一维微流控微珠阵列芯片用于基因突变分析的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维微流控微珠阵列芯片是一种新型的微量多元并行分析平台,它有机地结合了微流控技术、微阵列芯片技术以及微珠非均相识别技术。该平台设计灵活、操作简单、分析快速、试剂消耗量少、检测灵敏度高并可在单一通道内实现高通量的生物样品并行分析,在生物微量分析方面具有非常广阔的应用前景。为了进一步开发和拓展一维微流控微珠阵列芯片的应用,使其发展成为一种通用的生物检测平台,本文从一维微流控微珠阵列芯片检测基因突变方面着手,以逐步发展高灵敏、操作简单、低成本而且多用途的基因突变检测方法为研究主线,主要开展了以下几方面工作:
     (1)发展了一种基于等位基因特异性杂交技术的细胞基因突变检测一维微流控微珠阵列芯片。该方法以构建的一维微流控微珠阵列为检测平台,以三明治探针杂交结构为检测模式,以热动力学差异为突变识别原理发展的一种能在常温下快速、高效、微量识别基因突变的新型分析技术。以抑癌基因p53包含的175密码子为对象设计合成了四条单碱基差异的捕获探针,并将其修饰到微珠表面,通过显微操作将微珠转移到一维微流控芯片中。该一维微流控微珠阵列能够识别最低为40pM的靶核酸序列并实现单碱基差异的区分,并可于100个野生型靶序列中识别包含的1个突变型靶序列;该方法重复使用性能较好,微珠表面经过6次杂交和去杂交过程后仍然能够进行单碱基差异的区分,并且没有明显的信号损失;该一维微流控微珠阵列芯片能够直接使用细胞中抽提的总RNA进行肿瘤相关基因突变的检测,检测了肿瘤细胞A549、CNE2及SKBr-3三种细胞系p53基因175密码子的突变情况,芯片结果与测序结果一致;采用“Sandwich”杂交模式避免了目标序列的标记过程,使实验过程更加简化而且成本降低。整个实验过程只需要2-10μL样品溶液。本实验不仅证实了一维微流控微珠阵列用于进行基因突变检测的可行性,并且为使这一新型的微珠阵列发展成为一种通用型的突变检测平台迈出了非常重要的一步。
     (2)发展了一种基于寡核苷酸连接分析技术的高灵敏低量点突变检测一维微流控微珠阵列芯片。该方法利用了高温连接酶高特异的突变识别性能、微珠阵列的位置编码性能以及微流控芯片的物质传递增强性能,使得该方法体现出了良好的低量点突变识别性能。通过与芯片外的微珠连接突变识别信号的比较,一维微流控微珠阵列具有明显增强的突变识别灵敏度,能够识别1pM合成的寡核苷酸探针并区分单碱基差异(信背比大于2)。使用该方法分别检测了A549、CNE2及SKBr-3三种细胞系p53基因175密码子的密码子类型,同时也高灵敏的识别肿瘤组织中存在的低量点突变,能识别1000个野生型目标序列中存在的一个突变型目标序列。该方法直接使用PCR产物,不需要样品纯化、样品标记或者靶目标的再次扩增等步骤,使得该方法具有操作简单和反应快速的特点,具有很好的临床实用性。
     (3)发展了一种基于Apyrase(三磷酸腺苷双磷酸酶)介导的等位基因特异性引物延伸方法的一维微流控突变检测芯片并用于预测器官移植病人的类固醇类免疫抑制药物的依赖性戒除风险。首先以预测类固醇类免疫抑制药物的依赖性戒除风险高度相关的MDR1基因中C3435T和G2677T两个多态性位点为基础设计合成延伸识别引物,并将其修饰到微珠表面,通过显微操作将微珠转移到一维微流控微珠阵列中。该方法能够识别30pM合成的靶核酸序列并区分单碱基差异(信背比大于2),用绝对值表示可以识别~10~(-17) mol的靶序列。通过抽提血液基因组DNA、PCR及不对称PCR过程获得了包含检测位点的单链靶核酸序列,并在建立的一维微珠芯片内进行两个SNP位点的同时分型,PCR片段测序结果证实了该芯片结果的准确性。Apyrase介导的一维微流控芯片体系能够为多元SNP检测提供一种价格便宜、高特异性、操作简单及稳定性好的检测平台。
     (4)发展了一种新型基于碱性磷酸酶介导的等位基因特异性引物延伸方法的一维微流控突变检测芯片。该方法利用了DNA聚合酶对3’匹配末端的延伸速度比3’不匹配末端的延伸速度快的特性,在反应体系中加入能降解dNTP的酶,3’不匹配末端开始延伸时溶液中的dNTP已被降解,不产生延伸信号。因此该方法具有很好的突变识别特异性,可以将匹配二聚体从任意组合的单碱基不匹配二聚体中识别出来;该方法在微流控通道内的应用同样体现出高的突变识别灵敏度,可以识别0.1pM合成的靶核酸序列并区分单碱基差异,用绝对值表示可以识别~10~(-19) mol的靶序列;以MDR1相关的C3435T及G2677T两个SNP为例,该方法也能同时检测多SNP位点,并产生正确的识别信号。
     (5)发展了一种基于一维微流控微珠阵列芯片的滚环放大突变检测方法。该方法通过寡核苷酸连接分析技术对基因突变进行识别,并通过滚环放大技术产生可识别的荧光信号。该方法具有很好的突变检测特异性,能实现各种类型突变的区分;另外该方法能够检测到0.03nM的合成靶序列。同时三种肿瘤细胞乳腺癌细胞(鼻咽癌细胞CNE2,乳腺癌细胞SKBr-3,人肺腺癌细胞A549)的总RNA提取后,通过RT-PCR方法获得了包括p53基因中175密码子的核酸片断,并于芯片中进行检测,检测结果与测序结果一致。该芯片体系与滚环放大技术结合具有发展一种超高灵敏、微量及通量突变检测技术的潜力,虽然现在的灵敏度和预期结果存在距离,但随着进一步的改进将会在很大程度上得以提高。
One-dimensional (1-D) microfluidic beads array is a novel biomolecular microanalysis platform with characteristics of multiplxed and parallel assay. This technology combines the characteristics of beads array with the rapid binding kinetics of homogeneous assays, and the liquid handling capability of microfluidics. Such a platform offers excellent advantages in flexible array design, small sample volumes, short assay times, simple assay protocols, reduced cost per test, and potential of high throughput analysis. The central components of this 1-D chip are an extremely versatile polymer platform with many cabinets along a single microchannel that has been successfully used for the protein profiling detection. To further extend its applications for the mutations detection is obviously a promising work, which can represents an important step in the direction of making this system serve as a universal chemical and biological detection platform. In this thesis, aiming for higher sensitivity and lower cost of per assay, we have combined a series of methods based on the 1-D chip for mutations discrimination and the main details are as follows:
     (1) The application of a one-dimensional (1-D) microfluidic beads array that composed of individually addressable functionalized SiO2 beads has been demonstrated for detection of single-base mutations based on“sandwich”hybridization assay without additional sample labeling and PCR amplification. According to the coding sequence comprising codon 175 of p53 gene, a series of capture probes were designed and immobilized on surface of microbeads using biotin-streptavidin system. This 1-D microfluidic beads array was sufficiently sensitive to identify single-nucleotide mutations in 40 pM quantities of DNA targets and could discriminate the mutated alleles in an excess of non-mutated alleles at a level of 1 mutant in 100 wild-type sequences. The surface of beads was regenerated and rehybridized up to six times without obvious loss of signal. The entire reaction process was done at room temperature within minutes, and only 2-10μL sample solution was needed to complete the whole detection process. The p53 genotypes of A549 cell line, CNE2 cell line and SKBr-3 cell line also were correctly evaluated by using mRNA extracts as target without need for sample labeling and amplification. Thus, this platform enabled rapid and exact discrimination of gene mutations in the form that is reusable, simple handling of liquid, low cost, and little reagent consumption.
