功能基因芯片(GeoChip)在两种典型环境微生物群落分析中应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物在自然界无处不在,而且其参与并承担着重要的生态功能,从碳、氮循环,到矿物形成和风化,无一不与微生物相关。但是,目前,自然界约99%的微生物因有限的培养基和特异的生长条件而尚未被培养,因此如何准确描述和定量自然环境中的微生物群落及其同环境因素之间的关系,是环境微生物生态学的重要研究课题之
     本研究主要以功能基因芯片(GeoChip)在环境微生物群落分析中应用为研究主线,分别从环境样品DNA的提取与纯化和GeoChip在两种典型环境微生物群落分析中的应用为支线,对GeoChip在环境微生物群落分析中的应用展开了一系列的具体研究与探讨。除了GeoChip技术,本研究还采用了其他诸如克隆文库、BIOLOG. PLFA和土壤呼吸仪等技术手段作为辅助手段,对研究对象进行了全面的分析与研究。
     本研究的主要结果如下:第一,经过136个土壤样品的纯化测试表明,本研究改进后的低融点胶纯化环境样品DNA的方法,可以从各种污染程度的环境样品中获得高质量、大片段(>23 kb)的DNA,且均能够用于全基因组放大、标记和杂交;第二,来自三座铜矿山的酸性矿坑水(acid mine drainage, AMD)中的微生物群落结构相对较简单,且不同AMD样品中微生物群落结构差异较大,其中的微生物主要由α-,β-和y-Proteobacteria, Acidobacteria, Actinobacteria, Cyano-bacteria, Firmicutes, Proteobacteria, Planctomycetes, Bacteriodetes和Nitrospirae组成;虽然GeoChip2.0芯片从AMD生态系统中检测到较少的功能基因,但检测到的功能基因几乎涉及到所有的基本生物地球化学循环过程,而且,多元统计分析表明,AMD中的微生物群落组成主要受周围环境地化参量的影响;第三,GeoChip检测到气候变暖的加温效应导致地表微生物群落功能基因的丰度增加,土壤微生物的群落结构受到了显著的影响,而采割处理(用来模仿收获地表植被生物量,并用于生物能源)增强了加温处理导致的温度增加作用,但降低了微生物群落的分散度(结构,多样性,丰度)和功能基因(碳,氮,磷,硫循环基因)的丰度,差异分解分析表明,除土壤温度以外,土壤和植物变量可以解释79.4%的总变异,表明土壤温度升高通过影响土壤和植物变量而影响土壤中微生物群落结构的。
     总而言之,通过GeoChip对两种典型环境(极端酸性水环境和气候变暖下的土壤环境)中微生物的群落结构的研究,我们认为,GeoChip作为一种宏基因组学研究技术,其为环境微生物,尤其是在环境微生物功能基因组学方面的研究,提供了一个强有力的工具,它能够在功能基因水平上研究环境微生物群落结构和功能基因的变化,进而推断环境中可能存在或变化的生态功能,并且,通过多元统计分析环境参量同基因芯片数据的相互关系,可以使我们更好的认识环境微生物同环境参量的相互作用关系。该技术加深了人们对环境微生物功能变化及其与环境参量之间相互关系的认识。
The microorganism is ubiquitous in the nature, and it participates in and is undertaking the important role in nature biogeochemical cycling, such as carbon, nitrogen cycling, mineral decency and formation. However, since 99% of microorganisms in nature are unable to culture, the detection, description and quantitation of environmental microorganism and its relationship between environmental factors are big issue in environmental microbial ecology. The purpose of this study is that using microarray based GeoChip to investigate the whole microbial communities under two typical environments (extreme acid environment and global warming affecting soil) and the relationship between microbial communities to environmental factors. This research mainly based on the analysis with GeoChip which developed by the Institute for Environmental Genomics of University of Oklahoma. It is a robust and comprehensive tool to investigate environmental microbial community and it includes GeoChip 2.0 and the GeoChip 3.0 versions. GeoChip 2.0 contains 24,000 nucleotide probe (50 mer), including larger than 150 functional gene categories and 10,000 genes, and has covered the nitrogen, carbon, sulfur and phosphorus cycling, and metal resistance and organic contaminant degradation. The GeoChip 3.0 version contains approximately 28,000 probes and covers about 57,000 gene sequences in more than 292 gene families. The total environment microbial DNA were extracted, purified, amplified, randomly labeled and hybridized for further data analysis. Other methods, such as clone library method, BIOLOG, PLFA and soil respiration meter were also performed to exam the activity of microbial community. Correlation and correspondence analysis were used for analyzing the relationship between microbial communities and environmental factors.
