噬菌体展示介导的免疫扩增病原检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前感染性疾病的严峻现状和生物恐怖的潜在威胁使病原微生物的检测面临严重的挑战。本研究发展了一种新的病原检测方法,称为噬菌体展示介导的免疫扩增病原检测方法。该方法巧妙地利用了表面展示有单链抗体的重组噬菌体本身具有抗原结合分子和内部含有DNA的特点,通过表面展示的抗体识别目标抗原,利用内部的DNA作为核酸扩增的模板,把重组噬菌体作为载体直接介导完成免疫识别和信号检测过程。根据信号扩增方法的不同,可以分为噬菌体展示介导的免疫PCR和噬菌体展示介导的恒温扩增两种方法。噬菌体展示介导的免疫PCR是一种新型的免疫PCR方法,它利用重组噬菌体作为免疫PCR的载体。以汉坦病毒核蛋白为例,本研究论证了噬菌体展示介导的免疫PCR方法是一种高灵敏的病原检测方法,灵敏度比传统的酶联免疫吸附(ELISA)方法提高1,000-10,000倍,达到10 pg/ml。同时利用Real-time PCR技术结合标准曲线使该方法能够对抗原定量检测。检测结果表明重复性较好,在夹心检测的模式下2,000ng/ml到2 ng/ml的检测范围内R~2值达到0.96。本研究随后用恒温扩增方法代替PCR扩增噬菌体DNA发展噬菌体展示介导的恒温扩增方法,希望能摆脱对热循环仪的依赖。首先尝试噬菌体展示介导滚环扩增方法,该方法检测HIV P24抗原的灵敏度为100 pg/ml,但是所需的时间较长,而且检测的特异性不强。随后采用链置换扩增(strand displacement amplification,SDA)以取代滚环扩增作为信号检测的方法发展了噬菌体展示介导免疫链置换扩增方法。链置换扩增的效率很高,反应时间只需一个小时,检测HIV P24抗原和HBV HBsAg的灵敏度比传统的ELISA方法灵敏度提高1,000-10,000倍,同时结合荧光共振能量转移(fluorescence resonance energy transfer,FRET)探针做实时监测,使该方法的特异性大大增强。本研究发展的噬菌体展示介导的免疫扩增检测方法兼具免疫学检测方法的高特异性和核酸扩增方法的高灵敏度,而且成本低廉,有希望推广使用成为一种病原检测的常规方法。
The detection of pathogenic microbes is a great challenge because of the severesituation of infectious diseases and potential threaten of bioterrorism. A new detectionmethod for pathogen, called phage display mediated amplification method, wasdeveloped in this study. This method takes advantage of the recombinant phage,which displays antibody on thephage surface and includes DNA inside the phage.The surface displayed single chain variable fragment (scFv)and DNA inside thephage themselves can directly serve as detection antibody and nucleic acidamplification template, respectively. Thus, the recombinant phage, as a vector,mediates the process of immunological recognization and signal detection. Two kindsof methods, phage display mediated immuno-PCR and phage display mediatedisothermal amplification, were developed in this study based on the difference ofamplification method.Phage display mediated immuno-PCR (PD-IPCR)was a newtype of immuno-PCR method, in which the recombinant phage is a novel vector forimmuno-PCR. Hantaan virus nucleocapsid protein (NP) was selected as a model. Theresults demonstrated that the PD-IPCR method was high sensitive with a detectionlimit of 10 pg/ml for NP, which corresponded to an about 1,000-10,000-fold increasein sensitivity as compared to the enzyme-linked immunosorbent assays (ELISA)under analogous conditions. The real-time PCR technology was also applied in thismethod, which enabled the quantitative detection for antigen. The linear regressionwas good (R~2=0.96)for the signals of spiked samples against the logarithmicconcentrations from 2,000 ng/ml to 2 ng/ml in real-time sandwich PD-IPCR.Isothermal amplification methods were applied in the further study to develop phagedisplay mediated isothermal amplification methods for more broad applicationswithout relying on complicated machines. Rolling circle amplification (RCA) wasapplied first. The sensitivity of phage display mediated immuno-RCA for HIV P24antigen was 100 pg/ml. However, the amplification time of RCA is long and thespecificity is not high as other amplification methods. So, strand displacementamplification (SDA) was applied as the signal amplification to develop phage displaymediated immuno-SDA. The amplification efficiency of SDA reaction is so high thatthe reaction time is only 1h. The detection sensitivity for HIV P24 antigen and HBVHBsAg was increased 1,000 to 10,000 folds compared with conventional ELISA.FRET fluorescent probe was applied to develop real-time assay, which increase theassay specificity largely. The phage display mediated amplification methodsdeveloped in this study share main advantages of phage display and nucleic acid amplification technology. With the high sensitivity, specificity and low cost, thesemethods will be a routine technique in pathogen detection.
引文
1. Engvall E, Perlman P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry, 1971, 8(9):871-874.
    2. Borbe HO, Peter G. Radioreceptor assay for the determination of alpha 1-adrenoceptor-binding material in rat plasma following single oral administration of naftopidil. Arzneimittelforschung, 1990, 40(3):253-256.