     (2)In this paper, an on-chip oligonucleotide ligation approach that arrayed a series of functionalized beads in a single microfluidic channel was described for detection of low-abundant point mutations in p53 gene. As a demonstration, it was found that the on-chip beads ligation held high mutation discrimination sensitivity in 1 pM quantities at a SNR (signal-to-noise ratio)>2 using synthesized DNA oligonucleotides in accordance with target fragment. The RT-PCR products of tumor cell line A549, CNE2 and SKBr-3 were further examined to distinguish the point mutation at codon 175 of p53 gene. This approach was capable of detecting a point mutation in a p53 oncogene at a level of 1 mutant in 1000 wild-type sequences using PCR products without the need of LDR amplification. Additionally, this on-chip beads ligation approach also displayed other microfluidic-based advantages of simple handling (one sample injection per test), little reagent quantities, and low potential of contaminations.
     (3) This study reported the development of a one-dimensional (1-D) microfluidic beads array-based apyrase-mediated allele-specific primer extension approach for typing of single nucleotide polymorphisms (SNP). This chip approach also was utilized to predict risk of weaning steroid after 1-year post-transplantation based on designed extension primers according to two polymorphisms C3435T and G2677T of MDR1 gene. This on-chip beads extension approach could sensitize to 30 pM quantities of synthesized DNA oligonucleotides at a SNR (signal-to-noise ratio)>2, that corresponded to an absolute detection sensitivity of~10~(-17) mol of target molecules in about 2μl sample. The multiplexing capacity of 1-D microfluidic beads array was demonstrated by simultaneous detection of two polymorphisms C3435T and G2677T and the correctness of on-chip beads extension for SNP typing of practical samples was also further confirmed through the sequencing of PCR products. This method could use the target DNA without labelling for direct discrimination of gene mutations, and decreased the cost of test and avoided complicated labelling process. This on-chip beads extension approach provided a simple, efficient and rapid analysis mode that could be applied in the detection of functional SNP associated with the drugs resistance to predict the therapy efficacy of drugs.
     (4)This study reports the development of a novel alkaline phosphatase (originated from shrimp)-mediated enzymatic approach for typing of single nucleotide polymorphisms (SNP) based on allele-specific primer extension and its application on fabricated one-dimensional (1-D) microfluidic beads array. This alkaline phosphatase-mediated extension discrimination took advantage of the fact that the reaction kinetics differed between matched and mismatched configurations of allele-specific primers hybridized to DNA template. This difference allowed the incorporation of nucleotides when the reaction kenetics was fast as a result of matched hybridization structure, but degraded the nucleotides before extension by alkaline phosphatase (AP) when the reaction kenetics was slow caused by the mismatches. The capacity of mutation discrimination of this AP-mediated allele-specific primer extension was determined using fabricated one-dimensional (1-D) microfluidic beads array and indicated excellent specificity when alkaline phosphatase was included in the extension mixture despite of the existence of mismatched duplexes. Additionally, this on-chip beads extension approach could sensitize to 0.1 pM quantities of synthesized DNA oligonucleotides at a SNR (signal-to-noise ratio)>2, that corresponded to an absolute detection sensitivity of~10-19 mol of target molecules in about 2μl sample. The multiplexing capacity of on-chip beads extension was demonstrated by the simultaneous detection of two polymorphisms C3435T and G2677T and the correctness of on-chip beads extension for SNP typing of practical samples was also further confirmed through the sequencing of PCR products. In conclusion, this novel enzymatic approach displayed reliable specificity and cost-effectiveness for SNP typing.
     (5) This study reports the development of a microfluidic rolling circle amplification (RCA) approach for mutation discrimination based on one-dimensional microfluidic beads array chip. This methid used oligonucleotide ligation assay for mutation discrimination and RCA for signal production. This microfluidic RCA process could sensitize to 30 pM quantities of synthesized DNA oligonucleotides at a SNR (signal-to-noise ratio)>2. The RT-PCR products of tumor cell line A549, CNE2 and SKBr-3 were further examined to distinguish the point mutation at codon 175 of p53 gene. The combination of 1-D microfluidic beads array and RCA could make it very sensitive for mutation discrimination. Although actual sensitivity was not satisfactory, the further research will greatly improve it.
引文
[1] Collins F S, Partions A , Jordan E, et al. New goals for the U. S. Human Genome Project: 1998- 2003. Science, 1998; 282(5389): 682-689
    [2] Edwards A, Hammond H A, Jin L, et al. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics, 1992, 12(2): 241-252
    [3] Yoshimoto K, Tanaka C, Yamada S, et al. Infrequent mutations of P16 INK4A. European Journal of Endocrinology, 1997, 136 (1): 74-80
    [4] Kim S K, Ro J Y, Kemp B L, et al. Identification of three distinct tumor suppressor loci on the short arm of chromosome 9 in small cell lung cancer. Cancer Research, 1997, 57(3): 400-403
    [5] 李东霞, 苏秀兰. 人类基因组的新型遗传标记: STR 和 SNP. 内蒙古医学院学报, 2006, 28(1): 61-66
    [6] Patricia T M, Gu Z, Li Q, et al. Overlapping genomic sequences: a treasure trove of single-nucleotide polymorphisms. Genome Research, 1998, 8(7): 748-754
    [7] Reeders S T, Breuning M H, Davies K E, et al. A highly polymorphic DNA marker linked to adult polycystic kidney disease on chromosome 16. Nature, 1985, 317(6037): 542-544.
