肿瘤相关标志物及细胞表面聚糖检测新方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤的早期诊断和治疗是提高患者生存率的关键。后基因组时代,蛋白质组研究日益深入,新的肿瘤标志物不断发现,为肿瘤的早期诊断、分型和预后提供了新的依据,也为肿瘤的个体化治疗带来了希望;方兴未艾的糖组学研究,不断解密糖基化变异在细胞恶变和肿瘤转移中的重要作用,正在成为探索新的聚糖相关肿瘤标志物和治疗靶点的强大推动力。发展性能优良的蛋白质和聚糖分子检测方法对于探索潜在肿瘤标志物与肿瘤早期诊断具有重要意义。本论文将分子生物学、生物分析化学与纳米技术、链接化学技术相结合,发展了一系列简单、实用的分析方法,并用于肿瘤相关标志物的超灵敏检测和肿瘤细胞表面聚糖的原位监测,主要包括以下五个部分:
     1.滚环扩增和量子点标签的联级信号放大用于蛋白质的超灵敏检测
     结合滚环扩增(RCA)、寡核苷酸功能化量子点(QDs)生物素-亲和素系统以及阳极溶出伏安检测,设计了一种联级信号扩增策略,提出了蛋白质的超灵敏检测方法。滚环扩增形成的串联重复序列可以作为优良的模板,用于大量量子点的有序组装,从而将单个的蛋白质识别事件转化为大量的量子点标签并用于电化学检测。所建立的联级信号扩增策略具有很强的信号放大能力、极少的非特异性吸附和低的背景信号,适用于复杂生物基质中蛋白质的定量检测。以人血管内细胞生长因子(VEGF)为靶蛋白,该方法可检测100μL待测样品中的16个VEGF分子,其检测线性范围为1 aM~1 pM,达六个数量级。该方法有望成为低丰度蛋白检测的有力工具,在蛋白质组研究中发挥重要作用。
     2.核酸识体引发的滚环扩增用于蛋白质的超灵敏扫描分析
     提出了一种基于核酸识体引发滚环扩增的蛋白质检测新方法。该方法用修饰于芯片表面的核酸识体识别待测靶蛋白与环状模板。通过与环状模板形成双链引发滚环扩增,滚环扩增形成的串联重复序列结合金纳米粒子标记的寡核苷酸,利用金纳米粒子催化银沉积反应;用简单的平板扫描仪进行信号的快速扫描读取,实现蛋白质的简单、快速、超灵敏检测。以人血管内皮细胞生长因子(VEGF)为靶蛋白,所建立的方法对VEGF的检测线性范围为10 fM~1 nM,达5个数量级,并且具有良好的特异性和低的基质效应。本章所提出的蛋白质超灵敏检测方法简单、实用,有望成为肿瘤相关蛋白标志物的筛选、临床诊断应用的有力工具。
     3.多肽金纳米探针的设计与基质金属蛋白酶的超灵敏扫描分析
     设计了一种多肽金纳米探针,利用氨基三乙酸修饰芯片以及金纳米粒子催化的银沉积信号放大,发展了一种简单的扫描分析技术,用于基质金属蛋白酶(MMPs)的超灵敏检测。以基质金属蛋白酶-7(MMP-7)为靶分子,设计的多肽金纳米探针包含一段MMP-7特异性识别序列和一段六个组氨酸构成的标签。在镍离子的介导下,金纳米探针可以通过组氨酸标签大量地结合在氨基三乙酸修饰的芯片上。MMP-7催化金纳米探针上的多肽序列水解,可阻断金纳米粒子在芯片上的结合,导致金纳米粒子催化的银增强信号下降。本方法能够方便地定量检测2.5μL样品中1.2×10-17摩尔的MMP-7分子,其线性范围为0.1-100 ng mL-1,具有良好的重复性、稳定性、准确性以及低的基质效应。本工作为MMPs作为潜在的标志物在肿瘤研究和诊疗中的应用提供简单实用的分析平台。
     4.双重信号放大用于肿瘤细胞电化学传感及细胞表面糖基检测新方法
     基于精氨酸-甘氨酸-门冬氨酸-丝氨酸(RGDS)四肽功能化的单壁碳纳米管(SWNTs)构建了一种新颖的电化学细胞传感器。应用拉曼光谱和傅里叶变换红外光谱证实了RGDS四肽与单壁碳纳米管的共价结合。以胃癌细胞(BGC-823)为模型,通过RGD基序与细胞表面丰富的整合素受体的特异性识别结合,四肽功能化单壁碳纳米管修饰的电极表面能够有效地捕获肿瘤细胞。同时,细胞表面的甘露糖基能够特异性地结合辣根过氧化物酶(HRP)标记的伴刀豆球蛋白A(ConA)从而产生酶催化的电化学信号。基于单壁碳纳米管和酶催化的双重信号扩增,细胞传感器能够对低至620细胞mL~-1的BGC细胞产生响应,其检测线性范围为1.0×10~3-1.0×10~7 mL~-1。同时,所构建的细胞传感器可检测完整BGC细胞表面甘露糖基数量,测得每个BGC细胞表面表达约5.3×107个甘露糖分子。
     5.可抛式电化学细胞传感器阵列用于肿瘤细胞表面聚糖的动态监测
     本章工作发展了一种可抛式的电化学细胞传感器阵列,用于细胞表面聚糖的多组分同时分析。以RGDS四肽共价功能化单壁碳纳米管修饰的四通道印刷电极(SPCEs)为细胞传感界面捕获肿瘤细胞,用HRP标记的四种凝集素(ConA、WGA、DBA、PNA)进行胞表面四种不同聚糖的特异性识别。由于传感器阵列较低的非特异性吸附和背景响应,该方法具有灵敏度高、准确性佳、重复性好等优良分析性能。所设计的电化学细胞传感器阵列实现了对人白血病K562细胞在药物诱导以及向红系分化过程中细胞表面聚糖的动态监测,有望成为细胞表面糖组学研究的有力手段,在新的肿瘤治疗靶点与肿瘤标志物的筛选中发挥重要作用。
Early diagnosis and therapeutics plays a crucial role in improving the survival rate of cancer patients. In the post-genomic era, discovery of potential cancer biomarkers due to the development of proteomics has held the promise of‘‘individualized medicine,’’bringing a new dimension to disease diagnosis, classification and prognosis. The emerging glycomics which deciphers altered glycosylation in oncogenic transformation, invasion and metastasis is quickly becoming a driving force for discovering new glycan-based cancer biomarkers and therapeutic targets. Thus, it is very important to develop analytical technologies with significant performance for potential biomarkers discovery and early cancer diagnosis and therapeutics.
     In this dissertation, by integrating analytical biochemistry, molecular biotechnology, nanotechnology and bioconjugate chemistry, a series of new methods have been developed for simple and ultrasensitive detection of cancer biomarkers and in situ evaluation of carcinoma cell surface glycans. This dissertation includes the following five parts:
     1. A cascade signal amplification strategy for sub-attomolar protein detection by rolling circle amplification and quantum dots tagging
     A cascade signal amplification strategy was proposed for detection of protein target at ultra-low concentration by combining rolling circle amplification (RCA) with oligonucleotide functionalized quantum dots (QDs), multiplex binding of biotin-strepavidin system and anodic stripping voltammetric detection. The RCA product containing tandem-repeat sequences serve as excellent template for periodic assembly of QDs, which present per protein recognition event to numerous quantum dot tags for electrochemical readout. Both the RCA and the multiplex binding system show remarkable amplification efficiency, very little nonspecific adsorption and low background signal. Using human vascular endothelial growth factor as a model protein, the designed strategy could quantitatively detect protein down to 16 molecules in a 100-μL sample with a linear calibration range from 1 aM to 1 pM, and be amenable to quantification of protein target in complex biological matrices.
     2. A facile scanometric strategy for ultrasensitive detection of protein using aptamer-initiated RCA
     This work proposed a simple strategy for ultrasensitive detection of protein biomarker. This strategy contained aptamer-initiated rolling circle amplification, Au nanoparticle probe and simple scanometric readout. The method showed a dynamic range of five orders of magnitude and a detection limit down to 10 fM protein molecule, featuring high specificity and low matrix effect. By integrating multiple molecular biotechnologies, nanobiotechnology, immobilization chemistry and scanometric detection, this primary research opened new horizons for integrating different disciplines to develop pragmatic and simple technology with significant analytical performance. The proposed strategy would become a powerful tool for proteomics research and clinical diagnostics.