    3. Maple PA, Gray J, Breuer J, et al. Performance of a time-resolved fluorescence immunoassay for measuring varicella-zoster virus immunoglobulin G levels in adults and comparison with commercial enzyme immunoassays and Merck glyCoprotein enzyme immunoassay. Clin. Vaccine Immunol., 2006, 13(2):214-218.
    4. Huo T, Wang L, Liu L, et al. Rapid time-resolved fluoroimmunoassay for diethylstilbestrol residues in chicken liver. Anal. Biochem, 2006.
    5. Faeste CK, Holden L, Plassen C, et al. Sensitive time-resolved fluoroimmunoassay for the detection of hazelnut (Corylus avellana) protein traces in food matrices. J. Immunol. Methods, 2006, 314(1-2): 114-122.
    6. Allicotti G, Borras E, Pinilla C. A time-resolved fluorescence immunoassay (DELFIA) increases the sensitivity of antigen-driven cytokine detection. J. Immunoassay Immunochem., 2003, 24(4):345-358.
    7. al-Amin A, Lennartz K, Runde V, et al. Frequency of clonal B lymphocytes in chronic myelogenous leukemia evaluated by fluorescence in situ hybridization. Cancer Genet. Cytogenet., 1998, 104(1):45-47.
    8. Musebeck J, Mohnike K, Beye P, et al. Short stature homeobox-containing gene deletion screening by fluorescence in situ hybridisation in patients with short stature. Eur. J. Pediatr., 2001, 160(9): 561-565.
    9. Chen TC, Chen GW, Hsiung CA, et al. Combining multiplex reverse transcription-PCR and a diagnostic microarray to detect and differentiate enterovirus 71 and coxsackievirus A16. J. Clin. Microbiol., 2006, 44(6):2212-2219.
    10. Ramirez AS, Naylor CJ, Hammond PP, et al. Development and evaluation of a diagnostic PCR for Mycoplasma synoviae using primers located in the intergenic Spacer region and the 23S rRNA gene. Vet. Microbiol., 2006.
    11. Chen S, Xie L, Shi D, et al. [Pathogen detection in the myocardial lesionusing in situ RT-PCR in mice induced by experimental CoxB(3m) virus infection]. Zhonghua Bing Li Xue Za Zhi, 2001, 30(1):46-49.
    12. Higuchi R, Fockler C, Dollinger C~ et al. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (N Y), 1993, 11(9):1026-i030;
    13. Behets J, Declerck P, Delaedt Y, et al. Development and evaluation of a Taqman duplex real-time PCR quantification method for reliable enumeration of Legionella pneumophila in water samples. J. Microbiol. Methods, 2006.
    14. Guionie O,Toquin D, Sellal E, et al. Laboratory evaluation of a quantitative real-time reverse transcription PCR assay for the detection and identification of the four subgroups of avian metapneumovirus. J. Virol. Methods, 2006.
    15. Roussel Y, Harris A, Lee MH, et al. Novel methods of quantitative real-time PCR data analysis in a murine Helicobacter pylorivaccine model. Vaccine, 2006.
    16. Heid CA, Stevens J, Livak KJ, et al. Real time quantitative PCR. Genome Res., 1996, 6(10):986-994.
    17. Zhao LH, Ma YY, Wang H, et al. Establishment and application of a TaqMan real-time quantitative reverse transCription-polymerase chain reaction assay for rubella virus RNA. Acta Biochim. Biophys. Sin (Shanghai), 2006, 38(10):731-736.
    18. McKillip JL, Drake M. Molecular beacon polymerase chain reaction detection of Escherichia coli O157:H7 in milk. J. Food. Prot., 2000, 63(7):855-859.
    19. Morozumi M, Nakayama E, Iwata S, et al. Simultaneous detection of pathogens in clinical samples from patients with community-acquired pneumonia by real-time PCR with pathogen-specific molecular beacon probes. J. Clin. Microbiol., 2006, 44(4): 1440-1446.
    20. Audemard C, Reece KS, Burreson EM. Real-time PCR for detection and quantification of the protistan parasite Perkinsus marinus in environmental waters. Appl. Environ. Microbiol., 2004, 70(11): 6611-6618.
    21. Bextine B, Blua M, Harshman D, et al. A SYBR green-based real-time polymerase chain reaction protocol and novel DNA extraction technique to detect Xylella fastidiosa in Homalodisca coagulata. J. Econ; Entomol., 2005, 98(3): 667-672.
    22. Gudmundsson B, Bjarnadottir H, Kristjansdottir S, et al. Quantitative assays for maedi-visna virus genetic sequences and mRNA's based on RT-PCR with real-time FRET measurements. Virology, 2003, 307(1): 1135-142.
    23. Reischl U, Bretagne S, Kruger D, et al. Comparison of two DNA targets for the diagnosis of Toxoplasmosis by real-time PCR using fluorescence resonance energy transfer hybridization probes. BMC Infect. Dis., 2003, 3:7.
