications of Nucleic Acid Sequence-Based Amplification (NASBA). Molecular Biotechnology,2002, 20(1):160-179.
    [84]Souza D H, Jaykus L A. Nucleic acid sequence based amplification for the rapid and sensitive detection of Salmonella enterica from foods. Journal of Applied Microbiology,2003,95(6):1343-1350.
    [85]Weusten J AM, CarpayW M, Tom AM, et al. Principles of quantitation of viral loads using nucleic acid sequence·based amplification in combination with homogenous detection using molecular beacons. Nucleic Acids Research,2002, 30(6):e26.
    [86]Jean J, Blais B, Darveau A, et al. Rapid detection of human rotavirus using colorimetric nucleic acid sequence-based amplification(NASBA)-enzyme-linked immunosorbent assay in sewage treatment effluent. FEMS Microbiology Letters, 2002,210(1):143-147.
    [87]陈庆山,刘春燕,刘迎雪等,核酸体外扩增技术.中国生物工程杂志,2004,24(5):10-14.
    [88]Engvall E and Perlmann P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin Q Immunochemistry,1971,8(9):871-874.
    [89]Silvana C, Monica I R and Graciela S. Immunodiagnosis of human fascioliasisby an enzyme-linked immunosorbent assay (ELISA) and a micro-ELISA. Clinical and diagnostic laboratory immunology,2001,8(1):174-177.
    [90]Balsari A, Poli G and Molina V. ELISA for toxoplasma antibody detection:a comparison with other serodiagnostic tests. Journal of clinical pathology,1980, 337(7):640-643.
    [91]Mir M, Vreeke M and Katakis I. Different strategies to develop an electrochemical thrombin aptasensor. Electrochemistry Communications,2006, 8(3):505-511.
    [92]Patolsky F, Katz E, Bardea A, et al. Enzyme-Linked amplified electrochemical sensing of oligonucleotide-DNA interactions by means of the precipitation of an insoluble product and using impedance spectroscopy. Langmuir,1999,15(11): 3703-3706.
    [93]Shlyahovsky B, Pavlov V. Kaganovsky L, et al. Biocatalytic evolution of a biocatalyst marker:towards the ultrasensitive detection of immunocomplexes and DNA analysis, Angewandte Chemic International Edition,2006,45(29): 4815-4819.
    [94]Alfonta L, Singh A K and Willner I. Liposomes labeled with biotin and horseradish peroxidase:a probe for the enhanced amplification of antigen--antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes, Analytical Chemistry,2001,73(1):91-102.
    [95]Horn T and Urdea M S. Forks and combs and DNA:the synthesis of branched oligodeoxyribonucleotides. Nucleic Acids Research,1989,17(17):6959-6967.
    [96]Player A N, Shen L P, Kenny D, et al. Single-copy Gene Detection using branched DNA(bDNA)in situ hybridization, Journal of Histochemistry and Cytochemistry,2001,49(5):603-612.
    [97]Urdea M S, Kolberg J, Clyne J, et al. Application of a rapid non-radioisotopic nucleic acid analysis system to the detection of sexually transmitted disease-causing organisms and their associated antimicrobial resistances, Clinical Chemistry,1989,35(8):1571-1575.
    [98]Harris E, Detmer J, Dungan J, et al. Detection of trypanosoma brucei spp. In human blood by a nonradioactive branched DNA-based technique, January Clinic Microbiology,1996,34(12):2401-2407.
    [99]Horn T, Chang C A and Urdea M S. An improved divergent synthesis of comb-type branched oligodeoxyribonucleotides (bDNA) containing multiple secondary sequences, Nucleic Acids Research,1997,25(23):4835-4841.
    [100]Collins M L, Irvine B, Tyner D, et al. A branched DNA signal amplification assay for quantification of nucleic acid targets below 100 molecule/ml. Nucleic Acids Research,1997,25(15):2979-2984.
    [101]Yu M, Chuaug W, Dai C, et al. Clinical evaluation of the automated COBAS AMPLICOR HCV MONITOR test version 2.0 for quantifying serum Hepatitis C virus RNA and comparison to the quantiplex HCV version 2.0 test. Journal clinical Microbiology,2000,38:2933-2939.
    [102]Erali M, Ashwood E, Hillyard D. Performance characteristics of the COBAS AMPLICOR Hepatitis C virus MONITOR Test,version 2.0. American Journal of Clinical Pathology,2000,114(5):180-87.
    [103]王镜岩,朱圣庚,徐长法.生物化学(下册).第3版.北京:高等教育出版社,2002,410.
    [104]乔婉琼,周东蕊,杨耀等.滚环扩增原理及其在医药领域的应用.中国药科大学学报,2006,37(3):201-205.
    [105]王亚君,黄朝阳,程金平.滚环扩增体系及其应用研究进展.临床输血与检验,2005,7(1):73-75.
    [106]肖乐义,祁自柏,姜俊等.滚环DNA扩增的原理、应用和展望.中国生物工程杂志,2004,24(9):33-38.
    [107]Pickering J, Bamford A, Godbole V, et al. Integration of DNA ligation and rolling circle amplification for the homogeneous,end-point detection of single nucleotide polymorphisms. Nucleic Acids Research,2002,30(12):e60.
    [108]Chen Y, Shortreed M R, Peelen D, et al. Surface Amplification of Invasive Cleavage Products. Journal of the American Chemical Society,2004,126(10): 3016-3017.