     3. Ultrasensitive scanometric detection of matrix metalloproteinases using a histidine tagged peptide–Au nanoparticle probe
     A simple scanometric approach was proposed for ultrasensitive assay of matrix metalloproteinases (MMPs) based on their discriminatory and proteolytic activity. This approach integrated a newly designed peptide-gold nanoparticle (AuNP) probe, a nitrilotriacetic acid modified chip and silver signal amplification. Using MMP-7 as a model of MMPs, the peptide-AuNP probe contained a six-histidine (His) tag and a MMP-7 specific peptide sequence. The His tag could trap a large number of AuNPs on the modified chip by Ni2+ induced affinity binding to obtain silver enhanced signal. In presence of MMP-7, the proteolysis of the peptide sequence led to the cleavage of His tag from AuNPs, and decreased the amount of AuNPs bound on the modified chip, which decreased the scanometric readout signal. The proposed method could conveniently quantify MMP-7 down to 1.2×10-17 moles in a 2.5-μL sample with a linear range from 0.1 to 100 ng mL-1. This protocol showed good reproducibility, stability, accuracy and low matrix effect. The designed strategy presented a useful platform for ultrasensitive detection of MMPs.
     4. Effective cell capture with tetrapeptide functionalized carbon nanotubes and dual signal amplification for cytosensing and evaluation of cell surface carbohydrate
     A novel electrochemical cytosenor was designed based on the specific recognition of integrin receptors on cell surface to arginine-glycine-aspartic acid-serine (RGDS) functionalized single-walled carbon nanotubes (SWNTs). The conjugated RGDS showed predominant ability to capture cells on electrode surface by the specific combination of RGD domains with integrin receptors. Using BGC-823 human gastric carcinoma cells (BGC cells) as model, the cell surface mannosyl groups could specifically bind with horseradish peroxidase labeled concanavalin A, producing an electrochemical cytosensor. Based on the dual signal amplification of SWNTs and enzymatic catalysis the cytosensor could response down to 620 cells mL-1 BGC cells with a linear calibration range from 1.0×103 to 1.0×107 cells mL-1, showing very high sensitivity. The dual signal amplification could be further used to evaluate the mannosyl groups on cell surface, and the mannosyl groups on single living intact BGC cell were detected to correspond to 5.3×107 molecules of mannose.
     5. Electrochemical cytosensor array for simple dynamic analysis of carcinoma cell surface glycans
     A facile electrochemical cytosensor array was proposed for sensitive multiple analysis of intact cell surface glycome and effective monitoring of dynamic variation in cell surface glycan expression profile during drug treatment. This method utilized arginine-glycine-aspartic acid-serine functionalized single-walled carbon nanotubes modified screen-printed carbon electrode to capture cancer cells and maintain their biological activity, and horseradish peroxidase labeled lectins to recognize cell surface specific glycans. The proposed strategy showed very little nonspecific adsorption and background signal and conducted more sensitive profile of low abundance of glycans than flow cytometric analysis. The proposed method could monitor the dynamic change of glycome during drug treatment with high sensitivity and acceptable accuracy and reproducibility. It could be anticipated that this facile cytosensor array would become a powerful and pragmatic tool to decode cell surface glycome and discover potential glycan biomarkers and novel therapeutic targets.
引文
[1]周新,涂植光.临床生物化学和生物化学检验[M].人民卫生出版社2004, 3.
    [2] van Gils MP, Stenman UH, Schalken JA, et al. Innovations in serum and urine markers in prostate cancer: current European research in the P-Mark project [J]. Eur . Urol. 2005, 48: 1031–1041.
    [3] Fackler1 MJK, Malone1 Z, Zhan, E, et al. Quantitative multiplex methylation-specific PCR analysis doubles detection of tumor cells in breast ductal fluid [J]. Clin. Cancer Res. 2006, 12: 3306–3310.
    [4] Li G, Cuilleron M, Cottier M, et al. The use of MN/CA9 gene expression in identifying malignant solid renal tumors[J]. Eur. Urol. 2006, 49: 401–405.
    [5] Zola H, et al. Human leucocyte differentiation antigen nomenclature: update on CD nomenclature. Report of IUIS/WHO Subcommittee [J]. J. Immunol. Methods 2003, 275: 1–8
    [6] Jaffe et al. WHO Classification of tumors, pathology & genetics of tumors of haematopoetic and lymphoid tissues [M]. IARC Press, 2001, Lyon
    [7] Pichon MF, et al. Prognostic value of steroid receptors after long-term follow-up of 2257 operable breast cancers [J]. Br. J. Cancer 1996, 73: 1545–1551.
    [8] Thomssen C, et al. Clinical Relevance of prognostic factors in axillary node-negative breast cancer [J]. Onkologie 2003, 26: 438–445.
    [9] Fornier M, et al. HER2 testing and correlation with efficacy of trastuzumab therapy [J]. Oncology 2002, 16: 1340–1348.
    [10] Biedermann K, et al. Comparison of real-time PCR signalamplified in situ hybridization and conventional PCR for detection and quantification of human papillomavirus in archival cervical cancer tissue [J]. J. Clin. Microbiol. 2004, 42: 3758–3765
    [11] Hwang TS, et al. Detection and typing of HPV genotypes in various cervical lesions by HPV oligonucleotide microarray. Gynecol. Oncol [J]. 2003, 90: 51–56
    [12] Lo YM, et al. Molecular prognostication of nasopharyngeal carcinoma by quantitative analysis of circulating Epstein-Barr virus DNA [J]. Cancer Res. 2000, 60: 6878–6881
    [13] Kebriaei P, et al. Acute lymphoblastic leukaemia: diagnosis and classification [J]. Best. Pract. Res. Clin. Haematol. 2002, 15: 597–621.
    [14] Kim TW, et al. Prognostic significance of c-kit mutation in localized gastrointestinal stromal tumors [J]. Clin. Cancer Res. 2004, 10: 3076–3081
    [15] Mao L, et al. Molecular detection of primary bladder cancer by microsatellite analysis [J]. Science 1996, 271: 659–662.
    [16] Hoque MO, Topaloglu O, Begum S, et al. Quantitative methylation-specific polymerase chain reaction gene patterns in urine sediment distinguish prostate cancer patients from control subjects [J]. J. Clin. Oncol. 2005, 23: 6569.
    [17] Esteller M. Epigenetics in cancer [J]. N. Engl. J. Med. 2008, 358: 1148.
    [18] Hegi ME. Diserens A-C, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma [J]. N. Engl. J. Med. 2005, 352: 997.
    [19] Croce CM. Causes and consequences of microRNA dysregulation in cancer [J].Nat. Rev. Genet. 2009, 10: 704–714.
    [20] Rosenfeld N, Aharonov R, Meiri E, et al. MicroRNAs accurately identify cancer tissue origin [J]. Nat. Biotechnol. 2008, 26: 462–469.
    [21] Nobuyoshi K, Haruhisa I, Takahiro O. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis [J]. Cancer Sci. 2010, 101: 2087–2092
    [22] Lu J, Getz G, Miska E, A. et al. MicroRNA expression profiles classify human cancers [J]. Nature 2005, 435: 834–838.
    [23] Lawrie, CH, Gal S, Dunlop HM, et al. Detection of elevated levels of tumourassociated microRNAs in serum of patients with diffuse large B-cell lymphoma [J]. Br. J. Haematol. 2008, 141: 672–675.
    [24] Ng EK, Chong WW, Jin H, et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening [J]. Gut. 2009; 58: 1375–81.
    [25]王瑞年.分子肿瘤学概论[M].上海,上海科技教育出版社2001.
    [26] Lilja H, Ulmert D,Vickers AJ. Prostate-specific antigen and prostate cancer: prediction, detection and monitoring [J]. Nat. Rev. Cancer, 2008, 8: 268–278.
    [27] Khan MA, et al. Evaluation of proprostate specific antigen for early detection of prostate cancer in men with a total prostate specific antigen range of 4.0 to 10.0 ng/ml [J]. J. Urol. 2003, 170: 723–726
    [28] Shimizu K, et al. Comparison of carbohydrate structures of serum alphafetoprotein by sequential glycosidase digestion and lectin affinity electrophoresis [J]. Clin. Chim. Acta1996, 254: 23–40.
    [29] Okuyama N, et al. Fucosylated haptoglobin is a novel marker for pancreatic cancer: a detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation [J]. Int. J. Cancer 2006, 118: 2803–2808 .
    [30] Thompson S, Cantwell BM, Cornell C, et al. Abnormally-fucosylated haptoglobin: a cancer marker for tumour burden but not gross liver metastasis [J]. Br. J. Cancer 1991,64: 386–390.
