基因点突变检测新方法及新型界面设计的免疫传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类的许多遗传性疾病都是由于基因的变异引起的,其中尤以单碱基的突变,即单碱基多态性最为普遍。实现对这些基因单碱基突变的早期、准确、简便、快速的确认,对于人类相关疾病的发病机理研究及早期治疗具有非常重要的意义。目前,有关单碱基突变的检测方法已有许多报道。而这些传统的方法普遍操作繁琐费时、不易定量、仪器昂贵、且对工作人员要求较高的专业技能,因此仅能在少数实验室应用。开发一些简便、价廉、精确且易于临床推广的方法是一件很有价值的工作。此外,由于电化学生物传感器具有制造简单、灵敏度高、价格低廉而被广泛研究、并已在生物检测中逐步得到了应用。然而,有效的生物活性组分的固定方法是构建性能优良生物传感器的关键,如何将生物活性组分有效地固定在电极表面的固定化方法,以及传感器的重现性和重复使用性等方面存在的问题,严重阻碍了生物传感器的进一步发展和应用。基于当前基因单碱基突变检测技术和生物传感技术敏感膜构建中存在的问题,本研究论文发展了一系列新的基因单碱基突变检测技术及新型界面设计的生物传感器,实现了对目标物的高灵敏测定。主要内容如下:
     (1)利用核酸标记金纳米颗粒凝集变色的光学特性,提出了一种基于DNA连接酶反应和纳米金聚集特性的比色检测方法,用于单碱基突变的检测(第2章)。通过将高忠实性DNA连接酶的等位特异连接特性与纳米金聚集体系相结合,发展了一种简便且不需要精确温度控制的比色检测方法,可以用于单碱基突变的直接检测。此外,连接反应能在较高的温度下进行,因而减少了因非相关链与探针标记纳米金的非特异作用而引起的背景干扰。该方法可以分为三步来完成:首先是杂交反应,使两个金标探针与DNA目标链杂交形成双链结构;随后的连接反应中,使完全匹配的连接、错配的不连接;最后由热处理步骤来分析探针的连接情况。当加热反应混合液,使形成的DNA双链熔链时,对于完全匹配的情况,溶液的颜色不会恢复到红色。而对于错配的情况,由于聚集金纳米颗粒的重新解离,溶液的颜色又回复到红色。我们用该方法对结肠癌k-ras基因的第12位密码子的突变情况进行了检测,使突变型和野生型得到了很好的区分。此后,我们又将这一检测体系发展用于同种溶液中多目标链的同时检测(第3章)。简言之,长链DNA标记的纳米金在较高的温度下首先发生杂交反应,接着在较低的温度下,金标的短链DNA发生杂交反应。然后,在连接反应中,完全匹配的进行连接,而有错配的不能发生连接。最后,逐步升温进行分析,当温度达到某一形成的双链的熔链温度时,对于完全匹配的情况,溶液的紫外光谱无改变。而对于有错配的情况,由于纳米金聚集体的解离,溶液的光谱发生改变。使用该方法,对β地中海贫血基
Many pathogenic and genetic diseases are associated with changes in the sequence of particular genes. Among these changes, the point mutation, i.e. single nucleotide polymorphisms (SNPs), are the most abundant form of genetic variation. Achieving early, accurate, simple and rapid identification to these single-base mutations is of particular importance for the pathogeny and early therapy of corresponding diseases. Up to now, many techniques have been developed for SNP detection. However, these conventional procedures are generally time-consuming, lowly quantitative, complicated, and necessary for expensive instrumentation and technical skills, which are applied to date in very few laboratories. Accordingly, exploring some simple, cost-effective, accurate and easy to be clinically popularized detection methods for SNPs is still of considerable interest. In additional, the electrochemical biosensors have been widely used for the assay of biological analyte due to the advantages of this approach including their simple-design, high-sensitivity and low-cost. However, the method of immobilization, the reproducibility and the reusability still remain to be solved in the design and applications of these sensors. Among these problems presented, the key step for the fabrication of biosensors with excellent property is the immobilization of bio-species on the surface of transducers.
     Focused on these said topics in the detection techniques for SNPs and the formation of the biosensing interface, several new detection methods for SNPs and several new procedures for immobilizing bio-species to construct biosensor have been developed in the presented paper and described as follows:
     (1) Using the distance-dependent optical properties of aggregated Au nanoparticles functionalized with oligonucleotides, we first reported a novel colorimetric detection system for SNPs through the gold nanoparticle assembly and the ligase reaction (in Chapter 2). By incorporating the high fidelity DNA ligase (Tth DNA ligase) into the allele-specific ligation based gold nanoparticle assembly, this assay provided a convenient yet powerful colorimetric detection that enabled a straightforward single base discrimination without the need of precise temperature control. Additionally, the ligase reaction can be performed at a relatively high temperature, which offers the benefit for mitigating the non-specific assembly of gold nanoparticles induced by interfering DNA strands. The assay could be implemented via three steps: a hybridization reaction that allowed two gold
引文
[1] Sachidanandam R, Weissman D, Schmidt S C, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 2001, 409 (6822): 928–933.