     The results showed that, firstly, At least 50 to 60% of the crude DNA could be recovered from the low melting point (LMP) gel purification with high A26o/2so and A26o/23o ratios, approximately 1.6-1.8 and 1.7-2.0, respectively, than the other three commercial purification kits tested: Wizard(?) Plus Midipreps DNA purification system from Promega (Promega kit), QIAEXⅡgel extraction kit (QIAEX kit), and E.Z.N.A.(?) gel purification kit from Omega (Omega kit). Purified DNA was successfully tested for PCR amplification of 16S rDNA. whole community genome DNA amplification using Phi 29 DNA polymerase, and DNA labeling with Cy dyes using klenow fragment. A larger set of samples,136 soil samples, containing a variety of agricultural and forest soils were then tested and high quality DNA was successfully obtained. Our results showed that the improved procedure yields better results than other available extraction and purification procedures and will provide a new way to obtain high quality DNA from soils. Secondly, for community analysis in acid mine drainage (AMD), clone library method revealed total 1691 clones were obtained from three copper mine in southeast of China and majority (97.7%) of the clones were classified intoα-,β, andγ-Proteobacteria, Acidobacteria, Actinobacteria, Bacteriodetes, Cyanobacteria, Firmicutes, Nitrospirae, and Planctomycetes. GeoChip 2.0 analysis revealed that these microbial communities were functionally heterogeneous as measured by the number of detected, overlapping,and unique genes and diversity indices. Almost all key functional genes targeted by GeoChip 2.0 were detected in the AMD microbial communities including carbon fixation, carbon degradation, methane generation, nitrogen fixation, nitrification, denitrification, ammonification, nitrogen reduction, sulfur metabolism, metal resistance, and organic contaminant degradation, suggesting that the functional gene diversity may be higher than was previously thought. Mantel test results indicated that AMD microbial communities might be largely shaped by surrounding environmental factors. For global warming analysis, the results showed that warming altered soil microbial communities by DCA and cluster analyses, and even caused a higher microbial biomass, helping us to reject the substrate depletion for explaining respiration acclimation, but accept microbial adaptation which may diminish positive feedback. The treatment of clipping (mimicking biofuel feedstock harvest) exaggerated the increase of temperature, but decreased the divergence at community (structure, diversity, richness and bacteria abundance) and functional gene (abundance of genes in C, N, P and S cycles) levels, indicating that the direct effect of elevated temperature (T) was not the major factor affecting microorganisms. Other than soil temperature, the soil and plant variables could explain 79.4% of total variation, suggesting the indirect effects of elevated T on these variables were more important in shaping microbial community structure. A few possibly negative mechanisms under warming were observed by the abundance of functional genes in GeoChip, including increased C fixation, N fixation and methane oxidation without clipping, while positive mechanisms might exist due to increased methane production but decreased oxidation with clipping, and increased denitrification without clipping. However, the importance of these mechanisms on determining the overall direction of feedback need to be future investigated.
     Overall, this study showed that GeoChip is a powerful tool to investigate environmental microbial communities'functional genes structure and it can imply ecological potential functions and widen our understanding for exploring the mechanisms of environmental microbial community response for environmental factor.
引文
[1]Whitman W B, Coleman D C.Wiebe W J Prokaryotes:the unseen majority [J]. Proc Natl Acad Sci USA,1998,95(12):6578-6583.
    [2]Amann R I, Ludwig W,Schleifer K H Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiol Rev,1995,59(1):143-169.
    [3]Cowan D A Microbial genomes-the untapped resource [J]. Trends Biotechnol,2000,18(1):14-16.
    [4]Ward D M, Weller R,Bateson M M 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community [J]. Nature,1990,345(6270):63-65.
    [5]Pace N R A molecular view of microbial diversity and the biosphere [J]. Science,1997,276(5313): 734-740.
    [6]Kellenberger E Exploring the unknown. The silent revolution of microbiology [J]. EMBO Rep, 2001,2(1):5-7.
    [7]Handelsman J, Rondon M R, Brady S F, et al. Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products [J]. Chem Biol,1998,5(10):R245-249.
    [8]Ferrer M, Golyshina O, Beloqui A, et al. Mining enzymes from extreme environments [J]. Curr Opin Microbiol,2007,10(3):207-214.
    [9]Fleischmann R, Adams M, White O, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd [J]. Science,1995,269(5223):7.
    [10]McHardy A C, Martin H G, Tsirigos A, et al. Accurate phylogenetic classification of variable-length DNA fragments [J]. Nat Methods,2007,4(1):63-72.
    [11]Margulies M, Egholm M, Altman W E, et al. Genome sequencing in microfabricated high-density picolitre reactors [J]. Nature,2005,437(7057):376-380.
    [12]Torsvik V L Isolation of Bacterial-DNA from Soil [J]. Soil Biol Biochem,1980,12(1):15-21.
    [13]Holben W E, Jansson J K, Chelm B K, et al. DNA Probe Method for the Detection of Specific Microorganisms in the Soil Bacterial Community [J]. Appl Environ Microb,1988,54(3):703-711.
    [14]Steffan R J, Goksoyr J, Bej A K, et al. Recovery of DNA from Soils and Sediments [J]. Appl Environ Microb,1988,54(12):2908-2915.
    [15]Tsai Y L,Olson B H Rapid Method for Direct Extraction of DNA from Soil and Sediments [J]. Appl Environ Microb,1991,57(4):1070-1074.
    [16]Jacobsen C S,Rasmussen O F Development and Application of a New Method to Extract Bacterial-DNA from Soil Based on Separation of Bacteria from Soil with Cation-Exchange Resin [J]. Appl Environ Microb,1992,58(8):2458-2462.