    24. Chen R, Huang W, Lin Z, et al. Development of a novel real-time RT-PCR assay with LUX primer for the detection of swine transmissible gastroenteritis virus. J. Virol. Methods, 2004, 122(1): 57-61.
    25. Rekhviashvili N, Stevens G, Scott L, et al. Fluorogenic LUX primer for quantitation of HIV-1 by real-time RT-PCR. Mol. Biotechnol., 2006, 32(2): 101-110.
    26. Kalin I, Shephard S, Candrian U. Evaluation of the ligase chain reaction (LCR) for the detection of point mutations. Murat. Res., 1992, 283(2):119-123.
    27. Lou XJ, Panaro NJ, Wilding P, et al. Mutation detection using ligase chain reaction in passivated silicon-glass microchips and microchip capillary electrophoresis. Biotechniques, 2004, 37(3):392, 394, 396-398.
    28. Bachmann LH, Desmond RA, Stephens J, et al. Duration of persistence of gonococcal DNA detected by ligase chain reaction in men and women following recommended therapy for uncomplicated gonorrhea. J. Clin. MicrobioL, 2002, 40(10): 3596-3601.
    29. Reyes AA, Carrera P, Cardillo E, et al. Ligase chain reaction assay for human mutations: the Sickle Cell by LCR assay. Clin. Chem., 1997, 43(1): 40-44.
    30. Ching S, Lee H, Hook EW, et al. Ligase chain reaction for detection of Neisseria gonorrhoeae in urogenital swabs. J. Clin. Microbiol., 1995; 33(12): 3111-3114.
    31. Dille BJ, Butzen CC, Birkenmeyer LG. Amplification of Chlamydia trachomatis DNA by ligase chain reaction. J. Clin. Microbiol., 1993, 31(3): 729-731.
    32. Abd-El-Haleern D, Kheiralla ZH, Zaki S, et al. Multiplex-PCR and PCR-RFLP assays to monitor water quality against pathogenic bacteria. J. Environ. Monit., 2003, 5(6): 865-870.
    33. Mochizuki T, Tanabe H, Kawasaki M, et al. Rapid identification of Trichophyton tonsurans by PCR-RFLP analysis of ribosomal DNA regions. J. Dermatol. Sci., 2003, 32(1):25-32.
    34. Li W, Gao F, Tang W, et al. Detection of known thalassemia point mutations by snapback single-strand conformation polymorphism: the feasibility analysis. Clin. Biochem., 2006, 39(8): 833-842.
    35. Hamelin RC, Ouellette GB, Bernier L. Identification of Gremmeniella abietina Races with Random Amplified Polymorphic DNA Markers. Appl. Environ. Microbiol., 1993, 59(6): 1752-1755.
    36. Hodge KT, Sawyer A J, Humber RA. RAPD-PCR for identification of Zoophthora radicans isolates in biological control of the potato leafhopper. J, Invertebr. Pathol., 1995, 65(1):1-9.
    37. Hejazi A, Keane CT, Falkiner FR. The use of RAPD-PCR as a typing method for Serratia marcescens. J. Med. Microbiol., 1997, 46(11): 913-919.
    38. Van der Lee T, De Witte I, Drenth A, et al. AFLP Linkage Map of the Oomycete Phytophthora infestans. Fungal Genet. Biol., 1997, 21(3): 278-291.
    39. Groenewald S, Van Den Berg N, Marasas WF, et al. The application of high-throughput AFLP's in assessing genetic diversity in Fusarium oxysporum f. sp. cubense. Mycol. Res., 2006, 110(Pt 3): 297-305.
    40. Durrant WE, Rowland O, Piedras P, et al. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell, 2000, 12(6): 963-977.
    41. Greenwood SJ, Keith IR, Despres BM, et al. Genetic characterization of the lobster pathogen Aerococcus viridans var. homari by 16S rRNA gene sequence and RAPD. Dis. Aquat. Organ., 2005, 63(2-3): 237-246.
    42. Stohr K, Hafner B, Nolte O, et al. Species-specific identification of mycobacterial 16S rRNA PCR amplicons using smart probes. Anal. Chem., 2005, 77(22):7195-7203.
    43. Handschur M, Pinar G, Gallist B, et al. Culture free DGGE and cloning based monitoring of changes in bacterial communities of salad due to processing. Food Chem. Toxicol., 2005, 43(11):1595-1605,
    44. Venkateswaran K, Dohmoto N, Harayama S. Cloning and nucleotide sequence of the gyrB gene of Vibrio parahaemolyticus and its application in detection of this pathogen in shrimp. Appl. Environ, Microbiol., 1998, 64(2): 681-687.
    45. Kumar HS, Parvathi A, Karunasagar I, et al. A gyrB'based PCR for the detection of Vibrio vulnificus and its application for direct detection of this pathogen in oyster enrichment broths. Int. J. Food. Microbiol., 2006.
    46. Walker GT, FraiserMS, Schram JL, et al. Strand displacement amplification--an isothermal, in vitro DNA amplification technique. Nucleic Acids Res., 1992, 20(7):1691-1696.