    [2] Venter J C, Adams M D, Myers E W, et al. The sequence of the human genome. Science, 2001, 291 (5507):1304–1351.
    [3] Syv?nen A C. Accessing genetic variation: genotyping single nucleotide polymorphisms. Genetics, 2001, 2(12): 930-942.
    [4] Pfeiffer D. Commercial biosensors for medical application. EXS, 1997, 81: 149-160.
    [5] Newman J D, Turner A P F. Biosensors: the analyst’s dream?. Chemistry & Industry, 1994, 10(2): 374-378.
    [6] 胡舜钦. 新型生物分子固定技术用于构建电化学免疫传感器的研究: [湖南大学博士学位论文]. 长沙:湖南大学化学化工学院,2003, 7, 1-7.
    [7] 王桦. 新型压电免疫传感技术用于白血病等重大疾患诊断的研究: [湖南大学博士学位论文]. 长沙:湖南大学化学化工学院,2004, 5, 4-7.
    [8] Guilbault G G, Luong J H, Prusak-sochaczewski E. Immobilization methods for piezoelectric biosensors. Biotechnology, 1989, 7(2): 349-351.
    [9] 吴冠芸, 王申五. 基因诊断. 北京: 人民卫生出版社, 1988.
    [10] 吴冠芸, 方福德. 基因诊断技术及应用. 北京: 北京医科大学、北京协和医科大学联合出版社, 1992.
    [11] Wabuyele M B, Farquar H, Stryjewski W, et al. Approaching real-time molecular diagnostics: single-pair fluorescence resonance energy transfer (spFRET) detection for the analysis of low abundant point mutations in K-ras oncogenes. Journal of the American Chemical Society, 2003, 125(23): 6937-6945.
    [12] Wang D G, Fan J B, Siao C J, et al. Large-scal identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science, 1998, 280(15): 1077–1082.
    [13] Tyagi S, Bratu D P, Kramer F R. Multicolor molecular beacons for allele discrimination. Nature Biotechnology, 1998, 16(1): 49-53.
    [14] Livak K J, Marmaro J, Todd A J. Towards fully automated genome?widepolymorphism screening. Nature Genetics, 1995, 9(4): 341-342.
    [15] Chen X, Kwok Y P. Template-directed dye-terminator incorporation (TDI) assay: a homogeneous DNA diagnostic method based on fluorescence resonance energy transfer. Nucleic Acids Research, 1997, 25(2): 347-353.
    [16] Barany F. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proceeding of the National Academy of Sciences, 1991, 88(11): 189-193.
    [17] Rishpon J, Soussan L, Rosen-margalit I, et al. A rapid and sensitive heterogeneous immunoelectrochemical assay using disposable electrode. Immunoassay, 1992, 13(2): 231-235.
    [18] Ghindilis A L, Krishnan R, Atanasov P, et al. Flow-through amperometric immunosensor: Fast ‘sandwich’ Scheme Immunoassay. Biosensors and Bioelectronics, 1997, 12(5): 415-423.
    [19] Limoges B, Degrand C, Brossier P, et al. Homogeneous electrochemical immunoassay using a persulfonated ionomer-modified electrode as a detector for a cationic labeled hapten. Analytical Chemistry, 1993, 65(8): 1054-1060.
    [20] Liu G D, Wu Z Y, Wang S P, et al. Renewable Amperometric Immunosensor for Schistosoma japonium Antibody Assay. Analytical Chemistry, 2001, 73(14): 3219-3226.
    [21] Ghindilis A L, Skorobotko O, Gavnlova V, et al. A new approach for the construction of potentiometric immunosensors. Biosensors and Bioelectronics, 1992, 7(4): 301-304.
    [22] Alexander P W, Maltra C. Enzyme-linked immunoassay of human immunoglobulin G with the fluoride ion selective electrode. Analytical Chemistry, 1982, 54(21): 68-71.
    [23] Alexander P W, Rechnitz G A. Ion-electrode based immunoassay and antibody-antigen precipitin reaction monitoring. Analytical Chemistry, 1974, 46(9): 1253-1257.
    [24] Solsky R L, Rechnitz G A. Automated immunoassay with a silver sulfide ion-selective electrode. Analytica Chimica Acta, 1987, 99(2): 241-246.
    [25] Fonong T, Rechnitz G A. Homogeneous potentiometric enzyme immunoassay for human immunoglobulin G. Analytical Chemistry, 1984, 56 (13): 2586-2590.
    [26] Orazlo P D, Rechnitz G A. Ion electrode measurements of complement and antibody levels using marker-loaded sheep red blood cell ghosts. Analytical Chemistry, 1977, 49(13): 2083-2086.
    [27] Bataillard P, Gardies F, Jaffrezic-Renault N, et al. Direct Detection of Immunospecies by Capacitance Measurements. Analytical Chemistry, 1988, 60(20-21): 2374-2379.