    [17]Lindahl V,Bakken L R Evaluation of Methods for Extraction of Bacteria from Soil [J]. Fems Microbiol Ecol,1995,16(2):135-142.
    [18]Zhou J Z, Bruns M A,Tiedje J M DNA recovery from soils of diverse composition [J]. Appl Environ Microb,1996,62(2):316-322.
    [19]Kuske C R, Banton K L, Adorada D L, et al. Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil [J]. Appl Environ Microb,1998,64(7):2463-2472.
    [20]Miller D N, Bryant J E, Madsen E L, et al. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples [J]. Appl Environ Microb,1999,65(11):4715-4724.
    [21]Ogram A Soil molecular microbial ecology at age 20:methodological challenges for the future [J]. Soil Biol Biochem,2000,32(11-12):1499-1504.
    [22]Hurt R A, Qiu X Y, Wu L Y, et al. Simultaneous recovery of RNA and DNA from soils and sediments [J]. Appl Environ Microb,2001,67(10):4495-4503.
    [23]Lloyd-Jones G,Hunter D W F Comparison of rapid DNA extraction methods applied to contrasting New Zealand soils [J]. Soil Biol Biochem,2001,33(15):2053-2059.
    [24]Steffan R J,Atlas R M DNA Amplification to Enhance Detection of Genetically Engineered Bacteria in Environmental-Samples [J]. Appl Environ Microb,1988,54(9):2185-2191.
    [25]Porteous L A,Armstrong J L Recovery of Bulk DNA from Soil by a Rapid, Small-Scale Extraction Method [J]. Curr Microbiol,1991,22(6):345-348.
    [26]Smalla K, Cresswell N, Mendoncahagler L C, et al. Rapid DNA Extraction Protocol from Soil for Polymerase Chain Reaction-Mediated Amplification [J]. J Appl Bacteriol,1993,74(1):78-85.
    [27]Tebbe C C,Vahjen W Interference of Humic Acids and DNA Extracted Directly from Soil in Detection and Transformation of Recombinant-DNA from Bacteria and a Yeast [J]. Appl Environ Microb,1993,59(8):2657-2665.
    [28]Lovell C R,Piceno Y Purification of DNA from Estuarine Sediments [J]. J Microbiol Meth,1994, 20(3):161-174.
    [29]Wilson I G Inhibition and facilitation of nucleic acid amplification [J]. Appl Environ Microb,1997, 63(10):3741-3751.
    [30]Bachoon D S, Otero E,Hodson R E Effects of humic substances on fluorometric DNA quantification and DNA hybridization [J]. J Microbiol Meth,2001,47(1):73-82.
    [31]Cho J C, Lee D H, Cho Y C, et al. Direct extraction of DNA from soil for amplification of 16S rRNA gene sequences by polymerase chain reaction [J]. J Microbiol,1996,34(3):229-235.
    [32]Frostegard A, Courtois S, Ramisse V, et al. Quantification of bias related to the extraction of DNA directly from soils [J]. Appl Environ Microb,1999,65(12):5409-5420.
    [33]Leff L G, Dana J R, Mcarthur J V, et al. Comparison of Methods of DNA Extraction from Stream Sediments [J]. Appl Environ Microb,1995,61(3):1141-1143.
    [34]Young C C, Burghoff R L, Keim L G, et al. Polyvinylpyrrolidone-Agarose Gel-Electrophoresis Purification of Polymerase Chain Reaction-Amplifiable DNA from Soils [J]. Appl Environ Microb, 1993,59(6):1972-1974.
    [35]Bond P L, Druschel G K,Banfield J F Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems [J]. Appl Environ Microb,2000,66(11):4962-+.
    [36]Bond P L, Smriga S P,Banfield J F Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. [J]. Appl Environ Microb, 2000,66(9):3842-3849.
    [37]Baker B J,Banfield J F Microbial communities in acid mine drainage [J]. Ferns Microbiol Ecol, 2003,44(2):139-152.
    [38]He Z, Xie X, Xiao S, et al. Microbial diversity of mine water at Zhong Tiaoshan copper mine, China. [J]. Journal of Basic Microbiology,2007,47(6):485-495.
    [39]Yin H Q, Qiu G Z, Wu L Y, et al. Microbial community diversity and changes associated with a mine drainage gradient at the Dexing copper mine, China [J]. Aquat Microb Ecol,2008,51(1):67-76.
    [40]Singer P C,Stumm W Acidic mine drainage:The rate-determining step. [J]. Science,1970, 167(1121-1127.
    [41]Gonzalez-Toril E, Gomez F, Rodriguez N, et al. (2001) Geomicrobiology of the Tinto river, a model of interest for biohydrometallurgy, Part B. Biohydrometallurgy:fundamentals, technology and sustainable development,(Cummielly V S T,Garcia O, ed.^eds.), p.^pp.639-650. Elsevier, Amsterdam, The Netherlands.
    [42]Johnson D B Biodiversity and ecology of acidophilic microorganisms. [J]. Fems Microbiol Ecol, 1998,27(4):307-317.
    [43]Banfield J F, Verberkmoes N C, Hettich R L, et al. Proteogenomic approaches for the molecular characterization of natural microbial communities [J]. Omics,2005,9(4):301-333.