    [8] Litt M, Luty J A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. The American Journal of Human Genetics, 1989, 44(3): 397-401
    [9] Weber J L, May P E. A bundant class of human DNA polymorphism which can be typed using the polymerase chain reaction. The American Journal of Human Genetics, 1989, 44(3): 388-396
    [10] Dib C, Faure S, Fizames C, et al. A comprehensive genetic map of the human genome based on 5264 microsatellites. Nature, 1996, 380(6570): 152-154
    [11] 丁秋兰, 王鸿利, 王学锋等. 非经典的剪接位点( IV S1a+ 5g>a)及 His348Gln双杂合突变导致的遗传性凝血因子缺陷症. 中华血液学杂志, 2004, 25(3): 139-142
    [12] Bresin E, Rossetti S, Englisch S, et al. A common polymorphism in exon 46 of the human autosomal dominant polycystic kidney disease 1 gene (PKD1).Molecular and Cellular Probes, 1996, 10(6): 463-465
    [13] Lander E S. The new genomics: global views of biology. Science, 1996, 274 (5287): 536-539
    [14] Marshall E. “Playing chicken”over gene markers. Science, 1997, 278(5337): 2046-2048
    [15] Venter J C, Mark D A, Eugene W M, et al. The Sequence of the human genome. Science, 2001, 291(5507): 1304-1351
    [16] Sachidanandam R, Weissman D, Schmidt S C, et al. A map of human genome sequence variation containing 1. 42 million SNP. Nature, 2001, 409(6822): 928-933
    [17] The International HapMap Consortium. The International HapMap Project. Nature, 2003, 426(6968): 789-796
    [18] Carlson C S, Eberle M A, Rieder M J, et al. Additional SNPs and linkage-disequilibrium analyses are necessary for whole genome association studies in humans. Nature genetics, 2003, 33(4): 518-521
    [19] Goldstrin D B, Ahmadi K R, Weale M E, et al. Genome scans and candidate gene approaches in the study of common diseases and variable drug responses. Trends Genetics, 2003, 19(11): 615-622
    [20] 胡劲松, 党娜娜, 黄辰等. 国际人类基因组单体型图计划. 国外医学遗传学分册, 2005, 28(3): 129-132
    [21] Botstein D, Risch N. Discovering genotypes underlying human phenotypes: pase successes for mendelian disease, future approaches for complex disease. Nature Genetics, 2003, 33(suppl.): 228-237
    [22] Reich D E, Cargill M, Bolk S, et al. Linkage disequilibrium in the human genome. Nature, 2001, 411(6834): 199-204
    [23] Brown P O, Hartwell L. Genomics and human disease -variations on variation. Nature Genetics, 1998, 18(1): 91-93
    [24] Evans W E, Reling M V. Pharmacogenomics: translating functionalgenomics into rational therapeutics. Science, 1999, 286(5439): 487-491
    [25] Eric L. Application of SNP technologies in medicine: lessons learned and future challenges. Genome Research, 2001, 11(6): 927-929
    [26] 曾朝阳, 李桂源. 单核苷酸多态. 国外医学. 分子生物学分册, 2001, 23(3): 149-151
    [27] 熊炜, 曾朝阳, 沈守荣等. 染色体 9p21-22 区域两个新发现 SNPs 位点在湖南汉族人群中的多态分布. 中华医学遗传学杂志, 2003, 20(3): 203-206
    [28] 赵静, 周韧. 单核苷酸多态性及其数据库的应用. 国际病理科学与临床杂志, 2006, 26(2): 152-155
    [29] 顾丰. 单核苷酸多态性及其数据库. 中华医学遗传学杂志, 2001, 18(6): 479-481
    [30] Brookes A J. The essence of SNPs. Gene, 1999, 234(2): 177-186
    [31] Collins F S, Guyer M S, Chakravarti A. Variations on a theme: cataloging human DNA sequence variation. Science, 1997, 278(5343): 1580-1581
    [32] Kaji N, Baba Y. Microchip technology for SNPs analysis and proteomics. Seikagaku, 2004, 76(10): 1275-1282
    [33] Twyman R M. SNP discovery and typing technologies for pharmacogenomics. Current Topics in Medicinal Chemistry, 2004, 4(13): 1423-1431
    [34] Ishikawa M. Physical mapping of single-molecule DNA structure. Tanpakushitsu Kakusan Koso, 2004, 49(11 Suppl.): 1490-1494
    [35] Goldstein D B. Islands of linkage disequilibrium. Nature Genetics, 2001, 29(2): 109-111
    [36] Stumpf M P H. Haplotype diversity and the block structure of linkage disequilibrium. Trends in Genetics, 2002, 18(5): 226-228
    [37] Zhou W, Goodman S N, Galizia G, et al. Counting alleles to predict recurrence of early-stage colorectal cancers. Lancet, 2002, 359(9302): 219-225
    [38] Primdahl H, Wikman F P, von der Maase H, et al . Allelic imbalances in human bladder cancer: genome-wide detection with high-density single nucleotide polymorphism arrays. Journal of the National Cancer Institute, 2002, 94(3): 216-223
    [39] Lindblad Toh K, Tanenbaum D M, Daly M J, et al. Loss-of-heterozygosity analysis of small-cell lung carcinomas using single-nucleotide polymorphism arrays. Nature Biotechnology, 2000, 18(9): 1001-1005
    [40] Irving J A, Bloodworth L, Bown N P, et al. Loss of Heterozygosity in Childhood Acute LymphoblasticLeukemia Detected by Genome-Wide Microarray Single Nucleotide Polymorphism Analysis. Cancer Research, 2005, 65(8): 3053-3058
    [41] Raghavan M, Lillington D M, Skoulakis S, et al. Genome-wide single nucleotide polymorphism analysis reveals frequent partial uniparental disomy due to somatic recombination in acute myeloid leukemias. Cancer Research, 2005, 65(2): 375-378
    [42] Janne P A, Li C, Zhao X, et al. High resolution single-nucleotide polymorphism array and clustering analysis of loss of heterozygosity in human lung cancer celllines. Oncogene, 2004, 23(15): 2716-2726
    [43] Wong K K, Tsang Y T, Shen J, et al. Allelic imbalance analysis by high density single-nucleotide polymorphic allele (SNP) array with whole genome amplified DNA. Nucleic Acids Research, 2004, 32(9): e69
    [44] Zhou X, Mok S C, Chen Z, et al. Concurrent analysis of loss of heterozygosity (LOH) and copy number abnormality (CNA) for oral premalignancy progression using the Affymetrix 10K SNP mapping array. Human Genetics, 2004, 115(4): 327-330
    [45] 韩海琼, 邵淑丽. 基质金属蛋白酶- 1, 3 的单核苷酸多态性现象在癌症中的作用. 肿瘤研究与临床, 2006, 18(10): 714-717
    [46] Brinckerhoff C E, Rutter J L, Benbow U. Interstitial collagenases as markers of tumor progression. Clinical Cancer Research, 2000, 6(12): 4823-4830
    [47] Rutter J L, Mitchell T I, Buttice G, et al. A Single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription. Cancer Research, 1998, 58(23): 5321-5325
    [48] 许玲, 孙大志, 余志红. 肿瘤基因单核苷酸多态性研究及个体化医疗的思考. 世界华人消化杂志, 2005, 13(5): 592-595
    [49] Schuetz E G, Beck W T, Schuetz J D. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Molecular Pharmacology, 1996, 49(2): 311-318
    [50] Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nature Genetics, 2001, 27(4): 383-391
    [51] Felix C A, Walker A H, Lange B J, et al. Association of CYP3A4 genotype with treatment-related leukemia. Proceedings of the National Academy of Sciences, 1998, 95(22): 13176-13181
    [52] 王佐广, 温绍君, 吴兆苏. 临床药物应用与单核苷酸多态性. 中国医药导刊, 2002, 4(1): 45-46