    [28] Mirsky V M, Riepl M, Wolfbeis O S. Capacitance monitoring of protein immobilization and antigen-antibody reactions on monomolecular alkylthiol film on gold electrodes. Biosensors and Bioelectronics,1997, 12(9-10): 977-985.
    [29] Berggren C, Johansson G. Capacitance measurements of antibody-antigen interactions in flow system. Analytical Chemistry, 1997, 69(18): 3651-3657.
    [30] Gebbert A, Alvarez-Lcaza M, Stocklein W, et al. Real-time monitoring of immunochemical interaction with a Tantalum capacitance flow-through cell. Analytical Chemistry, 1992, 64(9): 997-1003.
    [31] Mceil C J, Athey D. Electrochemical sensors based on impedance measurement of enzyme-catalyzed polymer dissolution: Theory and Applications. Analytical Chemistry, 1995, 67(21): 3928-3935.
    [32] Dijksma M, Kamp B, Hoogvliet J C, et al. Development of an electrochemical immunosensor for direct detection of interferon- at the attomolar level. Analytical Chemistry, 2001, 73(5); 901-907.
    [33] Sauerbrey G. Use of a quartz vibrator for weighing thin layers on a microbalance. Z. Physik, 1959, 155(2): 206-222.
    [34] Bunde R L, Jarvi E J, Rosentreter J J. Piezoelectric quartz crystal biosensors. Talanta, 1998, 46(6): 1223-1236.
    [35] Konash P L, Bastiaans G J. Piezoelectric crystals as detectors in liquid chromatography. Analytical Chemistry, 1980, 52(12): 1929-1931.
    [36] 陈令新, 关亚风, 杨丙成, 等. 压电晶体传感器的研究进展. 化学进展, 2002, 14(1): 68-76.
    [37] 姚守拙. 压电化学与生物传感. 长沙: 湖南师范大学出版社, 1997, 1-4: 386-391, 393-396.
    [38] Shons A, Dorman F, Najarian J, et al. An immunospecific microbalance. Journal of biomedical materials research, 1972, 6(6): 565-570.
    [39] K?nig B, Gr?tzel M. Development of a piezoelectric immunosensor for the detection of human erythrocytes. Analytica Chimica Acta, 1993, 276(2): 329-333.
    [40] K?nig B, Gr?tzel M. Detection of viruses and bacteria with piezoimmunosensors. Analytical Letters, 1993, 26(8): 1567-1585.
    [41] Ebersole R C, Miller J A, Moran J R, et al. A strategy for immobilizingbiological reagents and design of piezoelectric biosensors. Journal of the American Chemical Society, 1990, 112(8): 3239-3241.
    [42] Muramatsu H, Watanabe Y, Hikuma M, et al. Piezoelectric crystal biosensor system for detection of Escherichia coli. Analytical Letters, 1989, 22(9): 2155-2166.
    [43] Fawcett N C, Evans J A, Chien L C, et al. Nuelic-acid hybridization detected by piezoelectric resonance. Analytical Letters, 1988, 21(7): 1099-1114.
    [44] Chu X, Lin Z H, Shen G L, et al. Piezoelectric immunosensor for the detection of immunoglobulin M. Analyst, 1995, 120(12): 2829-2832.
    [45] Brogan K L, Wolfe K N, Jones P A, et al. Direct oriented immobilization of F(ab’) antibody fragments on gold. Analytica Chimica Acta, 2003, 496(1): 73-80.
    [46] Suri C R, jain P K, Mishra G C. Development of PZ crystal based microgravimetri immunoassay for determination of insulin concentration. Journal of Biotechnology, 1995, 39(1): 27-34.
    [47] Ebersole R C, Ward M D. Amplified mass immunosorbent assay with a quartz crystal microbalance. Journal of the American Chemical Society, 1988, 110(26): 8623-8628.
    [48] Muratsugu M, Ohta F, Miya Y, et al. Quartz crystal microbalance for the detection of microgram quantities of human serum albumin: relationship between the frequency change and the mass of protein adsorbed. Analytical Chemistry, 1993, 65(20): 2933-2937.
    [49] Wu Z Y, Yan Y H, Shen G L, et al. A novel approach of antibody immobilization based on n-butyl amine plasma-polymerized films for immunosensors. Analytica Chimica Acta, 2000, 412(1): 29-35.
    [50] Wang C C, Wang H, Wu Z Y, et al. A piezoelectric immunoassay based on self-assembledmonolayers of cystamine and polystyrene sulfonate for determination of Schistosoma japonicum antibodies. Analytical and Bioanalytical Chemistry, 2002, 373(8): 803-809.
    [51] 刘涛, 唐季安, 韩梅梅, 等. 纳米金颗粒在石英晶体微天平检测 DNA 中的表面修饰作用. 科学通报, 2003, 48(4): 342-344.
    [52] Wang H, Liu Y L, Yang Y H, et al. A protein A-based orientation-controlled immobilization strategy for antibodies using nanometer-sized gold particles and plasma-polymerized. Analytical Biochemistry, 2004, 324(2): 219-226.