    [31] Thompson S, Guthrie D, Turner GA. Fucosylated forms of alpha-1-antitrypsin nthat predict unresponsiveness to chemotherapy in ovarian cancer [J]. Br. J. Cancer 1988, 58: 589–593.
    [32] Kjeldsen T, et al. Preparation and characterization of monoclonal antibodiesdirected to the tumor-associated O-linked sialosyl-2-6 alpha-N-acetylgalactosaminyl (sialosyl-Tn) epitope [J]. Cancer Res. 1988, 48: 2214–2220.
    [33] Hanisch FG, Hanski C, Hasegawa A. Sialyl Lewis(x) antigen as defined by monoclonal antibody AM-3 is a marker of dysplasia in the colonic adenomacarcinoma sequence [J]. Cancer Res. 1992, 52: 3138–3144.
    [34] Chen S, LaRoche T, Hamelinck D, et al. Multiplexed analysis of glycan variation on native proteins captured by antibody microarrays [J]. Nat. Methods 2007, 4: 437–444.
    [35] Kuk C, Kulasingam V, Gunawardana C, et al. Mining the ovarian cacner ascites proteome for potential ovarian cancer biomarkers [J]. Mol. Cell Proteomics 2009, 8: 661–669.
    [36] Kulasingam V, Diamandis E. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies [J]. Nat. Clin. Pract. Oncol. 2008, 5: 588–599.
    [37] Kuk C, Gunawardana C, Soosaipillai A, et al. Nidogen-2: A new serum biomarker for ovarian cancer [J]. Clin. Biochem. 2010, 43: 355–361.
    [38] Srivastava S. Move over proteomics. here comes glycomics [J]. J. Proteome Res. 2008, 7: 1799.
    [39] Sano T, Smith CL, Cantor CR. Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates [J]. Science, 1992, 258: 120–122.
    [40] Niemeyer CM, Adler M, Wacker R. Immuno-PCR: high sensitivity detection of proteins by nucleic acid amplification [J]. Trends Biotechnol. 2005, 23: 208–216.
    [41] Barletta JM, Edelman DC, Constantine NT. Lowering the detection limits of HIV-1 viral load using real-time immuno-PCR for HIV-1 p24 antigen [J]. Am. J. Clin. Pathol. 2004, 122: 20–27.
    [42] Lind K, Kubista M. real-time immuno-PCR assemblages for quantification of. PSA [J]. J. Immunol. Methods 2005, 304: 107–116.
    [43] Guo YC, Zhou YF, Zhang XE, et al. Phage display mediated immuno-PCR [J]. Nucleic Acids Res. 2006, 34: e62.
    [44] Mason JT, Xu L, Sheng ZM, et al. A liposome-PCR assay for the ultrasensitive detection of biological toxins [J]. Nat. Biotechnol. 2006, 24: 555-557.
    [45] Hermann T, Patel DJ. Adaptive recognition by nucleic acid aptamers [J]. Science2000, 287: 820-825.
    [46] Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands [J]. Nature 1990, 346: 818-822.
    [47] Liu J, Cao Z, Lu Y, Functional nucleic acid sensors [J]. Chem. Rev. 2009, 109: 1948-1998.
    [48] Zhang H, Wang Z, Li XF, et al. Ultrasensitive detection of proteins by amplification of affinity aptamers [J]. Angew. Chem. Int. Ed. 2006, 45: 1576-1580.
    [49] Lin JS, McNatty KP. Aptamer-based regionally protected pcr for protein detection [J]. Clin. Chem. 2009, 55: 1686-1693.
    [50] Fire A, Xu S. Rolling replication of short DNA circles [J]. Proc. Nat. Acad. Sci. USA 1995, 92: 4641-4645.
    [51] Zhou L, Ou LJ, Chu X. Aptamer-based rolling circle amplification: a platform for electrochemical detection of protein [J]. Anal. Chem. 2007, 79: 7492-7500.
    [52] Jarvius, J, Melin J, G?ransson J, et al. Digital quantification using amplified singlemolecule detection [J] Nat. Methods 2006, 3: 725-727.
    [53] Li N, Jablonowski C, Jin HL, et al. Stand-alone rolling circle amplification combined with capillary electrophoresis for specific detection of small RNA [J]. Anal. Chem. 2009, 81: 4906-4913.
    [54] Schweitzer B, Wiltshire S, Lambert J, et al. Immunoassays with rolling circle DNA amplification: A versatile platform for ultrasensitive antigen detection [J] Proc. Nat. Acad. Sci. USA 2000, 97: 10113-10119.
    [55] Ou LJ, Liu SJ, Chu X, et al. DNA encapsulating liposome based rolling circle amplification immunoassay as a versatile platform for ultrasensitive detection of protein [J]. Anal. Chem. 2009, 81: 9664-9673
    [56] Konry T, Hayman RB, Walt DR. Microsphere-based rolling circle amplification microarray for the detection of DNA and proteins in a single assay [J]. Anal. Chem. 2009, 81: 5777–5782.
    [57] Zhou L, Ou LJ, Chu X. Aptamer-based rolling circle amplification: a platform for electrochemical detection of protein [J]. Anal. Chem. 2007, 79: 7492-7500.
    [58] Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics [J]. Science 2005, 307: 538–544.
    [59] Patolsky F, Zheng G, Lieber CM. Nanowire-based biosensors [J]. Anal. Chem., 2006: 4260–4269.
    [60] Baker GA, Moore DS. Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis [J]. Anal. Bioanal. Chem. 2005, 382: 1751–1770.
    [61] Wang J., Nanomaterial-based amplified transduction of biomolecular interactions [J].Small, 2005, 1: 1036–1043.
    [62] Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio–bar codes for the ultrasensitive detection of proteins [J]. Science 2003 301: 1884-1886.
    [63] Nam JM, Wise AR, Groves JT, Colorimetric bio-barcode amplification assay for cytokines [J]. Anal. Chem. 2005, 77: 6985–6988.
    [64] Shaikh KA, Ryu KS, Goluch, E. D. et al. A modular microfluidic architecture for integrated biochemical analysis [J]. Proc. Natl. Acad. Sci. USA 2005, 102: 9745–9750.
    [65]鞠熀先,邱宗荫,丁世家.生物分析化学[M].北京:科学出版社2007, 216
    [66] Cui R, Pan H, Zhu JJ, et al. Versatile immunosensor using CdTe quantum dots as electrochemical and fluorescent labels [J]. Anal. Chem. 2007, 79: 8494-8501
    [67] Yu X, Munge B, Patel V, et al. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers [J]. J. Am. Chem. Soc. 2006, 128: 11199-11205.
    [68] Kleinert M, R?ckendorf N, Lindhorst TK, Glyco-SAMs as glycocalyx mimetics: synthesis of l-fucose and d-mannose-terminated building blocks [J]. Eur. J. Org. Chem. 2004, 3931-3940.
    [69] Bosques CJ, Raguram S, Sasisekharan R. The sweet side of biomarker discovery [J]. Nat. Biotechnol. 2006, 24, 1100-1101.
    [70] Dube DH, Bertozzi CR, Glycans in cancer and inflammation potential for therapeutics and diagnostics [J].Nat. Rev. Drug Disc. 2005, 4, 477-488.
    [71]丁霖.肿瘤细胞及细胞膜表面聚糖的原位电化学检测[D].南京大学2009.
    [72] Shriver Z, Raguram S. Glycomics: a pathway to a class of new and improved therapeutics [J]. R. Nat. Rev. Drug Disc. 2004, 3: 863-873.
    [73] Taylor ME, Drickamer K. Introduction to Glycobiology [M]. Oxford University Press: Oxford, 2003.
    [74] Raman R, Raguram S, Venkataraman G, et al. Glycomics: an integrated systems approach to structure-function relationships of glycans [J]. Nat. Methods 2005, 2: 817-824.
    [75] Pohl NL. Array methodology singles out pathogenic bacreria [J]. Nat. Chem. Biol. 2006, 2: 125-126
    [76] Mechref Y, Novotny MV. Structural investigations of glycoconjugates at high sensitivity [J]. Chem. Rev. 2002, 102: 321-369.
    [77] Ohtsubo1 K, Marth JD. Glycosylation in cellular mechanisms of health and disease [J]. Cell 2006, 126: 885-867.
    [78] Hsu KL, Pilobello KT, Mahal LK. Analyzing the dynamic bacterial glycome with a lectin microarray approach [J]. Nat. Chem. Biol. 2006, 2: 153-157.
    [79] Kuno A, Uchiyama N, Koseki Kuno S. Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling [J]. Nat. Methods 2005, 2: 851-856.