    47. Walker GT, Nadeau JG, Spears PA, et al. Multiplex strand displacement amplification (SDA) and detection of DNA sequences from Mycobacterium tuberculosis and other mycobacteria. Nucleic Acids Res., 1994, 22(13): 2670-2677.
    48. Walker GT, Nadeau JG, Linn CP. A DNA probe assay using strand displacement amplification (SDA) and filtration to separate reacted and unreacted detector probes. Mol. Cell Probes, 1995; 9(6): 399-403.
    49. Walker GT, Nadeau JG, Linn CP, et al. Strand displacement amplification (SDA) and transient-state fluorescence polarization detection of Mycobacterium tuberculosis DNA. Clin. Chem., 1996, 42(1):9-13.
    50. Spargo CA, Fraiser MS, Van Cleve M, et al. Detection of M. tuberculosis DNA using thermophilic strand displacement amplification. Mol. Cell Probes, 1996, 10(4):247-256.
    51. Little MC, Andrews J, Moore R, et al. Strand displacement amplification and homogeneous real-time detection incorporated in a second-generation DNA probe system, BDProbeTecET. Clin. Chem., 1999, 45(6 Pt1): 777-784.
    52. Cosentino LA, Landers DV, Hillier SL. Detection of Chlamydia trachomatis and Neisseria gonorrhoeae by strand displacement amplification and relevance of the amplification control for use with vaginal swab specimens. J. Clin. Microbiol., 2003, 41(8):3592-3596.
    53. Akduman D, Ehret JM, Messina K, et al. Evaluation of a strand displacement amplification assay (BD ProbeTec-SDA) for detection of Neisseria gonorrhoeae in urine specimens. J. Clin. Microbiol., 2002, 40(1):281-283.
    54. Mazzarelli G, Rindi L, Piccoli P, et al. Evaluation of the BDProbeTec ET system for direct detection of Mycobacterium tuberculosis in pulmonary and extrapulmonary samples: a multicenter study. J. Clin. MicrobioL, 2003, 41(4): 1779-1782.
    55. McHugh TD, Pope CF, Ling CL, et al. Prospective evaluation of BDProbeTec strand displacement amplification (SDA) system for diagnosis of tuberculosis in non-respiratory and respiratory samples. J. Med. Microbiol., 2004, 53(Pt 12): 1215-1219.
    56. HeUyer TJ, Nadeau JG. Strand displacement amplification: a versatile tool for molecular diagnostics. Expert. Rev. Mol. Diagn., 2004, 4(2): 251-261.
    57. Fire A, Xu SQ. Rolling replication of short DNA circles. Proc. Natl. Acad. Sci. USA, 1995, 92(10): 4641-4645.
    58. Johne R, Wittig W, Fernandez-de-Luco D, et al. Characterization of two novel polyomaviruses of birds by using multiply primed rolling-circle amplification of their genomes. J. Virol., 2006, 80(7): 3523-3531.
    59. Nosek J, Rycovska A, Makhoy AM, et al. Amplification of telomeric arrays via rolling-circle mechanism. J. Biol. Chem., 2005, 280(11): 10840-10845.
    60. Hutchison CA, 3rd, Smith HO, et al. Cell-free cloning using phi29 DNA polymerase. Proc. Natl. Acad. Sci. U S A, 2005, 102(48): 17332-17336.
    61. Di Giusto DA, Wlassoff WA, Gooding JJ, et al. Proximity extension of circular DNA aptamers with real-time protein detection. Nucleic Acids Res., 2005, 33(6):e64.
    62. Inoue-Nagata AK, Albuquerque LC, Rocha WB, et al. A simple method for cloning the complete begomovirus genome using the bacteriophage phi29 DNA polymerase. J. Virol. Methods, 2004, 116(2):209-211.
    63. Demidov VV. Rolling-circle amplification in DNA diagnostics: the power of simplicity. Expert. Rev. Mol. Diagn., 2002, 2(6):542-548.
    64. Gusev Y, Sparkowski J, Raghunathan A, et al. Rolling circle amplification: a new approach to increase sensitivity for immunohistochemistry and flow cytometry. Am. J. Pathol., 2001, 159(1):63-69.
    65. BlancoL, Bernad A, Lazaro JM, et al. Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J. Biol. Chem., 1989, 264(15): 8935-8940.
    66. Dean FB, Nelson JR, Giesler TL, et al. Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res., 2001, 11(6):1095-1099.
    67. Silander K, Komulainen K, Ellonen P, et al. Evaluating whole genome amplification via multiply-primed rolling circle amplification for SNP genotyping of samples with low DNA yield. Twin. Res. Hum. Genet., 2005, 8(4):368-375,
    68. Pickering J, Bamford A, Godbole V, et al. Integration of DNA ligation and rolling circle amplification for the homogeneous, end-point detection of single nucleotide polymorphisms. Nucleic Acids Res., 2002, 30(12):e60.