    [53] Li J S, He X X, Wu Z Y, et al. Piezoelectric immunosensor based on magneticnanoparticles with simple immobilization procedures. Analytica Chimica Acta, 2003, 481(2): 191-198.
    [54] Livak K J, Flood S J, Marmaro J, et al. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Application, 1995, 4(66): 357–362.
    [55] Tyagi S, Kramer F R. Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnology, 1996, 14(3): 303–308.
    [56] Germer S, Higuchi R. Single-tube genotyping without oligonucleotide probes. Genome Research, 1999, 9(1): 72–78.
    [57] Nazarenko I A, Bhatnagar S K, Hohman R J. A closed tube format for amplification and detection of DNA based on energy transfer. Nucleic Acids Research, 1997, 25(12): 2516–2521.
    [58] Syv?nen A C, Aalto-Setala K, Kontula K, et al. A primer-guided nucleotide incorporation assay in the genotyping of apolipoprotein E. Genomics, 1990, 8(6): 684–692.
    [59] Syvanen A C. From gels to chips: ‘minisequencing’ primer extension for analysis of point mutations and single nucleotide polymorphisms. Human Mutation, 1999, 13(1): 1–10.
    [60] Landegren U, Kaiser R, Sanders J, et al. A ligase mediated gene detection technique. Science, 1988, 241(26): 1077–1080.
    [61] Samiotaki M, Kwiatkowski M, Parik J, et al. Dual-color detection of DNA sequence variants by ligasemediated analysis. Genomics, 1994, 20(2): 238–242.
    [62] Lyamichev V, Mast A L, Hall J G, et al. Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nature Biotechnology, 1999, 17(3): 292–296.
    [63] Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382(8): 607-609.
    [64] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 1997, 277(22): 1078-1081.
    [65] Storhoff J J, Elghanian R, Mucic R C, et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. Journal of the American Chemical Society, 1998, 120(9): 1959-1964.
    [66] Murphy D, O'Brien P, Redmond G. Sub-picomole colorimetric single nucleotide polymorphism discrimination using oligonucleotide–nanoparticle conjugates. Analyst, 2004, 129(8): 970-974.
    [67] Li H X, Rothberg L J. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. Journal of the American Chemical Society, 2004, 126(35): 10958-10961.
    [68] Storhoff J J, lucas A D, Garimella V, et al. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nature Biotechnology, 2004, 22(7): 883-887.
    [69] Storhoff J J, Marla S S, Bao P, et al. Gold nanoparticle-based detection of genomic DNA targets on microarrays using a novel optical detection system. Biosensors and Bioelectronics, 2004, 19(8): 875–883.
    [70] BaoY P, Huber M, Wei T F, et al. SNP identification in unamplified human genomic DNA with gold nanoparticle probes. Nucleic Acids Research, 2005, 33(2): e15.
    [71] Luo J Y, Bergstrom D E, Barany F. Improving the fidelity of thermus thermophilus DNA ligase. Nucleic Acids Research, 1996, 24(14): 3071-3078.
    [72] Tong J, Cao W G, Barany F. Biochemical properties of a high fidelity DNA ligase from thermus species AK16D. Nucleic Acids Research, 1999, 27(3): 788-794.
    [73] Jin R C, Wu G S, Li Z, et al. What controls the melting properties of DNA-linked gold nanoparticle assemblies? Journal of the American Chemical Society, 2003, 125(6): 1643-1654.
    [74] Kim Y, Johnson R C, Hupp J T. Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Letters, 2001, 1(4): 165-167.
    [75] Marinakos S M, Novak J P, Brousseau III L C, et al. Gold particles as templates for the synthesis of hollow polymer capsules. Control of capsule dimensions and guest encapsulation. Journal of the American Chemical Society, 1999, 121(37): 8518-8522.
    [76] Wu DY, Wallace R B. The ligation amplification reaction (LAR)- amplification of specific DNA sequences using sequential rounds of template-dependent ligation. Genomics, 1989, 4(4): 560–569.
    [77] Abravaya K, Carrino J J, Muldoon S, et al. Detection of point mutations with a modified ligase chain reaction (Gap-LCR). Nucleic Acids Research, 1995, 23(4): 675–682.
    [78] Schrock E, duManoir S, Veldman T, et al. Multicolor spectral karyotyping of human chromosomes. Science, 1996, 273(26): 494-497.
    [79] Brown P O, Botstein D. Exploring the new world of the genome with DNA micro aways. Nature Genetics, 1999, 21(1): 33-37.
    [80] Taton T A, Mirkin C A, Letsinger R L. Scanometric DNA array detection with nanoparticle probes. Science, 2000, 289(8): 1757-1760.
    [81] Taton T A, Lu G, Mirkin C A. Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. Journal of the American Chemical Society, 2001, 123(21): 5164-5165.
    [82] Cao Y W, Jin R C, Mirkin C A. DNA-modified core-shell Ag/Au nanoparticles. Journal of the American Chemical Society, 2001, 123(32): 7961-7962
    [83] Li J S, Chu X, Liu Y L, et al. A colorimetric method for point mutation detection using high-fidelity DNA ligase. Nucleic Acids Research, 2005, 33(19): e168.