    [80] Zheng T, Peelen D, Smith LM. Lectin arrays for profiling cell surface carbohydrate expression [J]. J. Am. Chem. Soc. 2005, 127: 9982-9983.
    [81] Pilobello KT, Slawek DE, Mahal LK. A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome [J]. Proc. Natl. Acad. Sci. USA 2007, 104: 11534-11539.
    [82] Nakata E, Koshi Y, Koga E, et al. Double-modification of lectin using two distinct chemistries for fluorescent ratiometric sensing and imaging saccharides in test tube or in cell [J]. J. Am. Chem. Soc. 2005, 127: 13253-13261.
    [1] Schweitzer B, Wiltshire S, Lambert J, et al. Immunoassays with rolling circle DNA amplification: A versatile platform for ultrasensitive antigen detection [J]. Proc. Nat. Acad. Sci. USA 2000, 97: 10113-10119.
    [2] Zhang HQ, Zhao Q, Li XF, et al. Ultrasensitive assays for proteins [J]. Analyst 2007 132: 724-737.
    [3] Mason JT, Xu L, Sheng ZM, et al. A liposome-PCR assay for the ultrasensitive detection of biological toxins [J]. Nat. Biotechnol. 2006, 24: 555-557.
    [4] Guo YC, Zhou YF, Zhang XE, et al. Phage display mediated immuno-PCR [J]. Nucleic Acids Res. 2006, 34: e62.
    [5] Zhang H, Wang Z, Li XF, et al. Ultrasensitive detection of proteins by amplification of affinity aptamers [J]. Angew. Chem. Int. Ed. 2006, 45: 1576-1580.
    [6] Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio–bar codes for the ultrasensitive detection of proteins [J]. Science 2003, 301: 1884-1886.
    [7] Rosi NL, Mirkin CA. Nanostructures in biodiagnostics [J]. Chem. Rev. 2005, 105: 1547-1562.
    [8] Das J, Aziz MA, Yang HA. Nanocatalyst-based assay for proteins: DNA-free ultrasensitive electrochemical detection using catalytic reduction of p-nitrophenol by gold-nanoparticle labels [J]. J. Am. Chem. Soc. 2006, 128: 16022-16032.
    [9] Yu X, Munge B, Patet V, et al. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers [J]. J. Am. Chem. Soc. 2006, 128: 11199-11025.
    [10] Wang J, Liu G, Munge B, et al. DNA-based amplified bioelectronic detection and coding of proteins [J]. Angew. Chem. Int. Ed. 2004, 43: 2158-2161.
    [11] Fire A, Xu S. Rolling replication of short DNA circles [J]. Proc. Nat. Acad. Sci. USA 1995, 92: 4641-4645.
    [12] Baner J, Nilsson M. Mendel-Hartvig M, et al. Signal amplification of padlock probes by rolling circle replication [J]. Nucleic Acids Res. 1998, 26: 5073-5078.
    [13] Zhou L, Ou LJ, Chu X. Aptamer-based rolling circle amplification: a platform for electrochemical detection of protein [J]. Anal. Chem. 2007, 79: 7492-7500.
    [14] Jarvius J, Melin J, G?ransson, J. et al. Digital quantification using amplified singlemolecule detection [J] Nat. Methods 2006, 3: 725-727.
    [15] Li N, Jablonowski C, Jin HL, et al. Stand-alone rolling circle amplification combined with capillary electrophoresis for specific detection of small RNA [J]. Anal. Chem. 2009, 81: 4906-4913.
    [16] Ali MM, Li YF. Colorimetric sensing by using allosteric-dnazyme-coupled rolling circle amplification and a peptide nucleic acid–organic dye probe [J]. Angew. Chem. Int. Ed. 2009, 48: 3512-355.
    [17] S?derberg O, Gullberg M, Jarvius M, et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation [J]. Nat. Methods 2006, 3: 995-1000.
    [18] Ou LJ, Liu SJ, Chu X, et al. DNA encapsulating liposome based rolling circle amplification immunoassay as a versatile platform for ultrasensitive detection of protein [J]. Anal. Chem. 2009, 81: 9664-9673.
    [19] Zhao W, Ali MM, Brook MA, et al. Rolling circle amplification: applications in nanotechnology and biodetection with functional nucleic acids [J]. Angew. Chem. Int. Ed. 2008, 47: 6330-6337.
    [20] Kraft A, Weindel K, Ochs A, et al. Vascular endothelial growth factor in the sera and effusions of patients with malignant and nonmalignant disease [J]. Cancer 1999, 85: 178-187.
    [21] Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy [J]. J. Clin. Oncol. 2002, 20: 4368-4380.
    [22] Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors [J]. Nat. Med. 2003, 9: 669-676.
    [23] Prabhulkar S, Alwarappan S, Liu G, et al. Amperometric micro-immunosensor for the detection of tumor biomarker [J]. Biosens. Bioelectron. 2009, 24: 3524-3530.
    [24] Duda DG, Batchelor TT, Willett CG, et al. VEGF-targeted cancer therapy strategies: current progress, hurdles and future prospects [J]. Trends Mol. Med. 2007, 13: 223-230.
    [25] Li Y, Lee HL, Corn RM. Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging [J]. Anal. Chem. 2007, 79: 1082-1088.
    [26] Liu X, Jiang H, Lei JP, et al. Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives [J]. Anal. Chem. 2007, 79: 8055-8060.
    [27] Yu WW, Qu LH, Guo WZ, et al. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals [J]. Chem. Mater. 2003, 15: 2854-2860.
    [28] Ding L, Cheng W, Wang XJ, et al. Carbohydrate monolayer strategy for electrochemical assay of cell surface carbohydrate [J]. J. Am. Chem. Soc. 2008, 130: 7224-7225.
    [29] Gill R, Willner I, Shweky I. Fluorescence resonance energy transfer in CdSe/ZnS?DNA conjugates: probing hybridization and DNA cleavage [J]. J. Phys. Chem. B 2005, 109: 23715-23719.
    [30] Deng ZX, Tian Y, Lee SH, et al. DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays [J]. Angew. Chem. Int. Ed. 2005, 47: 3582-3585.
    [31] Cui RJ, Pan HC, Zhu JJ, et al. Versatile immunosensor using cdte quantum dots as electrochemical and fluorescent labels [J]. Anal. Chem. 2007, 79: 8494-8501.
    [32] Zheng G, Patolsky F, Cui Y, et al. Multiplexed electrical detection of cancer marker with nanowire sensor arrays [J]. Nat. Biotechnol. 2005, 23: 1294-1301.
    [1] Zhang HQ, Zhao Q, Li XF, et al. Ultrasensitive assays for proteins [J]. Analyst 2007 132: 724-737.
    [2] Hermann T, Patel DJ. Adaptive recognition by nucleic acid aptamers [J]. Science 2000, 287: 820-825.
    [3] Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands [J]. Nature 1990, 346: 818-822.
    [4] Liu J, Cao Z, Lu Y. Functional nucleic acid sensors [J]. Chem. Rev., 2009, 109: 1948-1998.
    [5] Lin JS, McNatty KP. Aptamer-based regionally protected pcr for protein detection [J]. Clin. Chem. 2009, 55: 1686-1693.
    [6] Deng C, Chen J, Nie L, et al. Sensitive bifunctional aptamer-based electrochemical biosensor for small molecules and protein [J]. Anal. Chem. 2009, 81: 9972-9978.
    [7] Zhang H, Wang Z, Li XF, et al. Ultrasensitive detection of proteins by amplification of affinity aptamers [J] Angew. Chem. Int. Ed. 2006, 45: 1576-1580.
    [8] Gronewold TMA, Baumgartner A, Hierer J, et al. Kinetic binding analysis of aptamers targeting hiv-1 proteins by a combination of a microbalance array and mass spectrometry (MAMS) [J]. J. Proteome Res. 2009, 8: 3568-3577.
    [9] Yao C, Qi Y, Zhao Y, et al. Aptamer-based piezoelectric quartz crystal microbalance biosensor array for the quantification of IgE [J]. Biosens. Bioelectron. 2009, 24: 2499-2503.
    [10] Pu F, Huang Z, Hu D. Sensitive, selective and label-free protein detection using a smart polymeric transducer and aptamer/ligand system [J]. Chem. Commun. 2009, 45: 7357-7359.
    [11] Zhao W, Chiuman W, Lam JCF, et al. DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors [J]. J. Am. Chem. Soc. 2008, 130: 3610-3618.
    [12] Wang Y, Li D, Ren W, et al. Ultrasensitive colorimetric detection of protein by aptamer–Au nanoparticles conjugates based on a dot-blot assay [J]. Chem. Commun. 2008, 44: 2520-2522.
