新型生物传感技术用于核酸和蛋白质的检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质和核酸是生命体中最重要的两类生物大分子,对人类的遗传疾病和新陈代谢有重要影响,因此建立简单、灵敏、高效的蛋白质、核酸分析方法对临床诊断、药物筛选等医学研究具有重要的意义。针对当前对蛋白质和核酸检测技术提出的高灵敏、高选择、高通量、高特异性和操作简便的要求,本论文建立了一系列新的电化学生物传感方法用于检测蛋白质和核酸,为蛋白质和核酸分子检测提供高性能的技术平台,并通过对实际样品的分析以及与经典检测方法的结果对照,初步验证了这些技术的实用性。
     (1)本章建立了一种用于目标核酸分子检测的表面邻近杂交电化学传感技术,进一步拓展了表面邻近杂交分析的应用范围。与蛋白分子表面邻近杂交不同的是,核酸分子邻近杂交可利用待测核酸序列本身构成一对邻近探针。为此,我们设计了一个寡核苷酸检测探针,其5’末端修饰二茂铁,3’半片段与目标核酸分子互补且具有较高熔链温度,若目标核酸分子存在,检测探针与其杂交形成稳定的杂交体,杂交体一侧检测探针与目标核酸分子其余序列邻近,促进与电极表面固定的巯基短链寡核苷酸杂交,并使末端标记的二茂铁与电极充分接近,从而产生显著的氧化还原电流。结果表明,该方法的检测线性范围宽,为1 fM到1 nM,而且能够成功地识别不同碱基数错配的序列。与传统夹心式杂交分析相比,该法保证了末端标记的二茂铁与电极充分接近,电子转移效率提高,灵敏度得到了显著改善。而且由于邻近分析使用了更短的互补序列,有效提高了其选择性。
     (2)基于一对亲合性核酸适体探针同时识别目标分子而空间邻近导致与某一互补序列杂交使稳定性提高这一邻近效应,提出了一种高灵敏的用于检测模型分析物―血小板源性生长因子BB(PDGF-BB)的表面邻近杂交分析电化学适体传感方法。该方法利用该核酸适体探针可成对地与二聚体目标蛋白PDGF-BB同时结合,由于邻近效应促进两尾端序列同时与电极表面固定的两条短链寡核苷酸杂交,使得适体探针末端标记的二茂铁与电极充分接近而发生高效电子传递,从而产生显著的氧化还原电流。该法可实现对PDGF-BB的高特异性地检测,动态响应范围可从1.0 pg/mL到20 ng/mL,检测限可达1.0 pg/mL。
     (3)构建了一种脂质体滚环扩增免疫传感技术用于超灵敏地检测目标蛋白PSA,通过在脂质体中包埋引物探针和滚环扩增反应两步放大,使得灵敏度大大提高,显示了很好的线性范围和重现性,高选择性,检测范围从0.1 fg/mL到0.1 ng/mL,使检测下限大大降低,达到0.08 fg/mL。
Protein and nucleic acid are the most two important macro-biomolecules, playing essential roles in the fields of genetic disease and metabolism. Therefore, it is highly significant that constructing simple, sensitive and efficient analytical methods for detecting protein and nucleic acid in the area of clinical diagnosis and drug screening. To satisfy and achieve the demand of the simple, high sensitivity, selectivity and affinity, and high throughout for the detection of proteins and DNA, we develop a series of novel electrochemical biosensor methods and provide a high performance platform. These results primarily proved that the proposed technology is reasonably comparable with the traditional detection methods, indicating the practicability of using the proposed method in clinical diagnosis. The detailed content described as follows:
     (1) We develop a novel electrochemical DNA (E-DNA) biosensor for simple, rapid, and specific detection of nucleic acids based on the proximity-dependent surface hybridization assay in order to widening the application area. This E-DNA biosensor was constructed by self-assembly of a 3’short thiolated capture probe on the gold electrode. DNA detection was realized by outputting a remarkable redox current of 5’ferrocene (Fc) tail labeled probe. When the target DNA was introduced into the system, it was complementary to the 5’Fc labeled probe at the one half-segment and complementary to the 5’short thiolated capture probe at the other half-segment, resulting in forming a stable duplex complex. As a result, the Fc probe was proximate to the electrode surface and the Faradaic current was observed. This E-DNA biosensor was proved to have a low detection limit (1 fM) and a wide dynamic range (from 1 fM to 1 nM) due to the stable hybridization mode. In addition, the sensing system could discriminate the complementary sequence from mismatch sequences, with high sensitivity, stability, and reusability. Compared with the conventional sandwich hybridization assay, this approach ensured the ferrocene marker to enough close the electrode surface and increased the charge transport efficiency as well as improved the sensitivity remarkably.