    [84] Lizardi P M, Huang X, Zhu Z, et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nature Genetics, 1998, 19 (3): 225-232.
    [85] Mok M, Marians K J. Formation of rolling-circle molecules during phiX174 complementary strand DNA replication. Journal of Biological Chemistry, 1987, 262 (5): 2304-2309.
    [86] Blanco L, Bernad A, Lazaro J M, et al. Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. Journal of Biological Chemistry, 1989, 264(15): 8935-8940.
    [87] 王亚君, 黄朝阳, 程金平. 滚环扩增体系及其应用研究进展. 临床输血与检验,2005,7(1): 73-75.
    [88] Nelson J R, Cai Y C, Giesler T L, et al. TempliPhi, phi29 DNA polymerase based rolling circle amplification of templates for DNA sequencing. Biotechniques, 2002, 32(1): 44-47.
    [89] Wu H C, Shieh J, Wright D J, et al. DNA sequencing using rolling circle amplification and precision glass syringes in a high-throughput liquid handling system. Biotechniques, 2003, 34 (1): 204-207.
    [90] Qi X, Bakht S, Devos K M, et al. L-RCA (ligation-rolling circle amplification): a general method for genotyping of single nucleotide polymorphisms (SNPs). Nucleic Acids Research, 2001, 29(22): e116.
    [91] Faruqi A F, Hosono S, Driscoll M D, et al. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification. Genomics,2001, 2(1): 4-11.
    [92] Alsmadi O A, Bornarth C J, Song W, et al. High accuracy genotyping directly from genomic DNA using a rolling circle amplification based assay. Genomics, 2003, 4(1): 21.
    [93] Nallur G, Luo C, Fang L, et al. Signal amplification by rolling circle amplification on DNA microarrays. Nucleic Acids Research, 2001, 29(23): E118.
    [94] Ladner D P, Leamon J H, Hamann S, et al. Multiplex detection of hotspot mutations by rolling circle-enabled universal microarrays. Laboratory Investigation, 2001, 81(10): 1079-1086.
    [95] Kingsmore S F, Patel D D. Multiplexed protein profiling on antibody-based microarrays by rolling circle amplification. Current Opinion in Biotechnology, 2003, 14(1): 74-81.
    [96] Schweitzer B, Roberts S, Grimwade B, et al. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nature Biotechnology, 2002, 20(4): 359-365.
    [97] Shao W, Zhou Z, Laroche I, et al. Optimization of rolling circle amplified protein microarrays for multiplexed protein profiling. Journal of Biomedicine and Biotechnology, 2003, 2003(5): 299-307.
    [98] Wiltshire S, O’Malley S, Lambert J, et al. Detection of multiple allergen-specific IgEs on microarrays by immunoassay with rolling circle amplification. Clinical Chemistry, 2000, 46(12): 1990-1993.
    [99] Nilsson M, Gullberg M, Dahl F, et al. Real-time monitoring of rolling-circle amplification using a modified molecular beacon design, Nucleic Acids Research, 2002, 30(14): e66.
    [100] Du H, Disney M.D., Miller B.L. et al. Hybridization-based unquenching of DNA hairpins on Au surfaces: Prototypical “Molecular Beacon” biosensors. Journal of the American Chemical Society, 2003, 125(14): 4012-4013.
    [101] Yoo S M, Keum K C, Yoo S Y, et al. Development of DNA microarray for pathogen detection. Biotechnology and Bioprocess Engineering, 2004, 9(1): 93-99.
    [102] Gracey A Y, Cossins A R. Application of microarray technology in environmental and comparative physiology. Annual Review of Physiology, 2003, 65(2): 231-259.
    [103] Guo Q M. DNA microarray and cancer. Current Opinion in Oncology, 2003,15(1): 36-43.
    [104] Fan J, Yang X, Wang W, et al. Global analysis of stress-regulated mRNA turnover by using cDNA arrays. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(16): 10611-10616.
    [105] Fang Y, Frutos A G, Lahiri J. Ganglioside microarrays for toxin detection. Langmuir, 2003, 19(5): 1500-1505.
    [106] Schfering M, Kruschina M, Meerkamp M, et al. Pharma Genomics, 2002, September/October: 36-44.
    [107] Pirrung M C. How to Make a DNA Chip. Angewandte Chemie International Edition, 2002, 41(16): 1276-1289.
    [108] Donovan D M, Becker K G. Double round hybridization of membrane based cDNA arrays: improved background reduction and data replication. Journal of Neuroscience Methods, 2002, 118(1): 59-62.
    [109] Vainrub A, Pettitt B M. Sensitive quantitative nucleic acid detection using oligonucleotide microarrays. Journal of the American Chemical Society, 2003, 125(26): 7798-7799.
    [110] Heller M J. DNA microarray technology: devices, systems and applications. Review of Biomedical Engineering, 2002, 4(1):129-153.
    [111] Du H, Strohsahl C M, Camera J, et al. Sensitivity and specificity of metal surface-immobilized “Molecular Beacon” biosensors. Journal of the American Chemical Society, 2005, 127(21): 7932-7940.