    [109]Christian A T. Pattee M S. Attix C M, et al. Detection of DNA point mutations and mRNA expression levels by rolling circle amplification in individual cells. Proceedings ofthe National Academy of Sciences,2001,98(25):14238-14243.
    [110]Johan B, Anders I, Erik W, et al. Ulf Landegren and Mats Nilsson parallel gene nalysis with allele-specific padlock probes and tag microarrays. Nucleic Acids Research,2003,31(17):e107.
    [111]Nallur G, Luo C, Fang L, et al. Signal amplification by rolling circle amplification on DNA mieroarrays. Nucleic Acids Research,2001,29(23), ell8.
    [112]Smirnov D A, Burdick J T, Morley M, et al. Method for manufacturing whole-genome microarrays by rolling circle amplification. Genes Chromosomes Cancer,2004,40(1):72-77.
    [113]Gavin M B. Protein mieroarrays and proteomics. Nature Genetics,2002,32(5). 526-532.
    [114]Schweitzer B, Roberts S, Grimwade B, et al. Multiplexed protein profiling on mieroarrays by rolling-circle amplification. Nature Biotechnology,2002,20(4): 359-365.
    [115]Michale C M, Ramous S, William J, et al. Rolling circle amplification improves sensitivity in multiplex immunoassays on microspheres. Clinical Chemistry, 2002,48(10):1855-1858.
    [116]Zhou L, Ou L J, Chu X, et al. Aptamer-based rolling circle amplification, a platform for electrochemical detection of protein.Analytical Chemistry,2007. 79(19):7492-7500.
    [117]Giusto D A D, Wlassoff W A, Gooding J J, et al. Proximity extension of circular DNA aptamers with real-time protein detection. Nucleic Acids Research,2005,33(6), e64.
    [118]Yang L T, Christine W, Fung E J C, et al. Real-time rolling circle amplification for protein detection. Analytical Chemistry,2007.79(9):3320-3329.
    [119]Weizmann Y, Cheglakov Z, Pavlov v, et al. Autonomous fueled mechanical replication of nucleic acid templates for the amplified optical detection of DNA, Angewandte Chemie International Edition,2006,45(14),2238-2242.
    [120]Weizmann Y, Beissenhirtz M K, Nowarski Z C R, et al. A virus spotlighted by an autonomous DNA machine. Angewandte Chemie International Edition,2006, 45(44),7384-7388.
    [121]Beissenhirtz M K, Elnathan R, Weizmann Y, et al. The aggregation of Au nanoparticles by an autonomous DNA machine detects viruses. Small,2007, 3(3):375-379.
    [122]Beissenhirtz M K and Willner I. DNA-based machines, Organic and biomolecular chemistry.2006,4(2):3392-3401.
    [123]Cheglakov Z, Weizmann Y, Basnar B, et al. Diagnosing viruses by the rolling circle amplified synthesis of DNAzymes. Organic and biomolecular chemistrv 2007,5(2):223-225.
    [124]Shlyahovsky B, Li D, Weizmann Y, et al. Spotlighting of cocaine by an autonomous aptamer-based machine. Journal of the American Chemical Society 2007,129(13):3814-3815.
    [125]Willner I, Cheglakov Z, Weizmann Y et al. Analysis of DNA and single base mutatlons using magnetic particles for purification, amplification and DNAzyme setection.2008, Analyst,133(7):923-927.
    [126]Li J W, Chu YZ, Lee B Y H, et al. Enzymatic signal amplification of molecular beacons for sensitive DNA detection. Nucleic Acids Research,2008,36(6):e36.
    [127]Kiesling T, Cox K, Davidson E A, et al. Sequence specific detection of DNA using nicking endonuclease signal amplification (NESA). Nucleic Acids Research,2007,35(18):e117.
    [128]Lee H J, Li Y Wark A W, et al. Enzymatically amplified surface Plasmon resonance imaging detection of DNA by Exonuclease Ⅲ digestion of DNA microarrays. Analytical Chemistry,2005,77(16):5096-5100.
    [129]詹林盛,王全立,孙红琰.脱氧核酶研究进展.生物化学与生物物理学报,2002,29(1):42-45.
    [130]Santoro S W and Joyce G F. A general purpose RNA-cleaving DNA enzyme. Proceedings of National Academy of Sciences of the United States of America, 1997,94(9):4262-4266.
    [131]Feldman A R and Sen D. A new and efficient DNA enzyme for the sequence-specific cleavage of RNA. Journal of Molecular Biology,2001, 313(2):283-294.
    [132]Harris R S, Petersen. Mahrt S K and Neuberger M S. RNA editing enzyme APOBEC 1 and some of its homo logs can act as DNAmutators. Molecualr Cell, 2002,10(5):1247-1253.
    [133]Mei S H J, Liu Z J, Brennan J D, et al. An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling. Journal of the American Chemical Society,2003,125(2):412-420.
    [134]Todd A V, Impey H L, Applegate T L, et al. Homogeneous amplification and detection of nucleic acid sequences using DzyNA(TM)-PCR. Clinical Chemistry,1999,45(11):2049-2050.
    [135]Ohyama T, Kato Y, Mita H, et al. Structural and functional characterization of novel G quadruplexed DNA heme coordination complex. Nucleic Acids Symposium Series,2005,49(1):245-246.
    [136]Pavlov V, Xiao Y, Gill R, et al. Amplified chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels. Analytical Chemistry,2004,76(7):2152-2156.