     (2) We develop a surface proximity-dependent hybridization electrochemical aptasensor method for the high sensitive detection of model analyte PDGF-BB based on the proximity effect, that is to say a pair of affinity aptamer probes simultaneously recognize the target molecules and form the proximity probes so that some complementary sequence hybridization enhanced the stability. When aptamer pairs simultaneously binding to the homodimer of PDGF-BB, the tail sequence are brought into close proximity with their local concentration increased substantially to allow the pair of tail sequences to hybridize together with the surface-tethered DNA strands. Then the ferrocene labels of the tail sequence are drawn close to the electrode surface and produce a detectable redox current. In conclusion, this method can be implemented to the high affinity detection of PDGF-BB, dynamically increased DPV current with increasing PDGF-BB concentration ranging from 1.0 pg/mL to 20 ng/mL, with the detection limit of 1.0 pg/mL.
     (3) A novel rolling circle amplification (RCA) immunoassay based on DNA-encapsulating liposomes, liposome-RCA immunoassay, was developed for ultrasensitive protein detection. This technique utilized antibody-modified liposomes with DNA prime probes encapsulated and a linear RCA reaction for the determination of prostate-specific antigen (PSA),. The results revealed that the technique exhibited a dynamic response to PSA over a six-decade concentration range from 0.1 fg mL-1 to 0.1 ng mL-1 with a limit of detection as low as 0.08 fg mL-1 and a high dose-response sensitivity.
引文
[1]张炯,万莹,王丽华等.电化学DNA生物传感器.化学进展, 2007, 19(10): 1576-1584
    [2]陈玲.生物传感器的研究进展综述.传感器与微系统, 2006, 25(9): 4-7
    [3]张先恩.生物传感技术原理与应用.长春:吉林科学技术出版社, 1990: 6-8
    [4]孙莹莹,赵爽,杨微微等.基于层-层自反应的葡萄糖氧化酶有序多层膜电极.高等学校化学学报, 2006, 27(5): 839-844
    [5] Fu Y Z, Yuan R, Tang D P, et a1. Study on the immobilization of anti-IgG on Au-colloid modified gold electrode via potentiometric immunosensor, cyclic voltammetry, and electrochemical impedance techniques. Colloids and Surfaces B: Biointerfaces, 2005, 40 (1): 61-66
    [6]干宁,葛从辛.多巴胺修饰自组装金电极作为生物传感器测定核酸.分析试验室, 2006, 25(2): 55-58
    [7]黎雪莲,袁若,蔡雅琴等.基于多层酶/纳米金固定甲胎蛋白免疫传感器的研究.化学学报, 2006, 64(4): 325-330
    [8] Liu Y, Qu X H, Guo H W, et a1. Facile preparation of ampemactric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite. Biosensors and Bioeleetronics, 2006, 21(l2): 2l95-2201
    [9] Arkhypova V N, Dzyadevych S V, Soldatkin A P, et al. Multibiosensor based on enzyme inhibition analysis for determination of different toxic substances. Talanta, 200l, 55(5): 9l9-927
    [10]吴蕴青,孔继烈,邓家祺.混合乳杆菌微生物传感器的研制及乳酸的测定.复旦学报, 1996, 35(3): 349-353
    [11]刘宝红,邓家祺.尿酸微生物传感器的研制及其动力学研究.高等学校化学学报, 1996, 17(5): 702-706
    [12]谢平会,杨征武,刘鹰.用伏安型生物传感器识别微生物细胞的研究.中国卫生检验杂志, 2000, 10(3): 261-264
    [13]李敏健,谭学才,梁汝萍等.基于溶胶-凝胶固定技术的生物组织传感器.分析化学, 2004, 32(10): 1291-1294
    [14] Ma Q H, Deng J Q. Mushroom pulp tissue-based membrane-ferrocene-modified L-tyrosine biosensor. Journal of Southeast University, 2000, 16(1): 106-110