    [53] Kim R B, Leake B F, Choo E F, et al. Identification of functionally variant MDR1 alleles among european americans and african americans. Clinical Pharmacology & Therapeutics, 2001, 70(2): 189-199
    [54] 迟志宏, 刘端祺, 张积仁. CYP 和 MDRl 的单核苷酸多态性对肿瘤化疗疗效的影响. 解放军医学杂志, 2003, 28(8): 752-753
    [55] Kolesar J M, Pritchard S C, Kerr K M, et al. Evaluation of NQO1 geneexpression and variant allele in human NSCLC tumors and matched normal lung tissue. International Journal of Oncology, 2002, 21(5): 1119-1124
    [56] Kawakami K, Omura K, Kanehira, et al. Methylenetetrahydrofolate reductase polymorphism is associated with folate pool in gastrointestinal cancer tissue. Anticancer Research. 2001, 21(1A): 285-289
    [57] Andreassen C N, Alsner J, Overgaard M, et al. Risk of radiation-induced subcutaneous fibrosis in relation to single nucleotide polymorphisms in TGFB1, SOD2, XRCC1, XRCC3, APEX and ATMndash; a study based on DNA from formalin fixed paraffin embedded tissue samples. The International Journal of Radiation Biology. 2006, 82(8): 577-586
    [58] Niwa Y, Mat suo K, Ito H, et al. Association of XRCC1 Arg399Gln and OGG1 Ser326Cys polymorphisms with the risk of cervical cancer in Japanese subjects. Gynecologic Oncology, 2005, 99(1): 43-49
    [59] Zoodsma M, Nolte I M, Schipper M, et al. Methylenetetrahydrofolate reductase (MTHFR) and susceptibility for (pre) neoplastic cervical disease. Human Genetics, 2005, 116(4): 247-254
    [60] Kirkpatrick A, Bidwell J, van-den-Brule A J, et al. TNF-alpha polymorphism frequencies in HPV2 associated cervical dysplasia. Gynecologic Oncology, 2004, 92(2): 675-679
    [61] Zoodsma M, Nolte I M, Schipper M, et al. Analysis of the entire HLA region in susceptibility for cervical cancer: a comprehensive study. Journal of Medical Genetics, 2005, 42(8): e49
    [62] Zoodsma M, Nolte I M, Schipper M, et al. Interleukin-10 and Fas polymorphisms and susceptibility for (pre) neoplastic cervical disease. International Journal of Gynecological Cancer, 2005, 15(Suppl 3): 282-290
    [63] Lai H C, Chang C C, Lin Y W, et al. Genetic polymorphism of theinterferon-gamma gene in cervical carcinogenesis. International Journal of Cancer, 2005, 113(5): 712-718
    [64] Liu J, Zhang J S, Young C Y, et al. Polymorphisms of p rostate-specific antigen gene promoter: determination from cord blood collected on filter paper. Annals of Clinical & Laboratory Science, 2003, 33(4): 429-434
    [65] Panguluri R C, Long L O, Chen W, et al. COX 22 gene promoter haplotypes and prostate cancer risk. Carcinogenesis, 2004, 25(6): 961-966
    [66] Nam R K, Zhang W W, Trachtenberg J, et al. Single nucleotide polymorphism of the human kallikrein-2 gene highly correlates with serum human kallikrein-2levels and in combination enhances prostate cancer detection. Journal of Clinical Oncology, 2003, 21(12): 2312-2319
    [67] Hein D W, Leff M A, Ishibe N, et al. Association of prostate cancer with rapid N-acetyltransferase 1 (NAT1*10) in combination with slow N-acetyltransferase 2 acetylator genotypes in a pilot case-control study. Environmental and Molecular Mutagenesis, 2002, 40(3): 161-167
    [68] Ribeiro R, Vasconcelos A, Costa S, et al. Overexpressing leptin genetic polymorphism (-2548 G/A) is associated with susceptibility to prostate cancer and risk of advanced disease. Prostate, 2004, 59(3): 268-274
    [69] Zheng S L, Augustsson-Balter K, Chang B, et al. Sequence variants of toll-like receptor 4 are associated with prostate cancer risk: results from the Cancer Prostate in Sweden Study. Cancer Research, 2004, 64(8): 2918-2922
    [70] Paltoo D, Woodson K, Taylor P, et al. Pro12Ala polymorphism in the peroxisome proliferators-activated receptor-gamm a (PPAR-gamma) gene and risk of prostate cancer among men in a large cancer prevention study. Cancer Letters, 2003, 191(1): 67-74
    [71] Koike H, Suzuki K, Satoh T, et al. Cyclin D1 gene polymorphism and familial prostate cancer: the AA genotype of A870G polymorphism is associated with prostate cancer risk in men aged 70 years or older and metastatic stage. Anticancer Research, 2003, 23(6D): 4947-4951
    [72] Wang L, Habuchi T, Mitsumori K, et al. Increased risk of prostate cancer associated with AA genotype of cyclin D1 gene A870G polymorphism. International Journal of Cancer, 2003, 103(1): 116-120
    [73] Verhage B A, van Houwelingen K, Ruijter T E, et al. Single-nucleotide polymorphism in the E-cadherin gene promoter modifies the risk of prostate cancer. International Journal of Cancer, 2002, 100(6): 683-685
    [74] Lin C C, Wu H C, Tsai F J, et al. Vascular endothelial growth factor gene-460 C /T polymorphism is a biomarker for prostate cancer. Urology, 2003, 62(2): 374-377
    [75] McCarron S L, Edwards S, Evans P R, et al. Influence of cytokine gene polymorphisms on the development of prostate cancer.Cancer Research, 2002, 62(12): 3369-3372
    [76] Chang B L, Zheng S L, Hawkins G A, et al. Joint effect of HSD3B1and HSD3B2 genes is associated with hereditary and sporadic prostate cancer susceptibility. Cancer Research, 2002, 62(6): 1784-1789
    [77] Margiotti K, Kim E, Pearce C L, et al. Association of the G289S single nucleotide polymorphism in the HSD17B3 gene with prostate cancer in Italian men. Prostate, 2002, 53(1): 65-68
    [78] Xu J, Zheng S L, Turner A, et al. Associations between hOGG1 sequence variants and prostate cancer susceptibility. Cancer Research, 2002, 62(8): 2253-2257
    [79] 王书奎, 王自正, 黄宇烽. 单核苷酸多态性与前列腺癌关系的研究进展. 中华男科学, 2005, 11(8): 605-610
    [80] 刘炬, 徐兵河. 单核苷酸多态与乳腺癌治疗反应相关研究进展. 癌症进展, 2006, 4(5): 417-422
    [81] DeMichele A, Aplenc R, Botbyl J, et al. Drug-metabolizing enzyme polymorphisms predict clinical outcome in a node -positive breast cancer cohort. Journal of Clinical Oncology, 2005, 23(24): 5552-5529
    [82] Levy Lahad E, Lahad A, Eisenberg S, et al. A single nucleotide polymorphism in the RAD51 gene modifies cancer risk in BRCA2 but not BRCA1 carriers. Proceedings of the National Academy of Sciences, 2001, 98(6): 3232-3236
    [83] Feigelson H S, Coetzee G A, Kolonel L N, et al. A polymorphism in the CYP17 gene increases the risk of breast cancer. Cancer Research, 1997, 57(6): 1063-1065
    [84] 汉雨生,王明荣. 单核苷酸多态性分析技术及其在肿瘤研究中的应用. 国外医学.肿瘤学分册, 2003, 30(3): 189-193
    [85] 赵广荣, 扬帆, 元英进等. 单核苷酸多态性检测方法的新进展. 遗传, 2005, 27(1): 123-129
    [86] 汪维鹏,倪坤仪,周国华. 单核苷酸多态性检测方法的研究进展. 遗传, 2006, 28(1): 117-126.