    [137]Niazov T, Pavlov V, Xiao Y, et al. DNAzyme-functionalized Au nanoparticles for the amplified detection of DNA or telomerase activity. Nano Letters,2004, 4(9):1709-1712.
    [138]Xiao Y, Pavlov V, Niazov T, et al. Catalytic beacons for the detection of DNA and telomerase activity. Journal of the American Chemical Society,2004,126 (24):7430-7431.
    [139]Tian Y, He Y and Mao C D. Cascade Signal Amplification for DNA Detection. Chemical and Biochemical,2006,7(12):1862-1864.
    [140]Deng M, Zhang D, Zhou Y et al. Highly effective colorimetric and visual detection of nucleic acids using an asymmetrically split peroxidase DNAzyme. Journal ofthe American Chemical Society,2008,130(39):13095-13102.
    [141]T Li, S Dong and E Wang. Label-free colorimetric detection of aqueous Mercury Ion(Hg2+) using Hg2+-modulated G-Quadruplex-based DNAzymes. Analytical Chemistry,2009,81(6):2144-2149.
    [142]Chen W, Li B, Xu C, et al. Chemiluminescence flow biosensor for hydrogen peroxide using DNAzyme immobilized on eggshell membrane as a thermally stable biocatalyst. Biosensors and Bioelectronics,2009,24(8):2534-2540.
    [143]Lu N, Shao C and Z Deng. Rational design of an optical adenosine sensor by conjugating a DNA aptamer with split DNAzyme halves. Chemical Communications,2008,14(46):6161-6163.
    [144]Li T, Dong S and Wang E. Enhanced catalytic DNAzyme for label-Free colorimetric detection of DNA. Chemical Communications,2007,7(41): 4209-4211.
    [145]Li T, Wang E K and Dong S J. Potassium lead-witched G-quadruplexes a new class of DNA logic gates. Journal of the American Chemical Society,2009, 131(42):15082-15083.
    [146]Li T, Dong S J, and Wang E K. G-quadruplex aptamers with peroxidase-like DNAzyme functions:which is the best and how does it work? Chemistry in An Asian Journal,2009,4(6):918-922.
    [147]Li D. Shlyahovsky B. Elbaz J, et al. Amplified analysis of low molecular-weight substrates or proteins by the self-assembly of DNAzyme-Aptamer conjugates. Journal of the American Chemical Society.2007,129(18):5804-5805.
    [148]Pelossof G, Vered R T, Elbaz J, et al. Amplified biosensing using the horseradish peroxidase-mimicking DNAzyme as an electrocatalyst. Analytical Chemistry, 2010,82(11):4396-4402.
    [149]Diamandis, E P. Multiple labeling and time-resolvable fluorophores. Clinical Chemistry,1991,37,1486-1491.
    [150]Ong K K, Jenkins AL, Cheng R, Tomalia D A, Durst H D, Jensen J L, Emanuel P A, Swim C R and Yin R. Dendrimer enhanced immunosensors for biological detection. Analytica Chimica Acta,2001,444,143-148.
    [151]Zhou M, Roovers J, Robertson G P and Grover C P. Multilabeling biomolecules at a single site.1. synthesis and characterization of a dendritic label for electrochemiluminescence assays. Analytical Chemistry,2003,75,6708-6717.
    [152]Zhang Q and Guo L H. Multiple labeling of antibodies with dye/DNA conjugate for sensitivity improvement in fluorescence immunoassay. Bioconjugate Chemistry,2007,18,1668-1672.
    [153]Sun Y, Cai S, Cao Z, Lau C and Lu J. Aptameric system for the highly selective and ultrasensitive detection of protein in human serum based on non-stripping gold nanoparticles. Analyst,2011,136,4144-4151.
    [154]Cao Y C, Jin R, Nam J M, Thaxton C S and Mirkin C A. Raman dye-labeled nanoparticle probes for proteins. Journal of the American Chemical Society, 2003,125,14676-14677.
    [155]Zhao X, Dytioco R and Tan W. Ultrasensitive DNA detection using highly fluorescent bioconj ugated nanoparticle. Journal of the American Chemical Society,2003,125(38):11474-11475.
    [156]Bae S W, Cho M S, Hur S S, et al. A doubly signal-amplified DNA detection method based on pre-complexed[Ru(bpy)3]2+-Doped Silica Nanoparticles. Chemistry. A European Journal,2010,16(38):11572-11575.
    [157]Zhou X and Zhou J. Improving the signal sensitivity and photostability of DNA hybridizations on mieroarrays by using dye-doped core-shell silica nanoparticles. Analytical Chemistry,2004,76(18):5302-5312.
    [158]Mani V. Chikkaveeraiah B V, Patel V, Gutkind J S and Rusling J F. Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification. ACS Nano, 2009,3,585-94.
    [159]Nam J M, Thaxton C S and Mirkin C A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science,2003,301,1884-1886.
    [160]Chen J, Zou G, Zhang X L, Jin W R. Ultrasensitive electrochemical immunoassay based on counting single magnetic nanobead by a combination of nanobead amplification and enzyme amplification. Electrochemistry Communications,2009,11,1457-1459.
    [161]Anderson G P, and Nerurkar N L. Improved fluoroimmunoassays using the dye Alexa Fluor 647 with the RAPTOR, a fiber optic biosensor. Journal of Immunological Methods,2002,271,17-24.