    69. Qi X, Bakht S, Devos KM, et al. L-RCA (ligation-rolling circle amplification): a general method for genotyping of single nucleotide polymorphisms (SNPs). Nucleic Acids Res., 2001, 29(22): E116.
    70. Christian AT, Pattee MS, Attix CM, et al. Detection of DNA point mutations and mRNA expression levels by rolling circle amplification in individual cells. Proc. Natl. Acad. Sci. U SA, 2001, 98(25): 14238-14243.
    71. Wang B, Potter SJ, Lin Y, et al. Rapid and sensitive detection of severe acute respiratory syndrome coronavirus by rolling circle amplification. J. Clin. Microbiol., 2005, 43(5): 2339-2344.
    72. Ladner DP, Leamon JH, Hamann S, et al.Multiplex detection of hotspot mutations by rolling circle-enabled universal microarrays. Lab. Invest., 2001, 81(8):1079-1086.
    73. Schweitzer B, Roberts S, Grimwade B, et al. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat. Biotechnol., 2002, 20(4): 359-365.
    74. Wiltshire S, O'Malley S, Lambert J, et al. Detection of multiple allergen-specific IgEs on microarrays by immunoassay with rolling circle amplification. Clin, Chem., 2000, 46(12): 1990-1993.
    75. Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res., 2000, 28(12): E63.
    76. Poon LL, Wong BW, Chan KH, et al. Evaluation of real-time reverse transcriptase PCR and real-time loop-mediated amplification assays for severe acute respiratory syndrome coronavirus detection. J. Clin. Microbiol., 2005, 43(7): 3457-3459.
    77. Mori Y, Nagamine K, Tomita N, et al. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem. Biophys. Res. Commun., 2001, 289(1): 150-154.
    78. Fujino M, Yoshida N, Yamaguchi S, et al. A simple method for the detection of measles virus genome by loop-mediated isothermal amplification (LAMP). J. Med. Virol., 2005, 76(3): 406-413.
    79. Kaneko H, Iida T, Aoki K, et al. Sensitive and rapid detection of herpes simplex virus and varicella-zoster virus DNA by loop-mediated isothermal amplification. J. Clin. Microbiol., 2005, 43(7): 3290-3296.
    80. Song T, Toma C, Nakasone N, et al. Sensitive and rapid detection of Shigella and enteroinvasive Escherichia coli by a loop-mediated isothermal amplification method. FEMS Microbiol. Lett., 2005, 243(1): 259-263.
    81. Compton J.Nucleic acid sequence-based amplification. Nature, 1991, 350(6313):91-92.
    82. Oehlenschlager F, Schwille P, Eigen M. Detection of HIV-1 RNA by nucleic acid sequence-based amplification combined with fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. USA, 1996, 93(23): 12811-12816.
    83. Lau LT, Banks J, Aherne R, et al. Nucleic acid sequence-based amplification methods to detect avian influenza virus. Biochem. Biophys. Res. Commun., 2004, 313(2):336-342.
    84. D'Souza DH, Jaykus LA. Nucleic acid sequence based amplification for the rapid and sensitive detection of Salmonella enterica from foods. J. Appl. Microbiol., 2003, 95(6): 1343-1350.
    85. Hibbitts S, Rahman A, John R, et al. Development and evaluation of NucliSens basic kit NASBA for diagnosis of parainfluenza ~virus infection with 'end-point' and 'real-time' detection. J. Virol. Methods, 2003, 108(2): 145-155.
    86. Rigopoulou EI, Stefanidis I, Liaskos C, et al. HCV-RNA qualitative assay based on transcription mediated amplification improves the detection of hepatitis C virus infection in patients on hemodialysis: results from five hemodialysis units in central Greece. J. Clin. Virol., 2005, 34(1): 81-85.
    87. Candotti D, Richetin A, Cant B, et al. Evaluation of a transcription-mediated amplification-based HCV and HIV-1 RNA duplex assay for screening individual blood, donations: a comparison with a minipool testing system. Transfusion, 2003, 43(2): 215-225.
    88. Hill CS.Molecular diagnostic testing for infectious diseases using TMA technology. Expert. Rev. Mol. Diagn., 2001, 1(4): 445-455.
    89. Pasternack R, Vuorinen P, Miettinen A. Evaluation of the Gen-Probe Chlamydia trachomatis transcription-mediated amplification assay with urine specimens from women. J. Clin. Microbiol., 1997, 35(3): 676-678.
    90. Kurn N, Chen P, Heath JD, et al. Novel isothermal, linear nucleic acid amplification systems for highly multiplexed applications. Clin. Chem., 2005, 51(10):1973-1981.
    91. Shimada M, Hino F, Sagawa H, et al. [Development of the detection system for Mycobacterium tuberculosis DNA by using the isothermal DNA amplification method ICAN]. Rinsho. Byori., 2002, 50(5): 528-532.
    92. Lomeli H, Tyagi S, Pritchard CG, et al. Quantitative assays based on the use of replicatable hybridization probes. Clin. Chem., 1989, 35(9): 1826-1831.