    [87] 高秀丽, 景奉香, 杨剑波等. 单核苷酸多态性检测分析技术. 遗传, 2006, 27(1): 110-122
    [88] Wallace R B, Shaffer J, Murphy R F, et al. Hybridization of synthetic oligodeoxyribonucleotides to phi chi 174 DNA: the effect of single base pair mismatch. Nucleic Acids Research, 1979, 6(11): 3543-3557
    [89] Nikiforov T T, Jeong S. Detection of hybrid formation between peptide nucleic acids and DNA by fluorescence polarization in the presence of polylysine. Analytical Biochemistry, 1999, 275(2): 248-253
    [90] Simeonov A, Nikiforov T T. Single nucleotide polymorphism genotyping using shor, fluorescently labeled locked nucleic (PNA) probes and fluorescencepolarization detection. Nucleic Acids Research, 2002, 30(17): e91
    [91] Guo Z, Liu Q, Smith L M. Enhanced discrimination of single nucleotide polymorphisms by artificial mismatch hybridization. Nature Biotechnology, 1997, 15(4): 331-335
    [92] Johnson M P, Haupt L M, Griffiths L R. Locked nucleic acid (LNA) single nucleotide polymorphism (SNP) genotype analysis and validation using real-time PCR. Nucleic Acids Research, 2004, 32(6): e55
    [93] Latorra D, Campbell K, Wolter A, et al. Enhanced allele-specific PCR discrimination in SNP genotyping using 3' locked nucleic acid (LNA) primers. Human Mutation. 2003, 22(1): 79-85
    [94] Tyagi S, Kramer F R. Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnology, 1996, 14(3): 303-308
    [95] Tyagi S, Bratu D P, Kramer F R. Multicolor molecular beacons for allele discrimination. Nature Biotechnology, 1998, 16(1): 49-53
    [96] Yesilkaya H, Meacci F, Niemann S, et al. Evaluation of molecular-Beacon, TaqMan, and fluorescence resonance energy transfer probes for detection of antibiotic resistance-conferring single nucleotide polymorphisms in mixed Mycobacterium tuberculosis DNA extracts. Journal of Clinical Microbiology, 2006, 44(10): 3826-3829
    [97] Solinas A, Brown L J, McKeen C, et al. Duplex Scorpion primers in SNP analysis and FRET applications. Nucleic Acids Research, 2001, 29(20):e96
    [98] Thelwell N, Millington S, Solinas A. Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Research, 2000, 28(19): 3752-3761
    [99] Howell W M, Jobs M, Gyllensten U, et al. Dynamic allele specific hybridization. A new method for scoring single nucleotide polymorphisms. Nature Biotechnology, 1999, 17(1): 87-88
    [100] Prince J A, Feuk L, HowellW M, et al. Robust and accurate single nucleotide polymorphism genotyping by dynamic allele-specific hybridization (DASH): Design criteria and assay validation. Genome Research, 2001, 11(1): 152-162
    [101] Jobs M, Howell W M, Stromqvist L, et al. DASH-2: Flexible, low-cost, and high-throughput SNP genotyping by dynamic allele-specific hybridization on membrane arrays. Genome Research, 2003, 13(5): 916-924
    [102] Prince J A, Brookes A J. Towards high-throughput genotyping of SNPs by dynamic allele-specific hybridization. Expert Review of Molecular Diagnostics,2001, 1(3): 89-95
    [103] Sommer S S, Groszbach A R, KBottema C D. PCR amplification of specific alleles (PASA) is a general method for rapidly detecting known single-base changes. BioTechniques, 1992, 12(1): 82-87
    [104] Tang X, Morris S L, Langone J J, et al. Microarray and allele specific PCR detection of point mutations in Mycobacterium tuberculosis genes associated with drug resistance. Journal of Microbiological Methods. 2005, 63(3): 318-330
    [105] Dutton C, Sommer S S. Simultaneous detection of multiple single-base alleles at a polymorphic site. BioTechniques, 1991, 11(6): 700-702
    [106] Liu Q, Thorland E C, Heit J A, et al. Overlapping PCR for Bidirectional PCR Amplification of Specific Alleles: A Rapid One-Tube Method for Simultaneously Differentiating Homozygotes and Heterozygotes. Genome Research, 1997, 7(4): 389-398
    [107] Ye S, Dhillon S, Ke X, et al. An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Research, 2001, 29(17): e88
    [108] Livak K J. Allelic discrimination using fluorogenic probes and the 5’-nuclease assay. Genetic Analysis, 1999, 14(5-6): 143-149
    [109] Van Hoeyveld E, Houtmeyers F, Massonet C, et al. Detection of single nucleotide polymorphisms in the mannose-binding lectin gene using minor groove binder DNA probes. Journal of Immunological Methods, 2004, 287(1-2): 227-230
    [110] Krook A, Stratton I M, O’Rahilly S. Rapid and simultaneous detection of multiple mutations by pooled and multiplex single nucleotide primer extension: application to the study of insulin-responsive glucose transporter and insulin receptor mutations innon-insulin-dependent diabetes. Human Molecular Genetics, 1992, 1(6): 391-395
    [111] Syvanen A C, Ikonen E, Manninen T, et al. Convenient and quantitative detection of the frequency of a mutant allele using solid-phase minisequencing application to aspartylglucosaminuria in finland. Genomics, 1992, 12(3): 590-595
    [112] Pastinen T, Partanen J, Syvanen A C. Multiplex, fluorescent solid-phase minisequencing for efficient screening of DNA sequence variation. Clinical Chemistry, 1996, 42(9): 1391-1397
    [113] Chen J, Iannone M A, Li M S, et al. A microsphere-based assay for multiplexed single nucleotide polymorphism analysis using single base chain extension.Genome Research, 2000, 10(4): 549-557
    [114] Alderborn A, Kristofferson A, Hammerling U. Determination of single nucleotide polymorphisms by real-time pyrophosphate DNA sequencing. Genome Research, 2000, 10(8): 1249-1258
    [115] Pourmand N, Elahi E, Davis R W, et al. Multiplex pyrosequencing. Nucleic Acids Research, 2002, 30(7): e31
    [116] Ahmadian A, Gharizadeh B, O’Meara D, et al. Genotyping by apyrase-mediated allele-specific extension. Nucleic Acids Research, 2001, 29(24): e121
    [117] O’Meara D, Ahmadian A, Odeberg J, et al. SNP typing by apyrase-mediated allele-specific primer extension on DNA microarrays. Nucleic Acids Research, 2002, 30(15): e75
    [118] Zhou G H, Shirakura H, Kamahori M, et al. A gel-free SNP genotyping method: bioluminometric assay coupled with modified primer extension reactions (BAMPER) directly from double-stranded PCR products. Human Mutation, 2004, 24(2): 155-163
    [119] Zhou G H, Kamahori M, Okano K, et al. Quantitative detection of single nucleotide polymorphisms for a pooled sample by a bioluminometric assay coupled with modified primer extension reactions (BAMPER). Nucleic Acids Research, 2001, 29(19): e93