    [112] Broude N E. Stem-loop oligonucleotide probes: a robust tool for molecular biology and biotechnology. Trends in Biotechnology, 2002, 20(6): 249-256.
    [113] 江雅新, 方晓红, 万立骏, 等. 一种新型荧光探针-分子信标的研究及应用进展. 分析化学, 2004, 32(5): 668-672.
    [114] Steemers F J, Ferguson J A, Walt D R. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nature Biotechnology, 2000, 18(1): 91-95.
    [115] Liu X, Tan W. A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons. Analytical Chemistry, 1999, 71(22): 5054-5059.
    [116] Piestert O, Barsch H, Buschmann V, et al. A single-molecule sensitive DNA hairpin system based on intramolecular electron transfer. Nano Letters, 2003, 3(7): 979-982.
    [117] Fang X, Liu X, Schuster S, et al. Designing a novel molecular beacon for surface-immobilized DNA hybridization studies. Journal of the AmericanChemical Society, 1999, 121(12): 2921-2922.
    [118] Bowtell D D L. Options available--from start to finish--for obtaining expression data by microarray. Nature Genetics, 1999, 21(1): 25-32.
    [119] Winzeler E A, Schena M, Davis R W. Flourescence-based expression monitoring using microarrays. Methods in Enzymology. Methods in Enzymology, 1999, 309(1): 3-18.
    [120] Willner I. Biomaterials for Sensors, Fuel Cells, and Circuitry. Science, 2002, 298(20): 2407–2408.
    [121] Fan C H, Plaxco K W, Heeger A J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(16): 9134–9137.
    [122] Immoos C E, Lee S J, Grinstaff M W. DNA-PEG-DNA triblock macromolecules for reagentless DNA detection. Journal of the American Chemical Society, 2004, 126(35): 10814-10815.
    [123] Fang X H, Li J J, Perlette J,et al. Molecular beacons: novel fluorescent probes. Analytical Chemistry, 2000, 72 (23): 747A-753A.
    [124] Yamamoto R, Baba T, Kumar P K. Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1. Genes Cells, 2000, 5 (5): 389-396.
    [125] Li J J, Fang X H, Tan W H. Molecular aptamer beacons for real-time protein recognition. Biochemical and Biophysical Research Communications, 2002, 292(1): 31-40.
    [126] Hamaguchi N, Ellington A, Stanton M. Aptamer beacons for the direct detecion of proteins. Analytical Biochemistry, 2001, 294(2): 126-131.
    [127] Stojanovic M N, de Prada P, Landry D W. Aptamer-based folding fluorescent sensor for cocaine. Journal of the American Chemical Society, 2001, 123(21): 4928–4931.
    [128] Savran C A, Knudsen S M, Ellington A D, et al. Micromechanical detection of proteins using aptamer-based receptor molecules. Analytical Chemistry, 2004, 76(11): 3194–3198.
    [129] Fang X H, Sen A, Vicens M, et al. Synthetic DNA aptamers to detect protein molecular variants in a high-throughput fluorescence quenching assay. ChemBioChem, 2003, 4(9): 829–834.
    [130] Fritz J, Cooper E B, Gaudet S, et al. Electronic detection of DNA by its intrinsic molecular charge. Proceedings of the National Academy of Sciencesof the United States of America, 2002, 99(10): 14142–14146.
    [131] Xiao Y, Lubin A A, Heeger A J, et al. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angewandte Chemie International Edition, 2005, 44(34): 5456-5459.
    [132] Christine B, Bjarni B, Gillis J. Capacitive biosensors. Electroanalysis, 2001, 13(3): 173–180.
    [133] Thust M, Sch?ning M J, Schroth P, et al. Enzyme immobilization on planar and porous silicon substrates for biosensor applications. Journal of Molecular Catalysis B: Enzymatic, 1999, 7(1–4): 77–83.
    [134] Newman A L, Hunter K W, Stanbro W D. Proceedings of the International Meeting on Chemical Sensors, 1986, 2nd ed., pp. 596–598.
    [135] Christine B, Bjarni B, Gillis J. An immunological interleukine-6 capacitive biosensor using perturbation wit potentiostatic step. Biosensors and Bioelectronics, 1998, 13(10): 1061–1068.
    [136] Dijksma M, Kamp B, Hoogvliet J C, et al. Formation and electrochemical characterization of self-assembled monolayers of thioctic acid on polycrystalline gold electrodes in phosphate buffer pH 7.4. Langmuir, 2000, 16(8): 3852–3857.
    [137] Bordia F, Cametti C, Gliozzic A. Impedance measurements of self-assembled lipid bilayer membranes on the tan electrode. Bioelectrochemistry, 2002, 57(1): 39–46.
    [138] Howard A C, Daniel H Z, Marc O. In vivo CH3(CH2)11Sau SAM electrodes in the beating heart: in situ analytic studies relevant to pacemakers and interstitial biosensors. Biosensors and Bioelectronics, 2003, 18 (1): 11–21.