    93. Tyagi S, Landegren U, Tazi M, et al. Extremely sensitive, background-free gene detection using binary probes and beta replicase. Proc, Natl. Acad. Sci. USA, 1996, 93(11): 5395-5400.
    94. Cahill P, Foster K, Mahan DE. Polymerase chain ~reaction and Q beta replicase amplification. Clin. Chem., 1991, 37(9):1482-1485.
    95. Piepenburg O, Williams CH, Stemple DL, et al. DNA Detection Using Recombination Proteins. PLoS Biol., 2006, 4(7):e204.
    96. Vincent M, Xu Y, Kong H. Helicase-dependent isothermal DNA amplification. EMBO Rep., 2004, 5(8):795-800.
    97. Van Ness J, Van Ness LK, Galas DJ.~ Isothermal reactions for the amplification of olig0nucleotides. Proc. Natl. Acad. Sci. USA, 2003, 100(8): 4504-4509.
    98. Wharam SD, Marsh P, Lloyd JS, et al. Specific detection of DNA and RNA targets using a novel isothermal nucleic acid amplification assay based on the formation of a three-way junction structure. Nucleic Acids Res., 2001, 29(11): E54-54.
    99. Urdea MS, Horn T, Fultz TJ, et al. Branched DNA amplification multimers for the sensitive, direct detection of human hepatitis viruses. Nucleic Acids Syrup. Ser., 1991(24): 197-200.
    100. Duck P, Alvarado-Urbina G, Burdick B, et al. Probe amplifier system based on chimeric cycling oligonucleotides. Biotechniques, 1990i 9(2): 142-148.
    101. Merlino J, Rose B, Harbour C. Rapid detection of non-multidrug-resistant and multidrug-resistant methicillin-resistant Staphylococcus aureus using cycling probe technology for the mecA gene. Eur. J. Clin. Microbiol. Infect. Dis., 2003, 22(5): 322-323.
    102. Ryan D, Nuccie B, Arvan D. Non-PCR-dependent detection of the factor V Leiden mutation from genomic DNA using a homogeneous invader microtiter plate assay. Mol. Diagn., 1999, 4(2): 135-144.
    103. Mast A, de Arruda M. Invader assay for single-nucleotide polymorphism genotyping and gene copy number evaluation. Methods Mol. Biol., 2006, 335: 173-186.
    104. Kwiatkowski RW, Lyamichev V, de Arruda M, et al. Clinical, genetic, and pharmacogenetic applications of the Invader assay. Mol. Diagn., 1999, 4(4): 353-364.
    105. Meallet-Renault R, Herault A, Vachon JJ, et al. Fluorescent nanoparticles as selective Cu(Ⅱ) sensors. Photochem. Photobiol. Sci., 2006, 5(3): 300-310.
    106. Agrawal A, Zhang C, Byassee T, et al. Counting single native biomolecules and intact viruses with color-coded nanoparticles. Anal Chem., 2006, 78(4): 1061-1070.
    107. Schriml LM, Padilla-Nash HM, Coleman A, et al. Tyramide signal amplification (TSA)-FISH applied to mapping PCR-labeled probes less than 1 kb in size. Biotechniques, 1999, 27(3): 608-613.
    108. Sano T, Smith CL, Cantor CR. Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates. Science, 1992, 258(5079): 120-122.
    109. Ruzicka V, Marz W, Russ A, et al. Immuno-PCR with a commercially available avidin system. Science, 1993, 260(5108): 698-699.
    110. Joerger RD, Truby TM, Hendrickson ER, et al. Analyte detection with DNA-labeled antibodies and polymerase chain reaction. Clin. Chem., 1995, 41(9): 1371-1377.
    111. Case MC, Burt AD, Hughes J, et al. Enhanced ultrasensitive detection of structurally diverse antigens using a single immuno-PCR assay protocol. J. Immunol. Methods, 1999, 223(1): 93-106.
    112. Monteiro L, Gras N, Megraud F. Magnetic immuno-PCR assay with inhibitor removal for direct detection of Helicobacter pylori in human feces. J. Clin. Microbiol., 2001, 39(10): 3778-3780.
    113. Niemeyer CM, Adler M, Pignataro B, et al. Self-assembly of DNA-streptavidin nanostructures and their use as reagents in immuno-PCR. Nucleic Acids Res., 1999, 27(23): 4553-4561.
    114. Numata Y, Matsum0to Y. Rapid detection of alpha-human atrial natriuretic peptide in plasma by a sensitive immuno-PCR sandwich assay. Clin. Chim. Acta., 1997, 259(1-2): 169-176.
    115. Daeschlein G, Assadian O, Daxboeck F, et al. Multiplex PCR-ELISA for direct detection of MRSA in nasal swabs advantageous for rapid identification of non-MRSA carriers. Eur. J. Clin. Microbiol. Infect. Dis., 2006, 25(5): 328-330.
    116. Kim JW, Shim JH, Park JW, et al. Development of PCR-ELISA for the detection of hepatitis B virus x gene expression and clinical application. J. Clin. Lab. Anal,, 2005, 19(4): 139-145.