    [13] Lizardi PM, Huang X, Zhu Z, et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification [J]. Nat. Genet. 1998, 19: 225-232.
    [14] Zhao W, Ali MM, Brook MA, et al. Rolling circle amplification: applications in nanotechnology and biodetection with functional nucleic acids [J]. Angew. Chem. Int. Ed. 2008, 47: 6330-6337.
    [15] Zhou L, Ou L, Chu X, et al. Aptamer-based rolling circle amplification: a platform for electrochemical detection of protein [J]. Anal. Chem. 2007, 79: 7492-7500.
    [16] Lee J, Icoz K, Roberts A, et al. Diffractometric detection of proteins using microbead-based rolling circle amplification [J]. Anal. Chem. 2010, 82: 197-202.
    [17] Kraft A, Weindel K, Ochs A, Marth C, et al. Vascular endothelial growth factor in the sera and effusions of patients with malignant and nonmalignant disease [J]. Cancer 1999, 85: 178-187.
    [18] Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy [J]. J. Clin. Oncol. 2002, 20: 4368-4380.
    [19] Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors [J]. Nat. Med. 2003, 9: 669-676.
    [20] Prabhulkar S, Alwarappan S, Liu G, et al. Amperometric micro-immunosensor for the detection of tumor biomarker [J]. Biosens. Bioelectron. 2009, 24: 3524-3530.
    [21] Duda DG, Batchelor TT, Willett CG, et al. VEGF-targeted cancer therapy strategies: current progress, hurdles and future prospects [J]. Trends Mol. Med. 2007, 13: 223-230.
    [22] Li Y, Lee HL, Corn RM. Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging [J]. Anal. Chem. 2007, 79: 1082-1088.
    [23] Potty SR, Kourentzi K, Fang H, et al. Biophysical characterization of DNA aptamer interactions with vascular endothelial growth factor [J]. Biopolymers 2008, 91: 145-156.
    [24] Zuo X, Song S, Zhang J, et al. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP [J]. J. Am. Chem. Soc. 2007, 129: 1042–1043.
    [25] Lu Y, Li X, Zhang L, et al. Aptamer-based electrochemical sensors with aptamer-complementary dna oligonucleotides as probe [J]. Anal. Chem. 2008, 80: 1883–1890.
    [26] Yoshizumi J, Kumamoto S, Nakamura M, et al. Target-induced strand release (TISR) from aptamer–DNA duplex: A general strategy for electronic detection of biomolecules ranging from a small molecule to a large protein [J]. Analyst 2008, 133: 323–325.
    [27] Gole A, Murphy CJ, Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed [J]. Chem. Mater. 2004, 16: 3633-3640.
    [28] Li N, Jablonowski C, Jin H, et al. Stand-alone rolling circle amplification combined with capillary electrophoresis for specific detection of small RNA [J]. Anal. Chem. 2009, 81, 4906-4913.
    [29] Huang YY, Hsu HY, Huang CC. A protein detection technique by using surface plasmon resonance (SPR) with rolling circle amplification (RCA) and nanogold-modified tags [J]. Biosens. Bioelectron. 2007, 22: 980-985.
    [30] Yang ZJ, Liu H, Zong C, et al. Automated Support-resolution strategy for a one-way chemiluminescent multiplex immunoassay [J]. Anal. Chem. 2009, 81: 5484-5489.
    [31] Deng ZX, Tian Y, Lee SH, et al. DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays [J]. Angew. Chem. Int. Ed. 2005, 47: 3582-3585.
    [32] Lee HJ, Wark AW, Corn RM. Microarraymethods for protein biomarker detection [J]. Analyst 2008, 133: 975–983.
    [33] Yin X, Xin Y, Zhao Y. Label-free electrochemiluminescent aptasensor with attomolar mass detection limits based on a Ru(phen)32+-double-strand DNA composite film electrode [J]. Anal. Chem. 2009, 81: 9299-9305.
    [1] Brinckerhoff CE, Matrisian LM. Matrix metalloproteinases: a tail of a frog that became a prince [J]. Nat. Rev. Mol. Cell Biol. 2002, 3: 207-214.
    [2] Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling [J]. Nat. Rev. Mol. Cell Biol. 2007, 8: 221-233.
    [3] Rowan AD, Young DA. Collagenase gene regulation by pro-inflammatory cytokines in cartilage [J]. Front. Biosci. 2007, 12: 536-550.
    [4] Gu Z, Kaul M, Yan B, et al. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death [J]. Science 2002, 297: 1186-1190.
    [5] Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs [J]. Cardiovasc. Res. 2006, 69: 562-573.
    [6] Leppert D, Lindberg RLP, Kappos L, et al. Matrix metalloproteinases: multifunctional effectors of inflammation in multiple sclerosis and bacterial meningitis [J]. Brain Res. Rev. 2001, 36: 249-257.
    [7] Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations [J]. Science 2002, 295: 2387-2392.
    [8] Nikkola J, Vihinen P, Vuoristo MS, et al. High serum levels of matrixmetalloproteinase-9 and matrix metalloproteinase-1 are associated with rapid progression in patients with metastatic melanoma clin [J]. Cancer Res. 2005, 11: 5158-5166.
    [9] Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression [J]. Nat. Rev. Cancer 2002, 2: 161-174.
    [10] Aoki T, Yonezawa K, Ohuchi E, et al. Two-step sandwich enzyme immunoassay using monoclonal antibodies for detection of soluble and membrane-associated human membrane type 1-matrix metalloproteinase [J]. J. Immunoassay Immunochem. 2002, 23: 49-68.
    [11] Troeberg L, Nagase H. Measurement of matrix metalloproteinase activities in the medium of cultured synoviocytes using zymography [J]. Meth. Mol. Biol. 2003, 225: 77-87.
    [12] Lombard C, Saulnier J, Wallach, J. Assays of matrix metalloproteinases (MMPs) activities: a review [J]. Biochim. 2005, 87: 265-272.
    [13] Maliszewska M, Mader M, Scholl U, et al. Development of an ultrasensitive enzyme immunoassay for the determination of matrix metalloproteinase-9 (MMP-9) levels in normal human cerebrospinal fluid [J.] J. Neuroimmunol. 2001, 116: 233-237.
    [14] Hao JL, Nagano T, Nakamura M, et al. Effect of galardin on collagen degradation by pseudomonas aeruginosa [J]. Exp. Eye. Res. 1999, 69: 595-601.
    [15] Kamat AA, Fletcher M, Gruman LM, et al. The clinical relevance of stromal matrix metalloproteinase expression in ovarian cancer [J]. Clin. Cancer Res. 2006, 12: 1707-1714.
    [16] Nemori R, Yamamoto M, Kataoka F, et al. Development of in situ zymography to localize active matrix metalloproteinase-7 (matrilysin-1) [J]. J. Histochem. Cytochem. 2005, 53: 1227-1234.
    [17] Wang Y, Zagorevski DV, Lennartz MR, et al. Detection of in vivo matrix metalloproteinase activity using microdialysis sampling and liquid chromatography/mass spectrometry [J]. Anal. Chem. 2009, 81: 9961-9971.
    [18] Blum G, Weimer RM, Edgington LE, et al. Comparative assessment of substratesand activity based probes as tools for non-invasive optical imaging of cysteine protease activity [J]. Plos One 2009, 4: e6374-e6383.
    [19] Catterall JB, Cawston TE. Assays of matrix metalloproteinases (MMPs) and MMP inhibitors: Bioassays and immunoassays applicable to cell culture medium, serum, and synovial fluid [J]. Methods Mol. Biol. 2003, 225: 353-364.
    [20] Yao H, Zhang Y, Xiao F, et al. Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases [J]. Angew. Chem. Int. Ed. 2007, 46: 4346-4349.
    [21] Xiao H, Liu L, Meng F, et al. Electrochemical approach to detect apoptosis [J] Anal. Chem. 2008, 80: 5272-7275.
    [22] Liu G, Wang J, Wunschel DS, et al. Electrochemical proteolytic beacon for detection of matrix metalloproteinase activities [J]. J. Am. Chem. Soc. 2006, 128: 12382-12383.
    [23] Cheng XC, Fang H, Xu WF. Advances in assays of matrix metalloproteinases (MMPs) and their inhibitors [J]. J. Enzym. Inhib. Med. Ch. 2008, 23: 154-167.
    [24] Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties and applications [J]. Angew. Chem. Int. Ed. 2004, 43: 6042.
    [25] Taton TA, Mirkin CA, Letsinger, RL. Scanometric DNA array detection with nanoparticle probes [J]. Science 2000, 289: 1757-1760.