    [120] Landegren U, Kaiser R, Sanders J, et al. A ligase-mediated gene detection technique. Science, 1988, 241(4869): 1077-1080
    [121] Eggerding F A. A one-step coupled amplification and oligonucleotide ligation procedure for multiplex genetic typing. Genome Research, 1995, 4(6): 337-345
    [122] Chen X, Livak K J, Kwok P Y. A homogeneous, ligase-mediated DNA diagnostic test. Genome Research, 1998, 8(5): 549-556
    [123] Zhong X B, Lizardi P M, Huang X H, et al. Visualization of oligonucleotide probes and point mutations in interphase nuclei and DNA fibers using rolling circle DNA amplification. Proceedings of the National Academy of Sciences, 2001, 98(7): 3940-3945
    [124] Pickering J, Bamford A, Godbole V, et al. Integration of DNA ligation and rolling circle amplification for the homogeneous, end-point detection of single nucleotide polymorphisms. Nucleic Acids Research, 2002, 30(12): e60
    [125] Qi X, Bakht S, Devos K M. L-RCA (ligation-rolling circle amplification): a general method for genotyping of single nucleotide polymorphisms (SNP). Nucleic Acids Research, 2001, 29(22): e116
    [126] Nallur G, Luo C, FangL, et al. Signal amplification by rolling circle amplification on DNA microarrays. Nucleic Acids Research, 2001, 29(23): e118
    [127] Bi W, Stambrook P J. CCR: a rapid and simple approach for mutation detection. Nucleic Acids Research, 1997, 25(14): 2949-2951
    [128] Shi M M. Technologies for individual genotyping: detection of genetic polymorphisms in drug targets and disease genes. American Journal of Pharmacogenomics, 2002, 2(3): 197-205
    [129] Lyamichev V, Mast A L, Hall J G, et al. Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nature Biotechnology, 1999, 17(3): 292-296
    [130] Hall J G, Eis P S, Law S M, et al. Sensitive detection of DNA polymorphisms by the serial invasive signal amplification reaction. Proceedings of the National Academy of Sciences, 2000, 97(15): 8272-8277
    [131] Fors L, Lieder K W, Vavra S H, et al. Large-scale SNP scoring from unamplified genomic DNA. Pharmacogenomics, 2000, 1(2): 219-229
    [132] Rao K V, Stevens P W, Hall J G, et al. Genotyping single nucleotide polymorphisms directly from genomic DNA by invasive cleavage reaction on microspheres. Nucleic Acids Research, 2003, 31(11): e66
    [133] Mein C A, Barratt B J, Dunn M G, et al. Evaluation of single nucleotide polymorphism typing with invader on PCR amplicons and its automation. Genome Research, 2000, 10(3): 330-343
    [134] Wilkins S P, Hall J G, Lyamichev V, et al. Analysis of single nucleotide polymorphisms with solid phase invasive cleavage reactions. Nucleic Acids Research, 2001, 29(16): e77
    [135] Olivier M, Chuang L M, Chang M S, et al. High-throughput genotyping of single nucleotide polymorphisms using new biplex invader technology. Nucleic Acids Research, 2002, 30(12): e53
    [136] Ruan Q G, Lu C Y. Review of gene mutation array. Foreign Medical Sciences (Section of Genetics), 1998, 21(5): 225-231
    [137] 陈汉奎, 冯忻. 温度梯度凝胶电泳技术及应用. 生物化学与生物物理进展, 1999, 26(3): 297-299
    [138] 陆利华, 张家洵, 朱一川. 变性梯度凝胶电泳装置及其在 DNA 突变检测中的初步应用. 生物技术通讯, 2001, 12(3): 208-210
    [139] 廖林川, 孟海英, 侯一平等. 用温度调控高效液相色谱探索基因组单核苷酸多态性的方法研究. 中华医学遗传学杂志, 2000, 17(3): 204-207
    [140] Schaid D J, Guenther J C, Christensen G B, et al. Comparison of microsatellites versus single nucleotide polymorphisms in a genome linkage screen for prostate cancer-susceptibility Loci. The American Journal of Human Genetics, 2004, 75(6): 948-965
    [141] Cho R J, Mindrinos M, Richards D R, et al. Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nature Genetics, 1999, 23(2): 203-207
    [142] Hu N, Wang C, Hu Y, et al. Genome-wide association study in esophageal cancer using gene chip mapping 10K array. Cancer Research, 2005, 65(7): 2542-2546
    [143] Geschwind D H. Sharing gene expression data: an array of options. Nature Reviews. Neuroscience, 2001, 2(2): 435-438
    [144] Buhlmann C, Preckel T, Chan S, et al. A New Tool for Routine Testing of Cellular Protein Expression: Integration of Cell Staining and Analysis of Protein Expression on a Microfluidic Chip-Based System. Journal of Biomolecular Techniques, 2003, 14(2): 119-127
    [145] 陈超, 赵湛. 线阵电极电泳芯片与单片机控制系统. 传感器技术, 2004, 23(1): 77-80
    [146] Hofman O, Che D, Cruickshank K A, et al. Adaptation of capillary isoelectric focusing to microchannels on a glass chip. Analytical Chemistry, 1999, 71(3): 678-686
    [147] Wang Y,Vaidya B,Farquar H D,et al. Microarrays assembled in microfluidic chips fabricated from poly (methyl methacrylate) for the detection of low-abundant DNA mutations. Analytical Chemistry, 2003, 75(5): 1130-1140
    [148] Li Z P, Tsunoda H, Okano K, et al. Microchip electrophoresis of tagged probes incorporated with one-colored ddNTP for analyzing single-nucleotide polymorphisms. Analytical Chemistry, 2003, 75(14): 3345-3351
    [149] Armstrong B, Stewart M, Mazumder A. Suspension arrays for high-throughput, multiplexed single nucleotide polymorphism genotyping. Cytometry, 2000, 40(2): 102-108
    [150] Xu H, Sha M Y, Wong E Y, et al. Multiplexed SNP genotyping using the QbeadTM system: a quantum dot-encoded microsphere-based assay. Nucleic Acids Research, 2003, 31(8): e43
    [151] Walt D R. Techview: molecular biology. Bead-based fiber-optic arrays. Science, 2000, 287(5452): 451-452
    [152] Kohara Y, Noda H, Okano K, et al. DNA probes on beads arrayed in a capillary, ‘Bead-array’, exhibited high hybridization performance. Nucleic Acids Research, 2002, 30(16): e87
    [153] Michael K L, Taylor L C, Schultz S L, et al. Randomly ordered addressable high-density optical sensor arrays. Analytical Chemistry, 1998, 70(7): 1242-1248
    [154] Walt D R. Techview: molecular biology, Bead-based fiber-opticarrays. Science, 2000, 287(5452): 451-452
    [155] Ross P, Hall L, Smirnov I, et al. High level multiplex genotyping by MALDI-TOF mass spectrometry. Nature Biotechnology, 1998, 16(13): 1347-1351
    [156] Tang K, Fu D J, Julien D, et al. Chip-based genotyping by mass spectrometry. Proceedings of the National Academy of Sciences, 1999, 96(18): 10016-10020