    117. Le Provost G, Iskra-Caruana ML, Acina I, et al. Improved detection of episomal Banana streak viruses by multiplex immunocapture PCR. J. Virol. Methods, 2006, 137(1): 7-13.
    118. Mulholland V. Immunocapture-polymerase chain reaction. Methods Mol. Biol., 2005, 295:281-290.
    119. Haddon RC, Lamola AA. The molecular electronic device and the biochip computer: present status. Proc. Natl. Acad. Sci. USA, 1985, 82(7):1874-1878.
    120. Conejero-Goldberg C, Wang E, Yi C, et al. Infectious pathogen detection arrays: viral detection in cell lines and postmortem brain tissue. Biotechniques, 2005, 39(5): 741-751.
    121. Striebel HM, Birch-Hirschfeld E, Egerer R, et al. Virus diagnostics on microarrays. Curr. Pharm. Biotechnol.. 2003.4(6): 401-415.
    122.张先恩.生物传感器.第一版.北京:化学工业出版社,2006.
    123. Clark LC, Jr., Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N Y Acad. Sci., 1962, 102: 29-45.
    124. Liao JC, Mastali M, Gau V, et al. Use of electrochemical DNA biosensors for rapid molecular identification of uropathogens in clinical urine specimens. J. Clin. Microbiol., 2006, 44(2): 561-570.
    125. Oczkowski T, Zwierkowska E, Bartkowiak S. Application of cell-based biosensors for the detection of bacterial elicitor flagellin. Bioelectrochemistry, 2006.
    126. Mathew FP, Alocilja EC. Porous silicon-based biosensor for pathogen detection. Biosens. Bioelectron., 2005, 20(8): 1656-1661.
    127. Brogan KL, Walt DR. Optical fiber-based sensors: application to chemical biology. Curr. Opin. Chem. Biol., 2005, 9(5): 494-500.
    128. Barlaan EA, Sugimori M, Furukawa S, et al. Profiling and monitoring of microbial populations by denaturing high-performance liquid chromatography. J. Microbiol. Methods, 2005, 61(3): 399-412.
    129. Lisurek M, Kang MJ, Hartmann RW, et al. Identification of monohydroxy progesterones produced by CYP106A2 using comparative HPLC and electrospray ionisation collision-induced dissociation mass spectrometry. Biochem. Biophys. Res. Commun., 2004, 319(2): 677-682.
    130. Padliya ND, Cooper B. Mass spectrometry-based proteomics for the detection of plant pathogens. Proteomics, 2006, 6(14): 4069-4075.
    131. Donohue MJ, Smallwood AW, Pfaller S, et al. The development of a matrix-assisted laser desorption/ionization mass spectrometry-based method for the protein fingerprinting and identification of Aeromonas species using whole cells. J. Microbiol. Methods, 2006, 65(3): 380-389..
    132. White DC, Lytle CA, Gan YD, et al. Flash detection/identification of pathogens,: bacterial spores and bioterrodsm agent biomarkers from clinical and environmental matrices. J. Microbiol. Methods, 2002, 48(2-3): 139-147.
    133. Desmidt M, Ducatelle R, Haesebrouck E Pathogenesis of Salmonella enteritidis phage type four. after experimental infection of young chickens. Vet. Microbiol., 1997, 56(1-2):99-109.
    134. Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 1985, 228(4705): 1315-1317.
    135. Paschke M. Phage display systems and their-applications. Appl. Microbiol. Biotechnol., 2006, 70(1): 2-11.
    136. Malys N, Chang DY, Baumann RG, et al. A bipartite bacteriophage T4 SOC and HOC randomized peptide display library: detection and analysis of phage T4 terminase (gp17) and late sigma factor (gp55) interaction. J. Mol. Biol., 2002, 319(2): 289-304.
    137. Garufi G, Minenkova O, Lo Passo C, et al. Display libraries on bacteriophage lambda capsid. Biotechnol. Annu. Rev., 2005, 11: 153-190.
    138. Takakusagi Y, Kobayashi S, Sugawara F. Camptothecin binds to a synthetic peptide identified by a T7 phage display screen. Bioorg. Med. Chem. Lett., 2005, 15(21): 4850-4853.
    139. Gnanasekar M, Rao KV, He YX, et al. Novel phage display-based subtractive screening to identify vaccine candidates of Brugia malayi. Infect. Immun., 2004, 72(8): 4707-4715.
    140. Pini A, Giuliani A, Falciani C, et al. Antimicrobial activity of novel dendrimeric peptides obtained by phage display selection and rational modification. Antimicrob. Agents Chemother., 2005, 49(7): 2665-2672,
    141. Hoet RM, Cohen EH, Kent RB, et al. Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat. Biotechnol., 2005, 23(3): 344-348.
    142. Mullen LM, Nair SP, Ward JM, et al. Phage display in the study of infectious diseases. Trends Microbiol., 2006, 14(3): 141-147.