    [162]Gruber H J, Hahn C D, Kada G, Riener C K, Harms G S, Ahrer W, Dax T G and Knaus H G. Anomalous fluorescence enhancement of Cy3 and cy3.5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalent linking to IgG and noncovalent binding to avidin. Bioconjugate Chemistry,2000,11, 696-704.
    [163]Randolph J B and Waggoner A S. Stability, specificity and fluorescence brightness of multiply-labeled fluorescent DNA probes. Nucleic Acids Research,1997.25,2923-2929.
    [164]Nantalaksakul A, Reddy D R, Bardeen C J, and Thayumanavan, S. Light harvesting dendrimers. Photosynthesis Research,2006,87,133-150.
    [165]De Schryver F C, Vosch T, Cotlet M, Van der Auweraer M, Mullen K, and Hofkens J. Energy dissipation in multichromophoric single dendrimers. Accounts of Chemical Research,2005,38,514-522.
    [166]Li Y, Cu Y T and Luo D. Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nature Biotechnology,2005,23, 885-889.
    [167]Loewe R S, Ambroise A, Kirmaier C, Bocian D F, Lindsey J S. Holten D, Knox R S. Excited-State Energy Flow in Covalently Linked Multiporphyrin Arrays:The Essential Contribution of Energy Transfer between Nonadjacent Chromophores. Journal of Physical Chemistry B,2004,108,12821-12832.
    [168]Soto C M, Blum A S, Vora G J, Lebedev N, Meador C E, Won A P, Chatterji A, Johnson J E and Ratna B R. Fluorescent signal amplification of carbocyanine dyes using engineered viral nanoparticles. Journal of the American Chemical Society,2006,128,5184-5189.
    [169]Kellar K L and Iannone M A. Multiplexed microsphere-based flow cytometric assays. Experimental Hematology,2002,30,1227-1237.
    [170]Calzaferri G, Huber S, Maas H and Minkowski C. Host-guest antenna materials. Angewandte Chemie International Edition,2003,42,3732-3758.
    [171]Wang L and Tan W. Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Letters,2006,6,84-88.
    [172]Hannah K C, and Armitage B A. DNA-templated assembly of helical cyanine dye aggregates:a supramolecular chain polymerization. Accounts of Chemical Research,2004,37,845-853.
    [173]Ahrens M J, Sinks L E, Rybtchinski B, Liu W, Jones B A, Giaimo J M, Gusev A V, Goshe A J, Tiede D M and Wasielewski M R. Self-assembly of supramolecular light-harvesting arrays from covalent multi-chromophore perylene-3,4:9,10-bis(dicarboximide) building blocks. Journal of the American Chemical Society,2004,126,8284-8294.
    [174]Benvin A L, Creeger Y, Fisher G W, Ballou B, Waggoner A S and Armitage B A. Fluorescent DNA nanotags:supramolecular fluorescent labels based on intercalating dye arrays assembled on nanostructured DNA templates. Journal of the American Chemical Society,2007,129,2025-2034.
    [175]Chan H M, Chan L S, Wong R N and Li H W. Direct quantification of single-molecules of microRNA by total internal reflection fluorescence microscopy. Analytical Chemistry,2011,82,6911-6918.
    [1]Weiss S. Fluorescence spectroscopy of single biomolecules. Science,1999, 283,1676-1683.
    [2]Liu S P, Yang Z, Liu Z F, Liu J T and Shi Y. Resonance Rayleigh scattering study on the interaction of gold nanoparticles with berberine hydrochloride and its analytical application. Analytica Chimica Acta,2006,572,283-289.
    [3]Zhang X, Li L, Li L, Chen J, Zou G, Si Z and Jin W. Ultrasensitive Electrochemical DNA Assay Based on Counting of Single Magnetic Nanobeads by a Combination of DNA Amplification and Enzyme Amplification. Analytical Chemistry,2009,81,1826-1832.
    [4]Anazawa T, Matsunaga H and Yeung E S. Electrophoretic quantitation of nucleic acids without amplification by single-molecule imaging. Analytical Chemistry,2002.74,5033-5038.
    [5]Zheng J and Yeung E S. Anomalous radial migration of single DNA molecules in capillary electrophoresis. Analytical Chemistry,2002,74. 4536-4547.
    [6]Li H.. Xue G and Yeung E S. Selective detection of individual DNA molecules by capillary polymerase chain reaction. Analytical Chemistry,2001, 73,1537-1543.
    [7]Lagally E T, Medintz I and Mathies R A. Single-molecule DNA amplification and analysis in an integrated microfluidic device. Analytical Chemistry,2001, 73,565-570.
    [8]Shortreed M R, Li H, Huang W H and Yeung E S. High-throughput single-molecule DNA screening based on electrophoresis. Analytical Chemistry,2000,72,2879-2885.
    [9]Sun B and Chiu D T. Determination of the encapsulation efficiency of individual vesicles using single-vesicle photolysis and confocal single-molecule detection. Analytical Chemistry,2005,77,2770-2776.
    [10]Prummer M, Sick B, Renn A and Wild U P. Multiparameter microscopy and spectroscopy for single-molecule analytics. Analytical Chemistry,2004,76, 1633-1640.
    [11]Byassee T A, Chan W C and Nie S. Probing single molecules in single living cells. Analytical Chemistry,2000,72,5606-5611.