    [157] Ross P L, Lee K, Belgrader P. Discrimination of single-nucleotide polymorphisms in human DNA using peptide nucleic acid probes detected by MALDI-TOF mass spectrometry. Analytical Chemistry, 1997, 69(20): 4197-4202
    [158] Yoshino T, Tanaka T, Takeyama H, et al. Single nucleotide polymorphism genotyping of aldehyde dehydrogenase 2 gene using a single bacterial magnetic particle. Biosensors and Bioelectronics, 2003, 18(5-6): 661-666
    [159] Ota H, Takeyama H, Nakayama H, et al. SNP detection in transforming growth factor-β1 gene using bacterial magnetic particles. Biosensors and Bioelectronics, 2003, 18(5-6): 683-687
    [160] Anderson R C, Su X, Bogdan G J, et al. A miniature integrated device for automated multistep genetic assays. Nucleic Acids Research, 2000, 28(12): e60
    [161] Cheek B J, Steel A B, Torres M P, et al. Chemiluminescence Detection for Hybridization Assays on the Flow-Thru Chip, a Three-Dimensional Microchannel Biochip. Analytical Chemistry, 2001, 73(24): 5777-5783
    [162] Liu R H, Yang J, Lenigk R, et al. Self-Contained, Fully Integrated Biochip for Sample Preparation, Polymerase Chain Reaction Amplification, and DNA Microarray Detection. Analytical Chemistry, 2004, 76(7): 1824-1831
    [163] Wabuyele M B, Ford S M, Stryjewski W, et al. Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices. Electrophoresis, 2001, 22(18): 3939-3948
    [164] Xu Y, Vaidya B, Patel A B, et al. Solid-Phase Reversible Immobilization inMicrofluidic Chips for the Purification of Dye-Labeled DNA Sequencing Fragments. Analytical Chemistry, 2003, 75(13): 2975-2984
    [165] Tanaka Y, Sato K, Shimizu T, et al. A micro-spherical heart pump powered by cultured cardiomyocytes. Lab on a Chip, 2007, 7(2): 207-212
    [166] Zhang L, Yin X, Fang Z. Negative pressure pinched sample injection for microchip-based electrophoresis. Lab on a Chip, 2006, 6(2): 258-264
    [167] 周雷激, 王柯敏, 左新兵等. 一维生物芯片蛋白质检测技术平台. 高等学校化学学报, 2004, 25(增刊): 183-184
    [168] 王柯敏, 周雷激, 谭蔚泓等. 一维生物芯片及其在基因、蛋白表达分析中的应用, 中国专利. 批准号: CN1635146
    [169] Zhou L, Wang K, Tan W, et al. Quantitative Intracellular Molecular Profiling Using a One-Dimensional Flow System. Analytical Chemistry, 2006, 78(17): 6246-6251
    [170] Jianhui Wen, Xiaohai Yang, Kemin Wang, et al. One-Dimensional Microfluidic Beads Array for Multiple mRNAs Expression Detection. Biosensors and Bioelectronics, 2007, 22(11): 2759-2762
    [171] Noda H, Kohara Y, Okano K, et al. Automated bead alignment apparatus using a single bead capturing technique for fabrication of a miniaturized bead-based DNA probe array. Analytical Chemistry, 2003, 75(13): 3250-3255
    [172] Steemers F J, Ferguson J A, Walt D R. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nature Biotechnology, 2000, 18(1): 91-94
    [173] Nolan J P, Sklar L A. The emergence of flow cytometry for sensitive, real-time measurements of molecular interactions. Nature Biotechnology, 1998, 16(1): 633-638
    [174] Nolan J P, Lauer S, Prossnitz E R, et al. Flow cytometry: a versatile tool for all stages of drug discovery. Drug Discovery Today, 1999, 4(4): 173-180
    [175] Chen R, Lowe L, Wilson J D, et al. Simultaneous quantification of six human cytokines in a single sample using microparticle-based flow cytometric technology. Clinical Chemistry, 1999, 45(9): 1693-1694
    [176] Chen J, Iannone M A, Li M S, et al. A microsphere-based assay for multiplexed single nucleotide polymorphism analysis using single base chain extension. Genome Research, 2000, 10(4): 549-557
    [177] Vignali D A. Multiplexed particle-based flow cytometric assays. Journal of Immunological Methods, 2000, 243(1-2): 243-255
    [178] Lagally E T, Lee S H, Soh H T. Integrated microsystem for dielectrophoretic cell concentration and genetic detection. Lab on a Chip, 2005, 5(10), 1053-1058
    [179] Slovakova M, Minc N, Bilkova Z, et al. Use of self assembled magnetic beads for on-chip protein digestion. Lab on a Chip, 2005, 5(9), 935 - 942
    [180] deMello A J. Control and detection of chemical reactions in microfluidic systems. Nature, 2006, 442(7101), 394-402
    [181] Sato K, Tokeshi M, Kimura H, et al. Determination of carcinoembryonic antigen in human sera by integrated bead-bed immunoassay in a microchip for cancer diagnosis. Analytical Chemistry, 2001, 73(6), 1213-1218
    [182] Krajewska W M, Stawińska M, Bry? M, et al. Genotyping of p53 codon 175 in colorectal cancer. Medical Science Monitor, 2003, 9(5), BR228-231
    [183] Soussi T, Bèroud C. Significance of TP53 mutations in human cancer: a critical analysis of mutations at CpG dinucleotides. Human Mutation, 2003, 21(3), 192-200
    [184] Katayama H, Ishihama Y, Asakawa N. Stable cationic capillary coating with successive multiple ionic polymer layers for capillary electrophoresis. Analytical Chemistry, 1998, 70(24), 5272-5277
    [185] Marras S A E, Kramer F R, Tyagi S. Multiplex detection of single-nucleotide variations using molecular beacons. Genetic Analysis: Biomolecular Engineering. 1999, 14(5-6), 151-156
    [186] Buch J S, Kimball C, Rosenberger F, et al. DNA Mutation Detection in a Polymer Microfluidic Network Using Temperature Gradient Gel Electrophoresis. Analytical Chemistry, 2004, 76(4), 874-881
    [187] Ahmadian A, Gharizadeh B, O’Meara D, et al. Genotyping by apyrase-mediated allele-specific extension. Nucleic Acids Research. 2001, 29(24), E121
    [188] Yi H, Wu L Q, Ghodssi R, et al. A Robust Technique for Assembly of Nucleic Acid Hybridization Chips Based on Electrochemically Templated Chitosan. Analytical Chemistry, 2004, 76(2), 365-372
    [189] Park S, Taton T A, Mirkin C A. Array-based electrical detection of DNA with nanoparticle. Science, 2002, 295(5559), 1503-1506
    [190] Epstein J R, Lee M, Walt D R. High-Density Fiber-Optic Genosensor Microsphere Array Capable of Zeptomole Detection Limits. Analytical Chemistry, 2002, 74(8), 1836-1840
    [191] Gerry N P, Witowski N E, Day J, et al. Universal DNA microarray method for multiplex detection of low abundance point mutations. Journal of MolecularBiology, 1999, 292(2), 251-262
    [192] Hashimoto M, Hupert M L, Murphy M C, et al. Ligase Detection Reaction/Hybridization Assays Using Three-Dimensional Microfluidic Networks for the Detection of Low-Abundant DNA Point Mutations. Analytical chemistry, 2005, 77(10), 3243-3255