    [26] Han A, Dufva M, Bellevillea E, et al. Detection of analyte binding to microarrays using gold nanoparticle labels and a desktop scanner [J]. Lab Chip 2003, 3: 329-332.
    [27] Ding L, Qian RC, Xue YD. In situ scanometric assay of cell surface carbohydrate by glyconanoparticle-aggregation-regulated silver enhancement [J]. Anal. Chem. 2010, 82: 5804-5809.
    [28] Lee JS, Mirkin CA. Chip-based scanometric detection of mercuric ion using dna-functionalized gold nanoparticles [J]. Anal. Chem. 2008, 80: 6805-6808.
    [29] Yeh YC, Sheu BS, Cheng HC, et al. Elevated serum matrix metalloproteinase-3 and -7 in H. pylori-related gastric cancer can be biomarkers correlating with a poor survival [J]. Dig. Dis. Sci. 2010, 55: 1649-1657.
    [30] Mcintyre JO, Fingleton B, Wells KS, et al. Development of a novel fluorogenic proteolytic beacon for in vivo detection and imaging of tumour-associated matrix metalloproteinase-7 activity [J]. Biochem. J. 2004, 377: 617-628.
    [31] Lynch CC, Donnell SM. The role of matrilysin (MMP-7) in leukaemia cell invasion [J]. Clin. Exp. Metastas. 2001, 18: 401-406.
    [32] Li YC, Lin YS, Tsai PJ, et al. Nitrilotriacetic acid-coated magnetic nanoparticles as affinity probes for enrichment of histidine-tagged proteins and phosphorylated peptides [J]. Anal. Chem. 2007, 79: 7519-7525.
    [33] Graff RA, Swanson TM, Strano MS. Synthesis of nickel-nitrilotriacetic acid coupled single-walled carbon nanotubes for directed self-assembly with polyhistidine-tagged proteins [J]. Chem. Mater. 2008, 20: 1824-1829.
    [34] Gole A, Murphy CJ. Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed [J]. Chem. Mater., 2004, 16: 3633-3640.
    [35] Yang ZJ, Liu H, Zong C, et al. Automated solid support resolution strategy for one-way chemiluminescent multiplex immunoassay [J]. Anal. Chem. 2009, 81: 5484-5489.
    [36] Deng ZX, Tian Y, Lee SH, et al. DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays [J]. Angew. Chem. Int. Ed. 2005, 44: 3582-3585.
    [37] Zhao W, Lin L, Hsing IM. Rapid synthesis of dna-functionalized gold nanoparticles in salt solution using mononucleotide-mediated conjugation [J]. Bioconjugate Chem. 2009, 20: 1218-1222.
    [38] Baur J, Gondran C, Holzinger M, et al. Label-Free femtomolar detection of target DNA by impedimetric dna sensor based on poly(pyrrole-nitrilotriacetic acid) film [J]. Anal. Chem. 2010, 82: 1066-1072.
    [39] Pieper-Fürst U, Kleuser U, St?cklein WFM. Detection of subpicomolar concentrations of human matrix metalloproteinase-2 by an optical biosensor [J]. Anal. Biochem. 2004, 332: 160-167.
    [40] Gao L, Mbonu N, Cao L, et al. Label-free colorimetric detection of gelatinases on nanoporous silicon photonic films [J]. Anal. Chem. 2008, 80: 1468-1473.
    [1] Hirabayashi J, Arata Y, Kasai K. Glycome project: concept, strategy and preliminary application to caenorhabditis elegans [J]. Proteomics 2001, 1: 295–303.
    [2] Rudd PM, Wormald MR, Dwek RA. Sugar-mediated ligand–receptor interactions in the immune system [J]. Trends Biotechnol. 2004, 22: 524–530.
    [3] Fukuda M, Hingsgaul O. Molecular and cellular glycobiology [M]. Oxford University Press: Oxford, 2000.
    [4] Haltiwanger R S, Lowe JB. Role of glycosylation in development [J]. Annu. Rev. Biochem. 2004, 73: 491–537.
    [5] Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease[J]. Cell 2006, 126: 855–867.
    [6] Sharon N, Lis H. History of lectins: from hemagglutinins to biological recognition molecules [J]. Glycobiology 2004, 14: 53R–62R.
    [7] Ohyama G, Tsuboi S, Fukuda M. Dual roles of sialyl Lewis X oligosaccharides in tumor metastasis and rejection by natural killer cells [J]. EMBO J. 1999, 18: 1516–1525.
    [8] Gorelik E, Galili U, Raz A. On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis [J]. Cancer Metastasis Rev. 2001, 20: 245–277.
    [9] Chen SY, Zheng T, Shortreed, MR, et al. Analysis of cell surface carbohydrate expression patterns in normal and tumorigenic human breast cell lines using lectin arrays [J]. Anal. Chem. 2007, 79: 5698–5702.
    [10] Kameyama A, Kikuchi N, Nakaya SI, et al. A strategy for identification of oligosaccharide structures using observational multistage mass spectral library [J]. Anal. Chem. 2005, 77: 4719–4725.
    [11] Qiu RQ, Regnier FE. Use of multidimensional lectin affinity chromatography in differential glycoproteomics [J]. Anal. Chem. 2005, 77: 2802–2809.
    [12] Naka R, Kamoda S, Ishizuka A, et al. Analysis of total n-glycans in cell membrane fractions of cancer cells using a combination of serotonin affinity chromatography and normal phase chromatography [J]. J. Proteome Res. 2006, 5: 88–97.
    [13] Szymanski CM, Michael FS, Jarrell HC, et al. Detection of conserved n-linked glycans and phase-variable lipooligosaccharides and capsules from campylobacter cells by mass spectrometry and high resolution magic angle spinning nmr spectroscopy [J]. J. Biol. Chem. 2003, 278: 24509–24520.
    [14] Pilobello KT, Mahall LK. Deciphering the glycocode: the complexity and analytical challenge of glycomics [J]. Cur. Opin. Chem. Biol. 2007, 11: 300–305.
    [15] Zheng T, Peelen D, Smith LM. Lectin arrays for profiling cell surface carbohydrate expression [J]. J. Am. Chem. Soc. 2005, 127: 9982–9983.
    [16] Tateno H, Uchiyama N, Kuno A, et al. A novel strategy for mammalian cell surface glycome profiling using lectin microarray [J]. J. Glycobiolgy 2007, 17: 1138–1146.
    [17] Hsu KL, Pilobello KT, Mahal LK. Analyzing the dynamic bacterial glycome witj a lectin microarray approach [J]. Nat. Chem. Biol. 2006, 2: 153–157.
    [18] Mitchell PA. perspective on protein microarrays [J]. Nat. Biotechnol. 2002, 20: 225–229.
    [19] Ruoslahti E, RGD and other recognition sequences for integrins [J]. Annu. Rev. Cell Dev. Biol. 1996, 12: 697–723.
    [20] Cheresh DA, Mecham RP. Integrins, molecular and biological responses to extracellular matrix [M]. Academic Press: London, 1994.
    [21] Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model [J]. Science 1998, 279: 377–380.
    [22] Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond [J]. Biomaterials 2003, 24: 4385–4415.
    [23] Uchida M, Flenniken ML, Allen M, et al. Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles[J]. J. Am. Chem. Soc. 2006, 128: 16626–16633.
    [24] Toriello NM, Douglas ES, Mathies RA. Microfluidic device for electric field-driven single-cell capture and activation [J]. Anal. Chem. 2005, 77: 6935–6941.
    [25] May KML, Wang Y, Bachas LG, et al. Development of a whole-cell-based biosensor for detecting histamine as a model toxin [J]. Anal. Chem. 2004, 76: 4156–4161.
    [26] Katz E, Willner I. Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics [J]. ChemPhysChem 2004, 5: 1084–1104.
    [27] Wang J, Liu GD, Jan MR. Ultrasensitive electrical biosensing of proteins and dna: carbon-nanotube derived amplification of the recognition and transduction events [J]. J. Am. Chem. Soc. 2004, 126: 3010–3011.
    [28] Yu X, Munge B, Patel V, et al. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers [J]. J. Am. Chem. Soc. 2006, 128: 11199–11205.
    [29] Wearne KA, Winter HC, O’Shea K, et al. Use of lectins for probing differentiated human embryonic stem cells for carbohydrates [J]. Glycobiology 2006,16: 981–990.
    [30] Chen J, Yan F, Du D, et al. Electrochemical immunoassay of human chorionic gonadotrophin based on its immobilization in gold nanoparticles-chitosan membrane [J]. Electroanalysis 2006, 18: 670–676.