    [44]Gerhardt A, de Bisthoven L J, Guhr K, et al. Phytoassessment of acid mine drainage:Lemna gibba bioassay and diatom community structure [J]. Ecotoxicology,2008,17(1):47-58.
    [45]Tremaine S C,Mills A L Impact of Water Column Acidification on Protozoan Bacterivory at the Lake Sediment-Water Interface [J]. Appl Environ Microb,1991,57(3):775-784.
    [46]Dsa J V, Johnson K S, Lopez D, et al. Residual toxicity of acid mine drainage-contaminated sediment to stream macroinvertebrates:Relative contribution of acidity vs. metals [J]. Water Air Soil Poll,2008,194(1-4):185-197.
    [47]Levings C D, Barry K L, Grout J A, et al. Effects of acid mine drainage on the estuarine food web, Britannia Beach, Howe Sound, British Columbia, Canada [J]. Hydrobiologia,2004,525(1-3):185-202.
    [48]Tiwary R K Environmental impact of coal mining on water regime and its management [J]. Water Air Soil Poll,2001,132(1-2):185-199.
    [49]Kim J, Koo S Y, Kim J Y, et al. Influence of acid mine drainage on microbial communities in stream and groundwater samples at Guryong Mine, South Korea [J]. Environ Geol,2009,58(7):1567-1574.
    [50]Nordstrom D K,Alpers C N Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. [J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(7):3455-3462.
    [51]Lear G, Niyogi D, Harding J, et al. Biofilm Bacterial Community Structure in Streams Affected by Acid Mine Drainage [J]. Appl Environ Microb,2009,75(11):3455-3460.
    [52]Nordstrom D K,Alpers C N Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California [J]. P Natl Acad Sci USA, 1999,96(7):3455-3462.
    [53]Hallberg K B,Johnson D B Novel acidophiles isolated from moderately acidic mine drainage waters [J]. Hydrometallurgy,2003,71(1-2):139-148.
    [54]Johnson D B,Hallberg K B Acid mine drainage remediation options:a review [J]. Sci Total Environ,2005,338(1-2):3-14.
    [55]Luptakova A,Kusnierova M Bioremediation of acid mine drainage contaminated by SRB [J]. Hydrometallurgy,2005,77(1-2):97-102.
    [56]Yates J R, Lobos J H,Holmes D S The Use of Genetic Probes to Detect Microorganisms in Biomining Operations [J]. J Ind Microbiol,1986,1(2):129-135.
    [57]Valenzuela L, Chi A, Beard S, et al. Genomics, metagenomics and proteomics in biomining microorganisms [J]. Biotechnol Adv,2006,24(2):197-211.
    [58]Rawlings D E,Johnson D B The microbiology of biomining:development and optimization of mineral-oxidizing microbial consortia [J]. Microbiol-Sgm,2007,153(315-324.
    [59]Cid C, Garcia-Descalzo L, Casado-Lafuente V, et al. Proteomic analysis of the response of an acidophilic strain of Chlamydomonas sp (Chlorophyta) to natural metal-rich water [J]. Proteomics, 2010,10(10):2026-2036.
    [60]Knob A,Carmona E C Purification and Characterization of Two Extracellular Xylanases from Penicillium sclerotiorum:A Novel Acidophilic Xylanase [J]. Appl Biochem Biotech,2010,162(2): 429-443.
    [61]Acevedo F,Gentina J C (2007) Bioreactor design fundamentals and their application to gold mining. Microbial Processing of Metal Sulfides, (Donati E R,Sand W, ed.^eds.), p.^pp.151-168. Springer, Netherlands.
    [62]Krebs W, Brombacher C, Bosshard P P, et al. Microbial recovery of metals from solids [J]. Fems Microbiol Rev,1997,20(3-4):605-617.
    [63]Qiu G Z, Wan M X, Qian L, et al. Archaeal diversity in acid mine drainage from Dabaoshan Mine, China [J]. Journal of Basic Microbiology,2008,48(5):401-409.
    [64]Yin H, Cao L, Qiu G, et al. Molecular diversity of 16S rRNA and gyrB genes in copper mines. [J]. Archives of Microbiology,2008,189(101-110.
    [65]Yin H, Cao L, Xie M, et al. Bacterial diversity based on 16S rRNA and gyrB genes at Yinshan mine, China. [J]. Systematic and Applied Microbiology,2008,31(4):302-311.
    [66]Demergasso C S, Galleguillos P A P, Escudero L V G, et al. Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap [J]. Hydrometallurgy,2005, 80(4):241-253.
    [67]Karnachuk O V, Gerasimchuk A L, Banks D, et al. Bacteria of the sulfur cycle in the sediments of gold mine tailings, Kuznetsk Basin, Russia [J]. Microbiology+,2009,78(4):483-491.
    [68]Mahmouda K K, Leducb L G,Ferroni G D Detection of Acidithiobacillus ferrooxidans in acid mine drainage environments using fluorescent in situ hybridization (FISH). [J]. J Microbiol Meth,2005, 61(1):33-45.