    [193] Zhu Y, Valdes R, Linder M W. Genotyping of VKROC1 polymorphisms (-1639G>A) for patients on Warfarin therapy using allele-specific primer extension assay. Clinical Chemistry, 2006, 52(6): A58
    [194] Elkin C, Kenny D, Leung K, et al. Evaluation of a cystic fibrosis transmembrane regulator (CFTR) 29+4 genotyping assay by allele specific primer extension in the Bayer Reference Testing Laboratory. Clinical Chemistry, 2006, 52(6): A193
    [195] Gunderson K L, Steemers F J, Lee G, et al. A genome-wide scalable SNP genotyping assay using microarray technology. Nature Genetics, 2005, 37(5): 549-554
    [196] Kaller M, Ahmadian A, Lundeberg J. Microarray-based AMASE as a novel approach for mutation detection. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 554(1-2): 77-88
    [197] Hacia J G. Resequencing and mutational analysis using oligonucleotide microarrays. Nature Genetics, 1999, 21(1 Suppl): 42-47
    [198] Ahrendt S A, Halachmi S, Chow J T, et al. Rapid p53 sequence analysis in primary lung cancer using an oligonucleotide probe array. Proceedings of the National Academy of Sciences, 1999, 96(13): 7382-7387
    [199] Hirschhorn J N, Sklar P, Lindblad-Toh K, et al. SBE-TAGS: an array-based method for efficient single-nucleotide polymorphism genotyping. Proceedings of the National Academy of Sciences, 2000, 97(22): 12164-12169
    [200] Tang X, Morris S L, Langone J J, et al. Microarray and allele specific PCR detection of point mutations in Mycobacterium tuberculosis genes associated with drug resistance. Journal of Microbiological Methods, 2005, 63(3): 318-330
    [201] Fan J B, Chen X, Halushka M K, et al. Parallel genotyping of human SNPs using generic high-density oligonucleotide tag arrays. Genome Research, 2000, 10(6): 853-860
    [202] Zhou G H, Shirakura H, Kamahori M, et al. A gel-free SNP genotyping method: Bioluminometric assay coupled with modified primer extension reactions (BAMPER) directly from double-stranded PCR products. Human Mutation,2004, 24(2): 155-163
    [203] Post M A. Alkaline phosphatase from psychrophile TAB5 and cold-adapted, northern shrimp (Pandalus borealis) are structurally similar yet functionally distinct. Faseb Journal, 2006, 20(4): A479
    [204] De Backer M, McSweeney S, Rasmussen H B, et al. The 1.9 angstrom crystal structure of heat-labile shrimp alkaline phosphatase. Journal of Molecular Biology, 2002, 318(5): 1265-1274
    [205] Nordstrom T, Nourizad K, Ronaghi M, et al. Method enabling pyrosequencing on double-stranded DNA. Analytical Biochemistry, 2000, 282(2): 186-193
    [206] Huang M M, Arnheim N, Goodman M F. Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR. Nucleic Acids Research, 1992, 20(17): 4567-4573
    [207] Ayyadevara S, Thaden J J, Shmookler Reis R J. Anchor polymerase chain reaction display: a high-throughput method to resolve, score, and isolate dimorphic genetic markers based on interspersed repetitive DNA elements. Analytical Biochemistry, 2000, 284(1): 11-18
    [208] Kwok S, Kellogg D E, McKinney N, et al. Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Research, 1990, 18(4): 999-1005
    [209] Vilkner T, Janasek D, Manz A. Micro Total Analysis Systems. Recent Developments. Analytical Chemistry, 2004, 76(12): 3373-3386
    [210] Effenhauser C S, Paulus A, Manz A, et al. High-Speed Separation of Antisense Oligonucleotides on a Micromachined Capillary Electrophoresis Device. Analytical Chemistry, 1994, 66(18): 2949-2953
    [211] Dittrich P S, Tachikawa K, Manz A. Micro Total Analysis Systems. Latest Advancements and Trends. Analytical Chemistry, 2006, 78(12): 3887-3908
    [212] Nilsson M,Krejci K, Koch J, et a1. Padlock probes reveal single-nucleotide differences, parent of origin and in situ distribution of centromeric sequences in human chromosomes 13 and 21. Nature Genetics, 1997, 16(3): 252-255
    [213] Zhang D Y, Zhang W, Li X, et a1. Detection of rare DNA targets by isothermal ramification amplification. Gene, 2001, 274(1-2): 209-216
    [214] Yang L, Fung C W, Cho E J, et al. Real-Time Rolling Circle Amplification for Protein Detection. Analytical Chemistry, 2007, 79(9): 3320-3329
    [215] Kuhn H, Demidov V V, Frank-Kamenetskii M D. Rolling-circle amplification under topological constraints. Nucleic Acids Research, 2002, 30(2): 574-580
    [216] Nallur G, Luo C H, Fang L H, et al. Signal amplification by rolling circle amplification on DNA microarrays. Nucleic Acids Research, 2001, 29(23): e118
    [217] Beyer S, Nickels P, Simmel F C. Periodic DNA nanotemplates synthesized by rolling circle amplification. Nano Letters, 2005, 5(4): 719-722
    [218] Haible D, Kober S, Jeske H. Rolling circle amplification revolutionizes diagnosis and genomics of geminiviruses. Journal of Virological Methods, 2006, 135(1): 9-16
    [219] Hutchison C A, Smith H O, Pfannkoch C, et al. Cell-free cloning using phi29 DNA polymerase. Proceedings of the National Academy of Sciences, 2005, 102(48): 17332-17336
    [220] Ali M F, Kirby R, Goodey A P, et al. DNA hybridization and discrimination of single-nucleotide mismatches using chip-based microbead arrays. Analytical Chemistry, 2003, 75(18): 4732-4739
    [221] Russom A, Ahmadian A, Andersson H, et al. Single-nucleotide polymorphism analysis by allele-specific extension of fluorescently labeled nucleotides in a microfluidic flow-through device. Electrophoresis, 2003, 24(1-2): 158-161
    [222] Lubitz S A, Baran D A, Alwarshetty M M, et al. Improved survival with statins, angiotensin receptor blockers, and steroid weaning after heart transplantation. Transplantation proceedings, 2006, 38(5), 1501-1506
    [223] Zheng H, Webber S, Zeevi A, et al. The MDR1 polymorphisms at exons 21 and 26 predict steroid weaning in pediatric heart transplant patients. Human Immunology, 2002, 63(9), 765-770
    [224] Asano T, Takahashi K A, Fujioka M, et al. ABCB1 C3435T and G2677T/A polymorphism decreased the risk for steroid-induced osteonecrosis of the femoral head after kidney transplantation. Pharmacogenetics, 2003, 13(11), 675-682
    [225] Zheng H X, Webber S A, Zeevi A, et al. The impact of pharmacogenomic factors on steroid dependency in pediatric heart transplant patients using logistic regression analysis. Pediatric Transplantation, 2004, 8(6), 551-557

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700