    [31] Luo HX, Shi ZJ, Li NQ, et al. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode [J]. Anal. Chem. 2001, 73: 915–920.
    [32] Zhang YJ, Li J, Shen YF et al. Poly-L-lysine functionalization of single-walled carbon nanotubes[J]. J. Phys. Chem. B 2004, 108: 15343–15346.
    [33] Liu SN, Cai CX, Immobilization and characterization of alcohol dehydrogenase on single-walled carbon nanotubes and its application in sensing ethanol [J]. J. Electroanal. Chem. 2007, 602: 103–114.
    [34] Georgakilas V, Kordatos K, Prato M, Guldi DM, et al. Organic functionalization of carbon nanotubes [J]. J. Am. Chem. Soc. 2002, 124: 760-761.
    [35] Hao C, Ding L, Zhang XJ, et al. Biocompatible Conductive architecture of carbon nanofiber-doped chitosan prepared with controllable electrodeposition for cytosensing [J]. Anal. Chem. 2007, 79: 4442–4447.
    [36] Shen ZH, Huang MC, Xiao CD, et al. Nonlabeled quartz crystal microbalance biosensor for bacterial detection using carbohydrate and lectin recognitions [J]. Anal. Chem. 2007, 79: 2312–2319.
    [37] Rua, CM, Yang LJ, Li YB. Immunobiosensor chips for detection of Escherichia coliO157:H7 using electrochemical impedance spectroscopy [J]. Anal. Chem. 2002, 74: 4814–4820.
    [1] Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease [J]. Cell 2006, 126: 855-867.
    [2] Srivastava S. Move Over Proteomics, Here comes glycomics [J]. J. Proteome Res. 2008, 7: 1799.
    [3] Bosques CJ, Raguram S, Sasisekharan R. The sweet side of biomarker discovery [J]. Nat. Biotechnol. 2006, 24: 1100-1101.
    [4] Turnbull JE, Field RA. Emerging glycomics technologies [J]. Nat. Chem. Biol. 2007, 3: 74-77.
    [5] Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets [J]. Nat. Rev. Cancer 2005, 5: 526-542.
    [6] Vercoutter-Edouart, AS, Slomianny MC, Dekeyzer-Beseme O, et al. Glycoproteomics and glycomics investigation of membrane N-glycosylproteins from human colon carcinoma cells [J]. Proteomics 2008, 8: 3236-3256.
    [7] Ohyama C, Tsuboi S, Fukuda M. Dual roles of sialyl Lewis X oligosaccharides in tumor metastasis and rejection by natural killer cells [J]. EMBO J. 1999, 18: 1516.
    [8] Gorelik E, Galili U, Raz A. On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis [J]. Cancer Metast. Rev. 2001, 20:245-277.
    [9] Pilobello KT, Slawek DE, Mahal LK. A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome [J]. Proc. Nat. Acad. Sci. USA 2007, 104: 11534-11539.
    [10] Kaji H, Saito H, Yamauchi Y, et al. Lectin affinity capture, isotope-codeed tagging and mass spectrometry to identify N-linked glycoproteins [J]. Nat. Biotechnol. 2003, 21: 667-672.
    [11] Naka R, Kamoda S, Ishizuka A, et al. Analysis of total N-glycans in cell membrane fractions of cancer cells using a combination of serotonin affinity chromatography and normal phase chromatography [J]. J. Proteome Res. 2006, 5: 88-97.
    [12] S? rensen MD, Martins R, Hindsgaul O. Assessing the terminal glycosylation of a glycoprotein by the naked eye [J]. Angew. Chem. Int. Edit. 2007, 46: 2403-2407.
    [13] Tao S, Li Y, Zhou J. Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers [J]. Glycobiology 2008, 18: 761-769.
    [14] Zheng T, Peelen D, Smith LM. Lectin arrays for profiling cell surface carbohydrate expression [J]. J. Am. Chem. Soc. 2005, 127: 9982-9983.
    [15] Tateno H, Uchiyama N, Kuno A, et al. A novel strategy for mammalian cell surface glycome profiling using lectin microarray [J]. Glycobiology 2007, 17: 1138-1146.
    [16] Privett BJ, Shin JH. Schoenfisch MH, Electrochemical sensors [J]. Anal. Chem. 2008, 80: 4499-4517.
    [17] Spegel C, Heiskanen A, Skjolding LHD, et al. Chip based electroanalytical systems for cell analysis [J]. Electroanalysis 2008, 20: 680-702.
    [18] Ding L, Du D, Zhang XJ, et al. Trends in cell-based electrochemical sensors [J]. Curr. Med. Chem. 2008, 15: 3160-3170.
    [19] Cheng W, Ding L, Lei JP, et al. Effective cell capture with tetrapeptide-functionalized carbon nanotubes and dual signal amplification for cytosensing and evaluation of cell surface carbohydrate [J]. Anal. Chem. 2008, 80:3867-3672.
    [20] Ding L, Cheng W, Wang XJ, et al. Carbohydrate monolayer strategy for electrochemical assay of cell surface carbohydrate [J]. J. Am. Chem. Soc. 2008, 130: 7224-7225.
    [21] Lin Z, Takahashi Y, Murata T, et al. [J]. Electrochemical gene-function analysis for single cells with addressable microelectrode/microwell arrays [J]. Angew. Chem. Int. Ed. 2009, 48: 2044-2047.
    [22] Wu J, Yan F, Zhang XQ, et al. Disposable reagentless electrochemical immunosensor array based on a biopolymer/Sol-Gel membrane for simultaneous measurement of several tumor markers [J]. Clin. Chem. 2008, 54: 1481-1488.
    [23] Wu LN, Yan F, Ju HX. An amperometric immunosensor for separation-free immunoassay of CA125 based on its covalent immobilization coupled with thionine on carbon nanofiber [J]. J. Immunol. Methods 2007, 322: 12-19.
    [24] Belhacène N, Maulon L, Guérin S, et al. Differential expression of the Kell blood group and CD10 antigens: two related membrane metallopeptidases during differentiation of K562 cells by phorbol ester and hemin [J]. FASEB J. 1998, 12: 531-539.
    [25] Yu H, Yan F, Dai Z, et al. A disposable amperometric immunosensor for a-1-fetoprotein based on enzyme-labeled antibody/chitosan-membrane-modified screen-printed carbon electrode [J]. Anal. Biochem. 2004, 331: 98-105.
    [26] Xie M, Hu J, Long Y, et al. Lectin-modified trifunctional nanobiosensors for mapping cell surface glycoconjugates [J]. Biosens. Bioelectron. 2009, 24: 1311-1317.
    [27] Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model [J]. Science 1998, 279: 377-380.
    [28] Dai Z, Kawde A, Xiang Y, et al. Nanoparticle-based sensing of glycan-lectin interactions [J]. J. Am. Chem. Soc. 2006, 128: 10018-10019.
    [29] Wearne KA, Winter HC, O’Shea K, et al. Use of lectins for probing differentiated human embryonic stem cells for carbohydrates [J]. Glycobiology 2006, 16:981-990.
    [30] Lizzi AR, D’Alessandro AM, Bozzi A, et al. Pattern expression of glycan residues in AZT-treated K562 cells analyzed by lectin cytochemistry [J]. Mol. Cell Biochem. 2007, 300: 29-37.
    [31] Steet RA, Melan?on P, Kuchta RD. 3'-Azidothymidine potently inhibits the biosynthesis of highly branched N-linked oligosaccharides and poly-N-acetyllactosamine chains in cells [J]. J. Biol. Chem. 2000, 275: 26812-26820.
    [32] Witt O, Sand K, Pekrun A. Involves inhibition of ERK and activation of p38 MAP kinase pathways butyrate-induced erythroid differentiation of human K562 leukemia cells [J]. Blood 2000, 95: 2391-2396.
    [33] Sasaki H, Bothner B, Dell A, et al. Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA [J]. J. Biol. Chem. 1987, 262: 12059-12076.
    [34] Gahmberg C, Ekblom M, Andersson LC. Differentiation of human erythroid cells is associated with increased O-glycosylation otthe major sialoglycoprotein, glycophorin A [J]. Proc. Natl. Acad. Sci. USA 1984, 81: 6752-6756.
    [1] Robertson DL, Joyce GF. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA [J]. Nature 1990, 344: 467-468.
    [2] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase [J]. Science 1990, 249: 505-510.
    [3] Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands [J]. Nature 1990, 346: 818-822.
    [4] Wilson DS, Szostak JW. In vitro selection of functional nucleic acids [J]. Annu. Rev. Biochem. 1999, 68: 611-648.