    [69]Schippers A, Nagy A A, Kock D, et al. The use of FISH and real-time PCR to monitor the biooxidation and cyanidation for gold and silver recovery from a mine tailings concentrate (Ticapampa, Peru). [J]. Hydrometallurgy,2008,94(1-4).
    [70]Yin H Q, Cao L H, Qiu G Z, et al. Development and evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in Acid Mine Drainages and bioleaching systems [J]. J Microbiol Meth,2007,70(1):165-178.
    [71]Garrido P, Gonzalez-Toril E, Garcia-Moyano A, et al. An oligonucleotide prokaryotic acidophile microarray:its validation and its use to monitor seasonal variations in extreme acidic environments with total environmental RNA. [J]. Environmental Microbiology,2008,10(4):836-850.
    [72]McArthur J V, Kovacic D A,Smith M H Genetic diversity in natural populations of a soil bacterium across a landscape gradient. [J]. "Proceedings of the National Academy of Sciences, USA", 1988,85(9621-9624.
    [73]Cho J C,Tiedje J M Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil [J]. Appl Environ Microb,2000,66(12):5448-5456.
    [74]Tuomisto H, Ruokolainen K,Yli-Halla M Dispersal, environment, and floristic variation of western Amazonian forests. [J]. Science,2003,299(241-244.
    [75]Horner-Devine M C, Lage M, Hughes J B, et al. A taxa-area relationship for bacteria [J]. Nature, 2004,432(7018):750-753.
    [76]Martiny J B H, Bohannan B J M, Brown J H, et al. Microbial biogeography:putting microorganisms on the map [J]. Nat Rev Microbiol,2006,4(2):102-112.
    [77]Ramette A,Tiedje J M Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. [J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(2761-2766.
    [78]Yin H Q, Cao L H, Qiu G Z, et al. Molecular diversity of 16S rRNA and gyrB genes in copper mines [J]. Archives of Microbiology,2008,189(2):101-110.
    [79]Tyson G W, Chapman J, Hugenholtz P, et al. Community structure and metabolism through reconstruction of microbial genomes from the environment [J]. Nature,2004,428(6978):37-43.
    [80]Ram R J, VerBerkmoes N C, Thelen M P, et al. Community proteomics of a natural microbial biofilm [J]. Science,2005,308(5730):1915-1920.
    [81]Baeseman J L, Smith R L,Silverstein J Denitrification potential in stream sediments impacted by acid mine drainage:Effects of pH, various electron donors, and iron [J]. Microb Ecol,2006,51(2): 232-241.
    [82]Baker B J,Banfield J F Microbial communities in acid mine drainage. [J]. FEMS Microbiology Ecology,2003,44(139-152.
    [83]Druschel G, Baker B, Gihring T, et al. Acid mine drainage biogeochemistry at Iron Mountain, California. [J]. Geochemical Transactions,2004,5(2):13-32.
    [84]Xie X, Xiao S, He Z, et al. Microbial populations in acid mineral bioleaching systems of Tong Shankou Copper Mine, China. [J]. Journal of Applied Microbiology,2007,103(4):1227-1238.
    [85]Novotny A M, Schade J D, Hobbie S E, et al. Stoichiometric response of nitrogen-fixing and non-fixing dicots to manipulations of CO2, nitrogen, and diversity [J]. Oecologia,2007,151(4):687-696.
    [86]Luo Y Q, Wan S Q, Hui D F, et al. Acclimatization of soil respiration to warming in a tall grass prairie [J]. Nature,2001,413(6856):622-625.
    [87]Luo Y Q, Hui D F,Zhang D Q Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems:A meta-analysis [J]. Ecology,2006,87(1):53-63.
    [88]Carney K M, Hungate B A, Drake B G et al. Altered soil microbial community at elevated CO2 leads to loss of soil carbon [J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(12):4990-4995.
    [89]Fontaine S, Barot S, Barre P, et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply [J]. Nature,2007,450(7167):277-U210.
    [90]Heimann M,Reichstein M Terrestrial ecosystem carbon dynamics and climate feedbacks [J]. Nature,2008,451(7176):289-292.
    [91]Falkowski P, Scholes R J, Boyle E, et al. The global carbon cycle:A test of our knowledge of earth as a system [J]. Science,2000,290(5490):291-296.
    [92]Luo Y Q, Sherry R, Zhou X H, et al. Terrestrial carbon-cycle feedback to climate warming: experimental evidence on plant regulation and impacts of biofuel feedstock harvest [J]. Gcb Bioenergy, 2009,1(1):62-74.
    [93]Dijkstra F A, Hobbie S E,Reich P B Soil processes affected by sixteen grassland species grown under different environmental conditions [J]. Soil Science Society of America Journal,2006,70(3): 770-777.
    [94]Bever J, Westover K,Antonovics J Incorporating the soil community into plant population dynamics:the utility of the feedback approach [J]. Journal of Ecology,1997,85(13.
    [95]PUTTEN W H V D, PETERS B A M,BERG M S V D Effects of litter on substrate conditions and growth of emergent macrophytes [J]. New Phytologist,1997,135(3):11.
    [96]Buckley D H,Schmidt T M Diversity and dynamics of microbial communities in soils from agro-ecosystems [J]. Environmental Microbiology,2003,5(6):12.