    [12]Haab B B and Mathies R A. Single-molecule detection of DNA separations in microfabricated capillary electrophoresis chips employing focused molecular streams. Analytical Chemistry,1999,71,5137-5145.
    [13]Shelby J P and Chiu D T. Mapping fast flows over micrometer-length scales using flow-tagging velocimetry and single-molecule detection. Analytical Chemistry,2003,75,1387-1392.
    [14]Tadakuma H, Yamaguchi J, Ishihama Y and Funatsu T. Imaging of single fluorescent molecules using video-rate confocal microscopy. Biochemical Biophysica Research Communication,2001,287,323-327.
    [15]Dorre K, Stephan J, Lapczyna M, Stuke M, Dunkel H and Eigen M. Highly efficient single molecule detection in microstructures. Journal of Biotechnology,2001,86,225-236.
    [16]Li H, Zhou D, Browne H, Balasubramanian S and Klenerman D. Molecule by molecule direct and quantitative counting of antibody-protein complexes in solution. Analytical Chemistry,2004,76,4446-4451.
    [17]Li H W and Yeung E S. Direct observation of anomalous single-molecule enzyme kinetics. Analytical Chemistry,2005,77,4374-4377.
    [18]Singh-Zocchi M, Dixit S, Ivanov V and Zocchi G. Single molecule detection of DNA hybridization. Proceedings of the National Academy Sciences,2003,100, 7605-7610.
    [19]Kang S H and Yeung E S. Dynamics of single-protein molecules at a liquid/solid interface:implications in capillary electrophoresis and chromatography. Analytical Chemistry,2002,74,6334-6339.
    [20]Ma Y, Shortreed M R and Yeung E S. High-throughput single-molecule spectroscopy in free solution. Analytical Chemistry,2000,72,4640-4645.
    [21]Xu X H and Yeung E S. Long-range electrostatic trapping of single-protein molecules at a liquid-solid interface. Science,1998,281,1650-1653.
    [22]Xu X H and Yeung E S. Direct measurement of single-molecule diffusion and photodecomposition in free solution. Science,1997,275,1106-1109.
    [23]Wang L, Xu G, Shi Z, Jiang W and Jin W. Quantification of protein based on single-molecule counting by total internal reflection fluorescence microscopy with adsorption equilibrium. Analytica Chimica Acta,2007,590,104-109.
    [24]Hanley D C and Harris J M. (2001) Quantitative dosing of surfaces with fluorescent molecules:characterization of fractional monolayer coverages by counting single molecules. Analytical Chemistry,2001,73,5030-5037.
    [25]Agrawal A. Zhang C, Byassee T, Tripp R A and Nie S. Counting single native bio molecules and intact viruses with color-coded nanoparticles. Analytical Chemistry,2006,78,1061-1070.
    [26]Hahn M A, Tabb J S and Krauss T D. Detection of single bacterial pathogens with semiconductor quantum dots. Analytical Chemistry,2005,77, 4861-4869.
    [27]Jiang D, Wang L and Jiang W. Quantitative detection of antibody based on single-molecule counting by total internal reflection fluorescence microscopy with quantum dot labeling. Analytica Chimica Acta,2009,634,83-88.
    [28]Stavis S M, Edel J B, Samiee K T and Craighead H G. (2005) Single molecule studies of quantum dot conjugates in a submicrometer fluidic channel. Lab-on-Chip,2005,5,337-343.
    [29]Zhang C Y and Johnson L W. Simple and accurate quantification of quantum dots via single-particle counting. Journal of the American Chemical Society, 2008,130,3750-3751.
    [30]Jiang D, Liu C, Wang L and Jiang W. Fluorescence single-molecule counting assays for protein quantification using epi-fluorescence microscopy with quantum dots labeling. Analytica Chimica Acta,2010,662,170-176.
    [31]Willner I and Katz E. Magnetic control of electrocatalytic and bioelectrocatalytic processes. Angewandte Chemie International Edition,2003, 42.4576-4588.
    [32]Weizmann Y, Patolsky F, Katz E and Willner I. (2003) Amplified DNA sensing and immunosensing by the rotation of functional magnetic particles. Journal of the American Chemical Society,2003,125,3452-3454.
    [33]Zhang Q and Guo L H. (2007) Multiple labeling of antibodies with dye/DNA conjugate for sensitivity improvement in fluorescence immunoassay. Bioconjugate Chemistry 18,1668-1672.
    [1]费素娟,黄水平,周力新等.食管癌组织中COX-2、p53和PCNA的表达及意义.中国癌症杂志,2003,13(1):17-21
    [2]Mikami T, Yanagisawa N, Baba H, et al. Association of Bcl-2 protein expression with gallbladder carcinoma differentiation and progression and its relation to apoptosis. Cancer,1999,85(2):318-325
    [3]景丽,张建中,郭凤英等.Cyclin D1、p53及c-mye基因表达与胃癌生物学行为的关系.中国癌症杂志,2003,13(1):27-29
    [4]Voller A, Bartlett A, Bidwell D E. Enzyme immunoassays with special reference to ELISA techniques. Journal of Clinical Pathology,1978,31(6):507-520
    [5]Blake M S, Johnston K H, Russell J G J, et al. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots, Analytical Biochemistry,1984,136(1):175-179
    [6]Schaeffer M, Orsi E V, Widelock D. Applications of immunofluorescence in public health virology. Bacteriological Reviews,1964,28(4):402-408
    [7]Matkowskyj K A, Cox R, Jensen R T, et al. Quantitative immunohistochemistry by measuring cumulative signal strength accurately measures receptor number. Journal of Histochemistry and Cytochemistry,2003,51(2):205-214
    [8]Gosling J P. A decade of development in immunoassay methodology. Clinical Chemistry,1990,36,1408-1427.