    [5] Mann D, Reinemann C, Stoltenburg R, et al. In vitro selection of DNA aptamers binding ethanolamine [J]. Biochem. Biophys. Res. Commun. 2005, 338: 1928-1934.
    [6] Stoltenburg R, Reinemann C, Strehlitz B. FluMag SELEX as an advantageous method for DNA aptamer selection [J]. Anal. Bioanal. Chem. 2005, 383: 83-91.
    [7] Mendonsa SD, Bowser MT. In vitro evolution of functional dna using capillary electrophoresis [J]. J. Am. Chem. Soc. 2004, 126: 20-21.
    [8] Berezovski M, Drabovich A, Krylova SM, et al. Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers [J]. J. Am. Chem. Soc. 2005, 127: 3165-3171.
    [9] Drabovich AP, Berezovski M, Okhonin V, et al. Selection of smart aptamers by methods of kinetic capillary electrophoresis [J]. Anal. Chem. 2006, 78: 3171-3178.
    [10] Berezovski M, Musheev M, Drabovich A, et al. Non-SELEX selection of aptamers [J]. J. Am. Chem. Soc. 2006, 128: 1410-1411.
    [11] Brody EN, Willis MC, Smith JD, et al. The use of aptamers in large arrays for molecular diagnostics [J]. Mol. Diagn. 1999, 4: 381-388.
    [12] Jenison RD, Gill SC, Pardi A, et al. High-resolution molecular discrimination by RNA [J]. Science 1994, 263: 1425-1429.
    [13] Liss M, Petersen B, Wolf H, et al. An aptamer-based quartz crystal protein biosensor [J]. Anal. Chem. 2002, 74, 4488-4495.
    [14] Stadtherr K, Wolf H, Lindner P. An aptamer-based protein biochip [J]. Anal. Chem. 2005, 77: 3437-3443.
    [15] Wang Y, Rando RR. Specific binding of aminoglycoside antibiotics to RNA [J]. Chem. Biol. 1995, 2: 281-290.
    [16] Huang CC, Chiang CK, Lin ZH, et al. Bioconjugated gold nanodots and nanoparticles for protein assays based on photoluminescence quenching [J]. Anal. Chem. 2008, 80: 1497-1504.
    [17] Dwarakanath S, Bruno JG, Shastry A, et al. Quantum dot-antibody and aptamer conjugates shift fluorescence upon binding bacteria [J]. Biochem. Biophys. Res. Commun. 2004, 325: 739-743.
    [18] Choi JH, Chen KH, Strano MS. Aptamer-capped nanocrystal quantum dots: a new method for label-free protein detection [J]. J. Am. Chem. Soc. 2006, 128: 15584-15585.
    [19] Unruh JR, Gokulrangan G, Wilson GS, et al. Fluorescence properties of fluorescein, tetramethylrhodamine and texas red linked to a DNA aptamer [J]. Photochem. Photobiol. 2005, 81: 682-690.
    [20] Li JJ, Fang X, Schuster SM, et al. Molecular beacons: a novel approach to detect protein-DNA interactions [J]. Angew. Chem., Int. Ed. 2000, 39: 1049-1052.
    [21] Hamaguchi N, Ellington A, Stanton M, Aptamer beacons for the direct detection of proteins [J]. Anal. Biochem. 2001, 294: 126-131.
    [22] Stojanovic MN, de Prada P, Landry DW. Aptamer-based folding fluorescent sensor for cocaine [J]. J. Am. Chem. Soc. 2001, 123: 4928-4929.
    [23] Yang CJ, Jockusch S, Vicens M, et al. Light-switching excimer probes for rapid protein monitoring in complex biological fluids [J]. Proc. Natl. Acad. Sci. U.S.A. 2005, 102: 17278-17283.
    [24] Nagatoishi S, Nojima T, Galezowska E, et al. G-quadruplex-based FRET probes with the thrombin-binding aptamer (TBA) sequence designed for the efficient fluorometric detection of potassium ion [J]. ChemBioChem 2006, 7, 1730-1737.
    [25] Nagatoishi S, Nojima T, Galezowska E, et al. G-quadruplex-based FRET probes for the fluorometric detection of potassium ion [J]. Anal. Chim. Acta 2007, 581: 125-131.
    [26] Yamamoto R, Baba T, Kumar PK. Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1 [J]. Genes Cells 2000, 5: 389-396.
    [27] Di Giusto DA, Wlassoff WA, Gooding J, et al. Proximity extension of circular DNA aptamers with real-time protein detection [J]. Nucleic Acids Res. 2005, 33: e64/1.
    [28] Yang L, Fung CW, Cho EJ, et al. Real-time rolling circle amplification for proteindetection [J]. Anal. Chem. 2007, 79: 3320-3329.
    [29] Yguerabide J, Yguerabide EE. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: I. Theory [J]. Anal. Biochem. 1998, 262: 137-156.
    [30] Bohren CF, Huffman DR. Absorption and scattering of light by small particles [M] Wiley: New York, 1983
    [31] Jin R, Wu G, Li Z, et al. What controls the melting properties of dna-linked gold nanoparticle assemblies [J]. J. Am. Chem. Soc. 2003, 125: 1643-1654.
    [32] Mirkin CA, Letsinger RL, Mucic RC, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials [J]. Nature 1996, 382: 607-609.
    [33] Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin [J]. J. Am. Chem. Soc. 2004, 126: 11768-11769.
    [34] Huang CC, Huang YF, Cao Z, et al. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors [J]. Anal. Chem. 2005, 77: 5735-5741.
    [35] Ono A, Togashi H. Highly selective oligonucleotide-based sensor for mercury(ii) in aqueous solutions [J]. Angew. Chem., Int. Ed. 2004, 43: 4300-4302.
    [36] Tanaka Y, Oda S, Yamaguchi H, et.al. 15N?15N J-coupling across HgII: direct observation of HgII-mediated T?T base pairs in a DNA duplex [J]. J. Am. Chem. Soc. 2007, 129: 244-245.
    [37] Liu J, Lu Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles [J]. Angew. Chem. Int. Ed. 2006, 45: 90-94.
    [38] Willner I, Zayats M. Electronic aptamer-based sensors [J]. Angew. Chem. Int. Ed. 2007, 46: 6408-6418.
    [39] Xiao Y, Plaxco KW. In functional nucleic acids for analytical applications [M]. Springer: New York, NY, in press.
    [40] Ikebukuro K, Kiyohara C, Sode K. Novel electrochemical sensor system for protein using the aptamers in sandwich manner [J]. Biosens. Bioelectron. 2005, 20: 2168-2172.
    [41] Ikebukuro K, Kiyohara C, Sode K. Electrochemical detection of protein using adouble aptamer sandwich [J]. Anal. Lett. 2004, 37: 2901-2909.
    [42] Baldrich E, Acero JL, Reekmans G, et al. Displacement enzyme linked aptamer assay [J]. Anal. Chem. 2005, 77: 4774-4784.
    [43] Centi S, Tombelli S, Minunni M, et al. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads [J]. Anal. Chem. 2007, 79: 1466-1473.
    [44] Polsky R, Gill R, Kaganovsky L, et al. Integration of two-dimensional LC?MS with multivariate statistics for comparative analysis of proteomic samples. Anal. Chem [J]. 2006, 78: 2268-2296.
    [45] Wang X, Zhou J, Yun W, et al. Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)3(2+)-doped silica nanoparticle aptasensor via target protein-induced strand displacement [J]. Anal. Chim. Acta 2007, 598: 242-248.
    [46] Katz E, Willner I. Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors [J]. Electroanalysis 2003, 15: 913-947.
    [47] Radi AE, Sanchez JLA. Baldrich E, et al. Reusable impedimetric aptasensor [J]. Anal. Chem. 2005, 77: 6320-6323.
    [48] Zayats M, Huang Y, Gill R, et al. Label-free and reagentless aptamer-based sensors for small molecules [J]. J. Am. Chem. Soc. 2006, 128: 13666-13667.
    [49] De-los-Santos-Alvarez N, Lobo-Castanon MJ, Miranda-Ordieres AJ. Modified-RNA aptamer-based sensor for competitive impedimetric assay of neomycin B [J]. J. Am. Chem. Soc. 2007, 129: 3808-3809.
    [50] Hansen JA, Wang J, Kawde AN, et al. Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor [J]. J. Am. Chem. Soc. 2006, 128: 2228-2229.
    [51] Di Giusto DA, King GC. Construction, stability, and activity of multivalent circular anticoagulant aptamers [J]. J. Biol. Chem. 2004, 279: 46483-46489.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700