    [139] Anderson J L, Bowden E F, Pickup P G. Dynamic electrochemistry: methodology and application. Analytical Chemistry, 1996, 68(12): 397–444.
    [140] Ameur S, Martelet C, Jaffrezic-Renault N, et al. Sensitive immunodetection through impedance measurements onto gold functionalized electrodes. Applied Biochemistry and Biotechnology, 2000, 89(2–3): 161–170.
    [141] 陈杰瑢. 低温等离子体化学及应用. 科学出版社, 2001, 7 月第 1 版.
    [142] Nakanishi K, Muguruma H, Karube I. A novel method of immobilizing antibodies on quartz crystal microbalance using plasma-polymerized films for immunosensors. Analytical Chemistry, 1996, 68(10): 1695–1700.
    [143] Zhu C, Liu M. Membrane science and technology. Zhejiang University Press, Hangzhou, 1992, p.19.
    [144] Kurosawa S, Tawara-Kondo E, Minoura N, et al. Detection of polycyclic compounds as mutagens using piezoelectric quartz crystal coated with plasma-polymerized phthalocyanine derivatives. Sensors and Actuators B, 1997, 43(1–3): 175–179.
    [145] Yan Y, Zeng Y, Xiang J, et al. A novel diamond-like structural film with characterization of recognizing for formic acid vapor. Chinese Science Bulletin, 1998, 43(15): 1672–1675.
    [146] Nakamura R, Muguruma H, Ikebukuro K, et al. A plasma-polymerized film for surface plasmon resonance immunosensing. Analytical Chemistry, 1997, 69(22): 4649–4652.
    [147] Wu Z Y, Yan Y H, Shen G L, et al. A novel approach of antibody immobilization based on n-butyl amine plasma-polymerized films for immunosensors. Analytica Chimica Acta, 2000, 412(1): 29–35.
    [148] Muguruma H, Karube I. Plasma-polymerized films for biosensors. Trends in Analytical Chemistry, 1999, 18(1): 62–68.
    [149] Li J S, Wang H, Deng T, et al. A plasma-polymerized film for capacitance immunosensing. Biosensors and Bioelectronics, 2004, 20(4): 841–847.
    [150] Shen G X, Zhou R L. Modern immunology experiment technology. Science and Technology press, Wuhan, 1998.
    [151] Allen J B, Larry R F(Eds.). Electrochemical methods: fundamentals and application. New York: John Wiley & Sons, Inc., 1980.
    [152] Ho W O, Krause S, McNeil C J, et al. Electrochemical sensor for measurement of urea and creatinine in serum based on ac impedance measurement of enzyme-catalyzed polymer transformation. Analytical Chemistry, 1999, 71(10): 1940-1946.
    [153] Pei R, Hu J. Studies of the piezoelectric immunosensor for the detection of Fibrin using protein A oriented immobilization of anti-body. Chemical Journal of Chinese Universities, 1998, 19(2): 363–367.
    [154] Santandreu M, Céspedes F, Alegret S, et al. Amperometric immunosensors based on rigid conducting immunocomposites. Analytical Chemistry, 1997, 69(11): 2080-2085.
    [155] Lu B, Iwouha E I, Smyth M R, et al. Development of an amperometric immunosensor for Horseradish Peroxidase (HRP) involving a non-diffusional osmium redox polymer co-immobilised with anti-HRP antibody. Analytical Communications, 1997, 34(1): 21-24.
    [156] Padeste C, Grubelnik A, Tiefenauer L. Amperometric immunosensing using microperoxidase MP-11 antibody conjugates. Analytica Chimica Acta, 1998, 374(27): 167-176.
    [157] Ebersole R C, Ward M D. Amplified mass immunosorbent assay with a quartz crystal microbalance. Journal of the American Chemical Society, 1988, 110(26): 8623-8628.
    [158] Schreiber A, Feldbruegge R, Key G, et al. An immunosensor based on disposable electrodes for rapid estimation of fatty acid-binding protein, an early marker of myocardial infarction. Biosensors and Bioelectronics, 1997, 12(11): 1131-1137.
    [159] Fernández-Sánchez C, Costa-Garc′ya A. Competitive enzyme immunosensor developed on a renewable carbon paste electrode support. Analytica Chimica Acta, 1999, 402(1): 119-127.
    [160] Zhou Y M, Hu S Q, Cao Z X, et al. Capacitive immunosensor for the determination of schistosoma japonicum antigen. Analytical Letters, 2002, 35(12): 1919-1930.
    [161] Patolsky F, Ranjit K T, Lichtenstein A, et al. Dendritic amplification of DNA annlysis by oligonucleotide-functionalized Au-nanoparticles. Chemical Communications, 2000, 12(10):1025-1026.
    [162] Hage D S. Immunoassays. Analytical Chemistry, 1995, 67(12): 455R-462R.
    [163] Guibault GG, Hock B, Schmid R. A piezoelectric immunosensors for atrazine in drinking water. Biosensors and Bioelectronics, 1992, 7(2): 411-419.