    [97]He Z L, Gentry T J, Schadt C W, et al. GeoChip:a comprehensive microarray for investigating biogeochemical, ecological and environmental processes [J]. Isme J,2007,1(1):67-77.
    [98]He Z, Deng Y, Van Nostrand J D, et al. GeoChip 3.0 as a high throughput tool for analyzing microbial community structure, composition, and functional activity (Submitted to ISME J) [J].2010.
    [99]Leigh M B, Pellizari V H, Uhlik O, et al. Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs) [J]. Isme J,2007,1(2):134-148.
    [100]Yergeau E, Kang S, He Z, et al. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect [J]. Isme J,2007,1(2):163-179.
    [101]Tas N, van Eekert M H A, Schraa G, et al. Tracking Functional Guilds:"Dehalococcoides" spp. in European River Basins Contaminated with Hexachlorobenzene [J]. Appl Environ Microb,2009,75(14): 4696-4704.
    [102]Van Nostrand J D, Wu W M, Wu L Y, et al. GeoChip-based analysis of functional microbial communities during the reoxidation of a bioreduced uranium-contaminated aquifer [J]. Environmental Microbiology,2009,11(10):2611-2626.
    [103]Waldron P J, Wu L Y, Van Nostrand J D, et al. Functional Gene Array-Based Analysis of Microbial Community Structure in Groundwaters with a Gradient of Contaminant Levels [J]. Environ Sci Technol,2009,43(10):3529-3534.
    [104]Liang Y T, Li G H, Van Nostrand J D, et al. Microarray-based analysis of microbial functional diversity along an oil contamination gradient in oil field [J]. Fems Microbiol Ecol,2009,70(2):324-333.
    [105]Wu L, Kellogg L, Devol A H, et al. Microarray-based characterization of microbial community functional structure and heterogeneity in marine sediments from the gulf of Mexico [J]. Appl Environ Microb,2008,74(14):4516-4529.
    [106]Mason O U, Di Meo-Savoie C A, Van Nostrand J D, et al. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts [J]. Isme J,2009,3(2):231-242.
    [107]Wang F P, Zhou H Y, Meng J, et al. GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent [J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(12):4840-4845.
    [108]Rodriguez-Martinez E M, Perez E X, Schadt C W, et al. Microbial diversity and bioremediation of a hydrocarbon-contaminated aquifer (Vega Baja, Puerto Rico) [J]. Int J Environ Res Public Health, 2006,3(3):292-300.
    [109]Kimes N E, Van Nostrand J D, Weil E, et al. Microbial functional structure of Montastraea faveolata, an important Caribbean reef-building coral, differs between healthy and yellow-band diseased colonies [J]. Environmental Microbiology,2010,12(2):541-556.
    [110]Borneman J,Triplett E W Molecular microbial diversity in soils from eastern Amazonia:evidence for unusual microorganisms and microbial population shifts associated with deforestation [J]. Appl Environ Microbiol,1997,63(7):2647-2653.
    [111]Torsvik V,Ovreas L Microbial diversity and function in soil:from genes to ecosystems [J]. Curr Opin Microbiol,2002,5(3):240-245.
    [112]Martin-Laurent F, Philippot L, Hallet S, et al. DNA extraction from soils:Old bias for new microbial diversity analysis methods (vol 67, pg 2354,2001) [J]. Appl Environ Microb,2001,67(9): 4397-4397.
    [113]Zhang W, Parker K M, Luo Y, et al. Soil microbial responses to experimental warming and clipping in a tallgrass prairie [J]. Global Change Biol,2005,11(2):266-277.
    [114]Castro J C, Dohleman F G, Bernacchi C J, et al. Elevated CO2 significantly delays reproductive development of soybean under Free-Air Concentration Enrichment (FACE) [J]. J Exp Bot,2009, 60(10):2945-2951.
    [115]Ahn S J, Costa J,Emanuel J R PicoGreen quantitation of DNA:Effective evaluation of samples pre-or post-PCR [J]. Nucleic Acids Research,1996,24(13):2623-2625.
    [116]Persoh D, Theuerl S, Buscot F, et al. Towards a universally adaptable method for quantitative extraction of high-purity nucleic acids from soil [J]. J Microbiol Meth,2008,75(1):19-24.
    [117]Lane D J (1991) 16S/23S rRNA Sequencing. Nucleic acid techniques in bacterial systematics,(Stackebrandt E,Goodfellow M, ed.^eds.), p.App.115-175. John Wiley & Sons, New York.
    [118]Jiang H, Dong H, Zhang G, et al. Microbial diversity in water and sediment of Lake Chaka:an athalassohaline lake in northwestern China. [J]. Appl Environ Microb,2006,72(6):3832-3845.
    [119]Wu L Y, Liu X, Schadt C W, et al. Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole-community genome amplification [J]. Appl Environ Microb,2006,72(7):4931-4941.
    [120]Wu L, Liu X, Schadt C W, et al. Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole-community genome amplification. [J]. Appl Environ Microb,2006,72(7):4931-4941.
    [121]Van Nostrand J D, Wu W M, Wu L, et al. GeoChip-based analysis of functional microbial communities during the reoxidation of a bioreduced uranium-contaminated aquifer [J]. Environmental Microbiology,2009.