    [9]Schweitzer B, Wiltshire S, Lambert J, O'Malley S, Kukanskis K, Zhu Z, Kingsmore S F, Lizardi P M and Ward D C. Immunoassays with rolling circle DNA amplification:a versatile platform for ultrasensitive antigen detection. Proceedings of the National Academy Sciences U S A,2000,97,10113-10119.
    [10]Fu A, Gu W, Boussert B, Koski K, Gerion D, Manna L, Le Gros M, Larabell C A and Alivisatos A P. Semiconductor quantum rods as single molecule fluorescent biological labels. Nano Letters,2007,7,179-182.
    [11]Nam J M, Thaxton C S and Mirkin C A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science,2003,301,1884-1886.
    [12]Oh B K, Nam J M, Lee S W and Mirkin C A. A fluorophore-based bio-barcode amplification assay for proteins. Small,2006,2,103-108.
    [13]Mani V, Chikkaveeraiah B V, Patel V, Gutkind J S and Rusling J F. Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification. ACS Nano, 2009,3,585-594.
    [14]Nam J M, Jang K J and Groves J T. Detection of proteins using a colorimetric bio-barcode assay. Nature Protocols,2007,2,1438-1444.
    [15]Fan A, Lau C and Lu J. Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label. Analytical Chemistry,2005,77, 3238-3242.
    [16]Xue Q, Jiang D, Wang L and Jiang W. Quantitative detection of single molecules using enhancement of Dye/DNA conjugate-labeled nanoparticles. Bioconjugate Chemistry,2010,21,1987-1993.
    [17]Liu G, Wang J, Wu H and Lin Y. Versatile apoferritin nanoparticle labels for assay of protein. Analytical Chemistry,2006,78,7417-7423.
    [18]Zhu H and Snyder M. Protein chip technology. Current Opinion in Chemical Biology,2003,7,55-63.
    [19]Zhao X, Tapec-Dytioco R and Tan W. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. Journal of the American Chemical Society,2003,125,11474-11475.
    [20]Xiang D S, Zeng G P and He Z K. Magnetic microparticle-based multiplexed DNA detection with biobarcoded quantum dot probes. Biosensors and Bioelectronics,2010,26,4405-4410.
    [21]Zhang Q and Guo L H. (2007) Multiple labeling of antibodies with dye/DNA conjugate for sensitivity improvement in fluorescence immunoassay. Bioconjugate Chemistry.2007,18,1668-1672.
    [22]Cheng W, Yan F, Ding L, Ju H and Yin Y. Cascade signal amplification strategy for subattomolar protein detection by rolling circle amplification and quantum dots tagging. Analytical Chemistry,2010,82,3337-3342.
    [23]Zhang H, Zhao Q, Li X F and Le X C. (2007) Ultrasensitive assays for proteins. Analyst,2007,132.724-737.
    [24]Wang J, Liu G and Merkoci A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. Journal of the American Chemical Society,2003,125,3214-3215.
    [25]Liu D, Daubendiek S L, Zillman M A, Ryan K and Kool E T. Rolling Circle DNA Synthesis:Small Circular Oligonucleotides as Efficient Templates for DNA Polymerases. Journal of the American Chemical Society,1996,118, 1587-1594.
    [26]Fire A and Xu S Q. Rolling replication of short DNA circles. Proceedings of the National Academy Sciences U S A,1995,92,4641-4645.
    [27]Konry T, Hayman R B and Walt D R. Microsphere-based rolling circle amplification microarray for the detection of DNA and proteins in a single assay. Analytical Chemistry,2009,81,5777-5782.
    [28]Baner J, Nilsson M, Mendel-Hartvig M and Landegren U. Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Research,1998,26, 5073-5078.
    [29]Zhou L, Ou L J, Chu X, Shen G L and Yu R Q. Aptamer-based rolling circle amplification:a platform for electrochemical detection of protein. Analytical Chemistry,2007,79,7492-7500.
    [30]Benvin A L, Creeger Y, Fisher G W, Ballou B, Waggoner A S and Armitage B A. Fluorescent DNA nanotags:supramolecular fluorescent labels based on intercalating dye arrays assembled on nanostructured DNA templates. Journal of the American Chemical Society,2007,129,2025-2034.
    [1]Gosling J P. A decade of development in immunoassay methodology. Clinical Chemistry,1990.36,1408-1427.
    [2]Butler J E. Enzyme-linked immunosorbent assay. Journal of Immunoassay, 2000,21,165-209.
    [3]Yu X, Munge B, Patel V, Jensen G, Bhirde A, Gong J D, Kim S N, Gillespie J, Gutkind J S, Papadimitrakopoulos F and Rusling J F. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer bio markers. Journal of the American Chemical Society,2006,128, 11199-11205.
    [4]Zhao X, Tapec-Dytioco R and Tan W. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. Journal of the American Chemical Society,2003,125,11474-11475.
    [5]Kucera E, Kainz C, Tempfer C, Zeillinger R, Koelbl H and Sliutz G. Prostate specific antigen (PSA) in breast and ovarian cancer. Anticancer Research, 1997,17,4735-4737.