    [164] Konig B, Gratzel M. A novel immunosensor for herpes viruses. Analytical Chemistry, 1994, 66(3): 341-344.
    [165] Komura T, Yamaguti T, Takahashi K. Impedance study of the charge transport at poly-o-phenylenediamine film electrodes. Electrochimica Acta, 1996, 41(18): 2865-2870.
    [166] 邓婷, 王桦, 雷存喜, 等. 基于电聚合膜和纳米金自组装的生物分子固定新方法研究. 分析测试学报,2002,21(5):33-35.
    [167] Lin X Q, Zhang H Q. In situ external reflection FTIR spectroelectrochemical investigation of poly(o-phenylenediamine) film coated on a platinum electrode. Electrochimica Acta, 1996, 41(13): 2019-2024.
    [168] Wu L L, Luo J, Lin Z H. Spectroelectrochemical studies of poly-o-phenylenediamine. Part 1. In situ resonance Raman spectroscopy. Journal of Electroanalytical Chemistry, 1996, 417(1-2): 53-58.
    [169] 王雪林, 杨秋霞, 罗秀梅. 山东建材学院学报, 1996, 10(4): 19-24.
    [170] Martinusz K, Czirok E, Inzelt G. Studies of the formation and redox transformation of poly(o-phenylenediamine) films using a quartz crystal microbalance. Journal of Electroanalytical Chemistry, 1994, 379(1-2): 437-444.
    [171] 吴玲玲, 罗瑾, 林中华. 高等学校化学学报, 1997, 18(10): 1657-1663.
    [172] 柳闽生, 帅敏, 蒋艳军, 等. 分析科学学报, 1999, 15(5): 390-392.
    [173] 戴李宗, 许一婷, 吴辉煌. 电化学, 2001, 7(2): 161-166.
    [174] Ohsaka T, Watanabe T, Kitamura F, et al. Electrocatalysis of O2 reduction at poly(o-phenylenediamine)- and poly(o-aminophenol)-coated glassy carbon electrodes. Chem. Commun., 1991, 16(10): 1072-1073.
    [175] Syed A A, Dinesan M K. Review: Polyaniline—A novel polymeric material. Talanta, 1991, 38(8): 815-837.
    [176] Ogura K, Shiigi H, Nakayama M. A new humidity sensor using the composite film derived from poly(o-phenylenediamine) and poly(vinyl alcohol). Journal of The Electrochemical Society, 1996, 143(9): 2925-2930.
    [177] Si S H, Xu Y L, Nie L H, et al. Electropolymerized m-phenylenediamine as a means to immobilize active protein on thickness-shear-mode quartz crystal. Talanta, 1995, 42(3): 469-474.
    [178] Lahiri J, Isaucs L, Tien J, et al. A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study. Analytical Chemistry, 1999, 71(4): 777-790.
    [179] Caruso F, Rodda E, Furlong D N, et al. Assembly of alternating polyelectrolyte and protein multilayer films for immunosensing. Langmuir, 1997, 13(13): 3427-3433.
    [180] Lvov Y, Ariga K, Ichinose I, et al. Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. Journal of the American Chemical Society, 1995, 117(22): 6117-6123.
    [181] Blomberg E, Claesson P, Froberg J, et al. Interaction between adsorbed layers of lysozyme studied with the surface force technique. Langmuir, 1994, 10(7): 2325-2334.
    [182] Mosbch k. Methods in Enzymology, New York: Academic Press, 1976, P352.
    [183] Thomas M D. Biochemistry with clinical correlation, New York: John wiley and sons Press, 1982, 1105.
    [184] Borch R F, Bernstein M D, Durst H D. Cyanohydridoborate anion as a selective reducing agent. Journal of the American Chemical Society, 1971, 93(12): 2897-2904.
    [185] Dey P M. Characteristic features of an alpha-galactosidase from mung beans. European Journal of Biochemistry, 1984, 140(2): 385-390.
    [186] Schwartz B A, Gray G R. Proteins containing reductively aminated disaccharides. Synthesis and chemical characterization. Archives of Biochemistry & Biophysics, 1977, 181(2): 542-549.
    [187] Sonti S V, Bose A. Cell separation using protein-A-coated magnetic nanoclusters. Journal of Colloid and. Interface Science, 1995, 170(4): 575-585.
    [188] Tanaka T, Matsunaga T. Fully automated chemiluminescence immunoassay of insulin using antibody-protein A-bacterial magnetic particle complexes. Analytical Chemistry, 2000, 72(15): 3518-3522.
    [189] Martin C R, Mitchell D T. Nanomaterials in analytical chemistry. Analytical Chemistry News & Features, 1998, 70(2): 322A-327A.
    [190] He X X, Wang K M, Tan W H, et al. Preparation and application of silica-coated magnetic nanoparticles. Proceedings of SPIE, 2001, 44(14): 394-397.
    [191] Zhang G, Zhou Y, Yuan J, et al. A chemiluminescence fiber-optic biosensor for detection of DNA hybridization. Analytical Letters, 1999, 32(22): 2725-2742.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700