    [122]Hayes M Humus Chemistry-Genesis, Composition, Reactions-Stevenson,Fj [J]. Nature,1983, 303(5920):835-836.
    [123]Chomczynski P,Sacchi N The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction:twenty-something years on [J]. Nat Protoc,2006,1(2):581-585.
    [124]Akane A, Matsubara K, Nakamura H, et al. Purification of Highly Degraded DNA by Gel-Filtration for Per [J]. Biotechniques,1994,16(2):235-238.
    [125]Langridge J, Langridge P,Bergquist P L Extraction of Nucleic-Acids from Agarose Gels [J]. Anal Biochem,1980,103(2):264-271.
    [126]Schmirt J J,Cohen B N Quantitative Isolation of DNA Restriction Fragments from Low-Melting Agarose by Elutip-D Affinity-Chromatography [J]. Anal Biochem,1983,133(2):462-464.
    [127]Zintz C B,Beebe D C Rapid re-amplification of PCR products purified in low melting point agarose gels [J]. Biotechniques,1991,11(2):158-162.
    [128]He M, Wang Z,Tang H Spatial and temporal patterns of acidity and heavy metals in predicting the potential for ecological impact on the Le An river polluted by acid mine drainage. [J]. Sci Total Environ,1997,206(1):67-77.
    [129]Li X F.Sasaki M Hydrothermal alteration and mineralization of middle Jurassic Dexing porphyry Cu-Mo deposit, southeastern China. [J]. Resource Geology,2007,57(4):409-426.
    [130]Zhang D, Xu G, Zhang W, et al. High salinity fluid inclusions in the Yinshan polymetallic deposit from the Le-De metallogenic belt in Jiangxi Province, China:their origin and implications for ore genesis. [J]. Ore Geology Reviews,2007,31(1-4):247-260.
    [131]Qiu G Z,Wang J Bio-leaching of low-grade large porphyry chalcopyrite-containing ore. [J]. Transactions of Nonferrous Metals Society of China,2000,10(19-22.
    [132]Schloss P D,Handelsman J Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. [J]. Appl Environ Microb,2005,71(3):1501-1506.
    [133]Humayoun S B, Bano N,Hollibaugh J T Depth distribution of microbial diversity in Mona Lake, A mermictic soda lake in California. [J]. Appl Environ Microb,2003,69(2):1030-1042.
    [134]Terbraak C J F Canoco-an Extension of Decorana to Analyze Species-Environment Relationships [J]. Vegetatio,1988,75(3):159-160.
    [135]Sokal R R,Rohlf F J Biometry:The Principles and Practices of Statistics in Biological Research, 3rd edn. New York, USA:W.H. Freeman. [J].1994.
    [136]Mantel N Detection of Disease Clustering and a Generalized Regression Approach [J]. Cancer Res,1967,27(2pl):209-&.
    [137]Hotelling H Relations between two sets of variates [J]. Biometrika,1936,28(321-377.
    [138]Hill M O,Gauch H G Detrended Correspondence-Analysis-an Improved Ordination Technique [J]. Vegetatio,1980,42(1-3):47-58.
    [139]Okland R H,Eilertsen O Canonical Correspondence-Analysis with Variation Partitioning-Some Comments and an Application [J]. J Veg Sci,1994,5(1):117-126.
    [140]Ramette A,Tiedje J M Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem [J]. P Natl Acad Sci USA,2007,104(8):2761-2766.
    [141]Minz D, Flax J L, Green S J, et al. Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes [J]. Appl Environ Microb,1999,65(10):4666-4671.
    [142]Deplancke B, Hristova K R, Oakley H A, et al. Molecular ecological analysis of the succession and diversity of sulfate-reducing bacteria in the mouse gastrointestinal tract [J]. Appl Environ Microb, 2000,66(5):2166-2174.
    [143]Woese C R Interpreting the universal phylogenetic tree [J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97(15):8392-8396.
    [144]Rimstidt J D, Chermak J A,Gagen P M (1994) Rates of reaction of Galena, Sphalerite, Chalcopyrite, and Arsenopyrite with Fe(Ⅲ) in acidic solution. Environmental geochemistry of sulfide oxidation. A.C.S. Symposium series 550.,(Alpers C N,Blowes D W, ed.^eds.), p.^pp.2-13.
    [145]Dinelli E,Tateo F Different types of fine-grained sediments associated with acid mine drainage in the Libiola Fe-Cu mine area (Ligurian Apennines, Italy). [J]. Applied Geochemistry,2002,17(8):1081-1092.
    [146]Yin H, Qiu G, Wu L, et al. Microbial community diversity and changes associated with a mine drainage gradient at the Dexing copper mine, China. [J]. Aquat Microb Ecol,2008,51(67-76.
    [147]Edwards K J, Gihring T M,Banfield J F Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment [J]. Appl Environ Microb, 1999,65(8):3627-3632.
    [148]Allen E E,Banfield J F Community genomics in microbial ecology and evolution [J]. Nat Rev Microbiol,2005,3(6):489-498.
    [149]Southam G,Saunders J A The geomicrobiology of ore deposits. [J]. Econ Geol,2005,100(1067-1084.