    143. Tarnovitski N, Matthews LJ, Sui J, et al. Mapping a neutralizing epitope on the SARS coronavirus spike protein: computational prediction based on affinity-selected peptides. J. Mol. Biol., 2006, 359(1): 190-201.
    144. Lund CV, Blancafort P, Popkov M, et al. Promoter-targeted phage display selections with preassembled synthetic zinc finger libraries for endogenous gene regulation. J. Mol. Biol., 2004, 340(3): 599-613.
    145. Keresztessy Z, Csosz E, Harsfalvi J, et al. Phage display selection of efficient glutamine-donor substrate peptides for transglutaminase 2. Protein Sci., 2006, 15(11): 2466-2480.
    146. Sood VD, Baker D. Recapitulation and design of protein binding peptide structures and sequences. J. Mol. Biol., 2006, 357(3):917-927.
    147. Bertelli AA, Ferrara F, Diana G, et al. Resveratrol, a natural stilbene in grapes and wine, enhances intraphagocytosis in human promonocytes: a co-factor in antiinflammatory and anticancer chemopreventive activity. Int. J. Tissue React., 1999, 21(4): 93-104.
    148. Gram H. Phage display in proteolysis and signal transduction. Comb. Chem. High Throughput Screen., 1999, 2(1): 19-28.
    149. Sperinde JJ, Choi SJ, Szoka FC, Jr.. Phage display selection of a peptide DNase Ⅱ inhibitor that enhances gene delivery. J. Gene. Med., 2001, 3(2):101-108.
    150. Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat. Biotechnol., 2005, 23(9): 1137-1146.
    151. Rippmann JF, Klein M, Hoischen C, et al. Procaryotic expression of Single-chain variable-fragment (scFv) antibodies: secretion in L-form cells of Proteus mirabilis leads to active product and overcomes the limitations of periplasmic expression in Escherichia coli. Appl. Environ. Microbiol., 1998, 64(12): 4862-4869.
    152. Clement JP. Hantavirus. Antiviral Res., 2003, 57(1-2): 121-127.
    153. Lee HW, Lee PW, Johnson KM. Isolation of the etiologic agent of Korean Hemorrhagic fever. J. Infect; Dis., 1978, 137(3):298-308.
    154. Liang M, Chu YK, Schmaljohn C. Bacterial expression of neutralizing mouse monoclonal antibody Fab fragments to Hantaan virus. Virology, 1996, 217(1): 262-271.
    155. Block T, Miller R, Korngold R, et al. A phage-linked immunoabsorbant system for the detection of pathologically relevant antigens. Biotechniques, 1989, 7(7): 756-761.
    156. Chowdhury PS, Pastan I. Improving antibody affinity by mimicking somatic hypermutation in vitro. Nat. Biotechnol., 1999, 17(6): 568-572.
    157. Pluckthun A, Pack P. New protein engineering approaches to multivalent and bispecific antibody fragments. Immunotechnology, 1997, 3(2): 83-105.
    158. de Haard HJ, Kazemier B, Koolen MJ, et. al. Selection of recombinant, library-derived antibody fragments against p24 for human immunodeficiency virus type 1 diagnostics. Clin. Diagn. Lab. Immunol., 1998, 5(5): 636-644.
    159.梁国栋.最新分子生物学实验技术.北京:科学出版社,2001.
    160. Shepard CW, Simard EP, Finelli L, et al. Hepatitis B virus infection: epidemiology and vaccination. Epidemiol. Rev., 2006, 28:112-125.
    161. Weber B, Van der Taelem-Brule N, Berger A, et al. Evaluation of a new automated assay for hepatitis B surface antigen (HBsAg) detection VIDAS HBsAg Ultra. J. Virol. Methods, 2006, 135(1): 109-117.
    162. Novack L, Galai N, Yaari A, et al. Use of seroconversion panels to estimate delay in detection of anti-human immunodeficiency virus antibodies by enzyme-linked immunosorbent assay of pooled compared to singleton serum samples. J. Clin. Microbiol., 2006, 44(8): 2909-2913.
    163. Li CC, Seidel KD, Coombs RW, et al. Detection and quantification of human immunodeficiency virus type 1 p24 antigen in dried whole blood and plasma on filter paper stored under various conditions. J. Clin. Microbiol., 2005, 43(8): 3901-3905.
    164. Respess RA, Cachafeiro A, Withum D, et al. Evaluation of an ultrasensitive p24 antigen assay as a potential alternative to human immunodeficiency virus type 1 RNA viral load assay in resource-limited settings. J. Clin. Microbiol., 2005, 43(1):506-508.
    165. Speers D, Phillips P, Dyer J. Combination assay detecting both human immunodeficiency virus (HIV) p24 antigen and anti-HIV antibodies opens a second diagnostic window. J. Clin. Microbiol., 2005, 43(10): 5397-5399.
    166. Marozsan AJ, Fraundorf E, Abraha A, et al. Relationships between infectious titer, capsid protein levels, and reverse transcriptase activities of diverse human immunodeficiency virus type 1 isolates. J. Virol., 2004, 78(20): 11130-11141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700