    [6]Nam J M, Thaxton C S and Mirkin C A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science.2003,301,1884-1886.
    [7]Hansen J A, Wang J, Kawde A N, Xiang Y, Gothelf K V and Collins G. Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. Journal of the American Chemical Society,2006,128,2228-2229.
    [8]Ou L J, Liu S J, Chu X, Shen G L and Yu R Q. DNA encapsulating liposome based rolling circle amplification immunoassay as a versatile platform for ultrasensitive detection of protein. Analytical Chemistry,2009,81,9664-9673.
    [9]Zhang Y L, Huang Y, Jiang J H, Shen G L and Yu R Q. Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step, reusable, sensitive protein detection. Journal of the American Chemical Society,2007,129,15448-15449.
    [10]Schweitzer B and Kingsmore S. Combining nucleic acid amplification and detection. Current Opinion in Biotechnology,2001,12,21-27.
    [11]Wang X L, Li F, Su Y H, Sun X, Li X B, Schluesener H J, Tang F and Xu S Q. Ultrasensitive detection of protein using an aptamer-based exonuclease protection assay. Analytical Chemistry,2004,76,5605-5610.
    [12]Schweitzer B, Wiltshire S, Lambert J, O'Malley S, Kukanskis K, Zhu Z, Kingsmore S F, Lizardi P M and Ward D C. Immunoassays with rolling circle DNA amplification:a versatile platform for ultrasensitive antigen detection. Proceedings of the National Academy Sciences U S A,2000,97, 10113-10119.
    [13]Mason J T, Xu L, Sheng Z M and O'Leary T J. A liposome-PCR assay for the ultrasensitive detection of biological toxins. Nature Biotechnology,2006,24, 555-557.
    [14]Wu Z S, Zhang S, Zhou H, Shen G L and Yu R. Universal aptameric system for highly sensitive detection of protein based on structure-switching-triggered rolling circle amplification. Analytical Chemistry,2010,82,2221-2227.
    [15]Willner I and Katz E. Magnetic control of electrocatalytic and bioelectrocatalytic processes. Angewandte Chemie International Edition,2003, 42,4576-4588.
    [16]Zhang X, Li L. Li L, Chen J, Zou G, Si Z and Jin W. Ultrasensitive electrochemical DNA assay based on counting of single magnetic nanobeads by a combination of DNA amplification and enzyme amplification. Analytical Chemistry,2009,81,1826-1832.
    [17]Xue Q, Jiang D, Wang L and Jiang W. Quantitative detection of single molecules using enhancement of Dye/DNA conjugate-labeled nanoparticles. Bioconjugate Chemistry,2010,21,1987-1993.
    [18]Zhang Q and Guo L H. Multiple labeling of antibodies with dye/DNA conjugate for sensitivity improvement in fluorescence immunoassay. Bioconjugate Chemistry,2007,18,1668-1672.
    [19]Cho E J, Yang L, Levy M and Ellington A D. Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP. Journal of the American Chemical Society,2005,127,2022-2023.
    [20]Benvin A L, Creeger Y, Fisher G W. Ballou B, Waggoner A S and Armitage B A. Fluorescent DNA nanotags:supramolecular fluorescent labels based on intercalating dye arrays assembled on nanostructured DNA templates. Journal of the American Chemical Society,2007,129,2025-2034.
    [21]Bao Y P. Wei T F, Lefebvre P A, An H, He L, Kunkel G T and Muller U R. Detection of protein analytes via nanoparticle-based bio bar code technology. Analytical Chemistry,2006,78,2055-2059.
    [1]Engvall E and Perlmann P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin Q Immunochemistry,1971,8(9):871-874.
    [2]Silvana C, Monica I R and Graciela S. I(1)mmunodiagnosis of human fascioliasis by an enzyme-linked immunosorbent assay(ELISA)and a micro-ELISA. Clinical and diagnostic laboratory immunology,2001,8(1):174-177.
    [3]Balsari A, Poli G and Molina V. ELISA for toxoplasma antibody detection:a comparison with other serodiagnostic tests. Journal of clinical pathology,1980, 337(7):640-643.
    [4]Tuerk C and Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science,1990,249, 505-510.
    [5]Kirkham P M, Neri D and Winter G. Towards the design of an antibody that recognises a given protein epitope. Journal of Molecular Biology,1999,285, 909-915.
    [6]Ikebukuro K, Kiyohara C and Sode K. Novel electrochemical sensor system for protein using the aptamers in sandwich manner. Biosensors and Bioelectronics, 2005,20,2168-2172.
    [7]Hesselberth J, Robertson M P, Jhaveri S and Ellington A D. In vitro selection of nucleic acids for diagnostic applications. Journal of Biotechnology,2000,74, 15-25.
    [8]Brody E N and Gold L. Aptamers as therapeutic and diagnostic agents. Journal of Biotechnology,2000.74,5-13.
    [9]Osborne S E, Matsumura I and Ellington A D. Aptamers as therapeutic and diagnostic reagents:problems and prospects. Current Opinion in Chemical Biology,1997,1,5-9.
    [10]O'Sullivan C K. Aptasensors--the future of biosensing? Analytical and Bioanalytical Chemistry,2002,372,44-48.
    [11]Bianchini M, Radrizzani M, Brocardo M Q Reyes G B, Gonzalez Solveyra C and Santa-Coloma T A. Specific oligobodies against ERK-2 that recognize both the native and the denatured state of the protein. Journal of Immuno logical Methods, 2001,252,191-197.