    [150]Xie B, Xi D,Chen J Effects of Heavy Metals on Activated Sludge Microorganism. [J]. Journal of Dong Hua University,2002,19(4):132-137.
    [151]Finney L A,O'Halloran T V Transition metal speciation in the cell:Insights from the chemistry of metal ion receptors. [J]. Science,2003,300(931-936.
    [152]Morel F M M,Price N M The biogeochemical cycles of trace metals in the ocean. [J]. Science, 2003,300(944-947.
    [153]Eisen M B, Spellman P T, Brown P O, et al. Cluster analysis and display of genome-wide expression patterns [J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(25):14863-14868.
    [154]Christopher P Belnap C P, Nathan C VerBerkmoes, Mary E Power,Nagiza F Samatova, Rudolf L Carver, Robert L Hettich and Jillian F Banfield Cultivation and quantitative proteomic analyses of acidophilic microbial communities [J]. The ISME journal,2010,4):11.
    [155]Kallas T, Rebiere M C, Rippka R, et al. The Structural Nif Genes of the Cyanobacteria Gloeothece Sp and Calothrix Sp Share Homology with Those of Anabaena Sp, but the Gloeothecc Genes Have a Different Arrangement [J]. J Bacteriol,1983,155(1):427-431.
    [156]Norris P R, Murrell J C,Hinson D The Potential for Diazotrophy in Iron-Oxidizing and Sulfur-Oxidizing Acidophilic Bacteria [J]. Archives of Microbiology,1995,164(4):294-300.
    [157]Sherry R A, Weng E S, Arnone J A, et al. Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie [J]. Global Change Biol,2008,14(12):2923-2936.
    [158]Balser T C,Firestone M K Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest [J]. Biogeochemistry,2005,73(2):395-415.
    [159]Bligh E G,Dyer W J A rapid method for total lipid extraction and purification [J]. Can.J.Biochem.Physiol.,1959,37(911-917.
    [160]Belay-Tedla A, Zhou X H, Su B, et al. Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping [J]. Soil Biol Biochem,2009,41(1):110-116.
    [161]He Z L,Zhou J Z Empirical evaluation of a new method for calculating signal-to-noise ratio for microarray data analysis [J]. Appl Environ Microb,2008,74(10):2957-2966.
    [162]Rustad L E, Campbell J L, Marion G M, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming [J]. Oecologia,2001,126(4):543-562.
    [163]Melillo J M, Steudler P A, Aber J D, et al. Soil warming and carbon-cycle feedbacks to the climate system [J]. Science,2002,298(5601):2173-2176.
    [164]Kirschbaum M U F Soil respiration under prolonged soil warming:are rate reductions caused by acclimation or substrate loss? [J]. Global Change Biol,2004,10(11):1870-1877.
    [165]Hartley I P, Heinemeyer A,Ineson P Effects of three years of soil warming and shading on the rate of soil respiration:substrate availability and not thermal acclimation mediates observed response [J]. Global Change Biol,2007,13(8):1761-1770.
    [166]Gu L H, Post W M,King A W Fast labile carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature:A model analysis [J]. Global Biogeochemical Cycles,2004,18(1):
    [167]Knorr W, Prentice I C, House J I, et al. Long-term sensitivity of soil carbon turnover to warming [J]. Nature,2005,433(7023):298-301.
    [168]Hulett J R Deviations from the Arrhenius Equation [J]. Q Rev Chem Soc,1964,18(3):227-242.
    [169]Sharpe P J H,Demichele D W Reaction-Kinetics of Poikilotherm Development [J]. J Theor Biol, 1977,64(4):649-670.
    [170]Terry R E,Tate R L Denitrification as a Pathway for Nitrate Removal from Organic Soils [J]. Soil Sci,1980,129(3):162-166.
    [171]Baath E, Diaz-Ravina M, Frostegard A, et al. Effect of metal-rich sludge amendments on the soil microbial community [J]. Appl Environ Microb,1998,64(1):238-245.
    [172]SHIMMEL,M S Dark Fixation of Carbon Dioxide in An Agricultural Soil [J]. Soil Sci,1978, 144(
    [173]Merritt,Turetsky The Role of Bryophytes in Carbon and Nitrogen Cycling [J]. The Bryologist, 2003,106(3):14.
    [174]Bachelet D.Neue H U Methane emissions from wetland rice areas of Asia [J]. Chemosphere, 1993,26(1-4):18.
    [175]Hsu S F,Buckley D H Evidence for the functional significance of diazotroph community structure in soil[J].Isme J,2009,3(1):13.
    [176]Cleveland C C, Townsend A R, Schimel D S, et al. Global patterns of terrestrial biological nitrogen (N-2) fixation in natural ecosystems [J]. Global Biogeochemical Cycles,1999,13(2):623-645.
    [177]Hungate B A, Dukes J S, Shaw M R, et al. Nitrogen and climate change [J]. Science,2003, 302(5650):1512-1513.
    [178]Schulze E D, Luyssaert S, Ciais P, et al. Importance of methane and nitrous oxide for Europe's terrestrial greenhouse-gas balance [J]. Nature Geoscience,2009,2(

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700