    [12]Murphy M B, Fuller S T, Richardson P M and Doyle S A. An improved method for the in vitro evolution of aptamers and applications in protein detection and purification. Nucleic Acids Research,2003,31, e110.
    [13]Potyrailo R A, Conrad R C, Ellington A D and Hieftje G M. Adapting selected nucleic acid ligands (aptamers) to biosensors. Analytical Chemistry,1998,70, 3419-3425.
    [14]Fang X, Cao Z, Beck T and Tan W. Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy. Analytical Chemistry,2001,73,5752-5757.
    [15]Heyduk E and Heyduk T. (2005) Nucleic acid-based fluorescence sensors for detecting proteins. Analytical Chemistry,2005,77,1147-1156.
    [16]Lee M and Walt D R. A fiber-optic microarray biosensor using aptamers as receptors. Analytical Biochemistry,2000,282,142-146.
    [17]Hamaguchi N, Ellington A and Stanton M. Aptamer beacons for the direct detection of proteins. Analytical Biochemistry,2001,294,126-131.
    [18]Li J J, Fang X and Tan W. Molecular aptamer beacons for real-time protein recognition. Biochimica Biophysica Research Commununication,2002,292, 31-40.
    [19]Jiang Y, Fang X and Bai C. Signaling aptamer/protein binding by a molecular light switch complex. Analytical Chemistry,2004,76,5230-5235.
    [1]Rosi N L, Giljohann D A, Thaxton C S, Lytton-Jean A K, Han M S and Mirkin C A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science,2006,312,1027-1030.
    [2]Miranda O R, Chen H T, You C C, Mortenson D E, Yang X C, Bunz U H and Rotello V M. Enzyme-amplified array sensing of proteins in solution and in biofluids. Journal of the American Chemical Society,2010,132,5285-5289.
    [3]Yan J, Song S, Li B, Zhang Q, Huang Q, Zhang H and Fan C. An on-nanoparticle rolling-circle amplification platform for ultrasensitive protein detection in biological fluids. Small,2010,6,2520-2525.
    [4]Xiao Y, Pavlov V, Niazov T, Dishon A, Kotler M and Willner I. Catalytic beacons for the detection of DNA and telomerase activity. Journal of the American Chemical Society,2004,126,7430-7431.
    [5]Fu R, Li T and Park H G. An ultrasensitive DNAzyme-based colorimetric strategy for nucleic acid detection. Chemical Communications,2009, (Camb), 5838-5840.
    [6]Zhang H, Fang C and Zhang S. An autonomous bio-barcode DNA machine for exponential DNA amplification and its application to the electrochemical determination of adenosine triphosphate. Chemistry-A European Journal,2010, 16,12434-12439.
    [7]Weizmann Y, Cheglako Z and Willner I. A Fok I/DNA machine that duplicates its analyte gene sequence. Journal of the American Chemical Society,2008, 130,17224-17225.
    [8]Dirks R M and Pierce N A. Triggered amplification by hybridization chain reaction. Proceedings of the National Academy Sciences U S A,2004,101, 15275-15278.
    [9]Zhao W, Ali M M, Brook M A and Li Y. Rolling circle amplification: applications in nanotechnology and biodetection with functional nucleic acids. Angewandte Chemie International Edition,2008,47,6330-6337.
    [10]Barany F. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proceedings of the National Academy Sciences U S A, 1991,88,189-193.
    [11]Saiki R K, Gelfand D H, Stoffel S, Scharf S J, Higuchi R, Horn G T, Mullis K B and Erlich H A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science,1988,239,487-491.
    [12]Li J J, Chu Y, Lee B Y and Xie X S. Enzymatic signal amplification of molecular beacons for sensitive DNA detection. Nucleic Acids Research,2008, 36, e36.
    [13]Zuo X, Xia F, Xiao Y and Plaxco K W. Sensitive and selective amplified fluorescence DNA detection based on exonuclease Ⅲ-aided target recycling. Journal of the American Chemical Society,2010,132,1816-1818.
    [14]Cui L, Ke G, Wang C and Yang C J. A cyclic enzymatic amplification method for sensitive and selective detection of nucleic acids. Analyst,2010,135, 2069-2073.
    [15]Oh S S, Plakos K, Lou X, Xiao Y and Soh H T. In vitro selection of structure-switching, self-reporting aptamers. Proceedings of the National Academy Sciences U S A,2010,107,14053-14058.
    [16]Liu D, Daubendiek S L, Zillman M A, Ryan K, and Kool E T. Rolling Circle DNA Synthesis:Small Circular Oligonucleotides as Efficient Templates for DNA Polymerases. Journal of the American Chemical Society,1996,118, 1587-1594.
    [17]Fire A, and Xu S Q. Rolling replication of short DNA circles. Proceedings of the National Academy Sciences U S A,1995,92,4641-4645.
    [18]Hu D, Pu F, Huang Z, Ren J, and Qu X. A quadruplex-based, label-free, and real-time fluorescence assay for RNase H activity and inhibition. Chemistry-A European Journal,2010,16,2605-2610.
    [19]Hu D, Huang Z, Pu F, Ren J and Qu X. A label-free, quadruplex-based functional molecular beacon (LFG4-MB) for fluorescence turn-on detection of DNA and nuclease. Chemistry-A European Journal,2011,17,1635-1641.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700