    [15]瞿鹏,李保新,章竹君.流通式化学发光植物组织传感器测定过氧化氢.分析化学, 2003, 31(10): 1240-1243
    [16]马丽,白燕,刘仲明.电化学DNA传感器研究进展.传感器技术, 2002, 21(3): 58-64
    [17] Loaiza O A, Campuzano S, Prada A G, et al. Amperometric DNA quantification based on the use of peroxidase-mercaptopropionic acid-modified gold electrodes. Sensors and Actuators B: Chemical, 2008, 132(1): 250-257
    [18] Ma Y, Jiao K, Yang T, et al. Sensitive PAT gene sequence detection by nano-SiO2/p-aminothiophenol self-assembled films DNA electrochemical biosensor based on impedance measurement. Sensors and Actuators B: Chemical, 2008, 131(2): 565-571
    [19] Mendes R K, Carvalhal R F, Kubota L T. Effects of different self-assembled monolayers on enzyme immobilization procedures in peroxidase-based biosensor development. Journal of Electroanalytical Chemistry, 2008, 612(2): 164-172
    [20] Matharu Z, Sumana G, Arya S K, et al. Polyaniline Langmuir-blodgett film based cholesterol biosensor. Langmuir, 2007, 23(26): 13188-13192
    [21]邹小勇,陈汇勇,李荫.电化学DNA传感器的研制及其医学应用.分析测试学报, 2005, 24(1): 123-128
    [22] Xu X H, Yang H C, Mallouk T E, et al. Immobilization of DNA on an aluminum(III) alkanebisphosphonate thin film with electrogenerated chemiluminescent detection. Journal of the American Chemical Society, 1994, 116(18): 8386-8387
    [23] Wang M J, Sun C Y, Wang L Y, et al. Electrochemical detection of DNA immobilized on gold colloid particles modified self-assembled monolayer electrode with silver nanoparticle label. Journal of Pharmaceutical and Biomedical Analysis, 2003, 33(5): 1117-1125
    [24] Meric B, Kerman K, Ozkan D, et al. Indicator-free electrochemical DNA biosensor based on adenine and guanine signals. electroanalysis, 2002, 14(18): 1245-1250
    [25] Pournaghi-Azar M H, Hejazi M S, Alipour E. Developing an electrochemical deoxyribonucleic acid (DNA) biosensor on the basis of human interleukine-2 gene using an electroactive label. Analytica Chimica Acta, 2006, 570(2): 144-150
    [26] Choi Y S, Lee K S, Park D H. Gene detection using Hoechst 33258 on a biochip. Current Applied Physics, 2006, 6(4): 777-780
    [27] Wang J, Cai X H, Jonsson C, et al. Adsorptive stripping potentiometry of DNAat electrochemically pretreated carbon paste electrodes. Electroanalysis, 1996, 8(1): 20-24
    [28] Athey D, Ball M, Calum J M, et al. A study of enzyme-catalyzed product deposition on planar gold electrodes using electrical impedance measurement. Electroanalysis, 1995, 7(3): 270-273
    [29]曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社, 2002: 66-68
    [30] Kharitonov A B, Alfonta L, Katz E, et al. Probing of bioaffinity interactions at interfaces using impedance spectroscopy and chronopotentiometry. Electroanalytical Chemistry, 2000, 487(2): 133-141
    [31] Laureyn W, Nelis D, van Gerwen P, et al. Nanoscaled interdigitated titanium electrodes for impedimetric biosensing. Sensors and Actuators B: Chemical, 2000, 68(1-3): 360-370
    [32] Peng H, Soeller C, Cannell MB, et al. Electrochemical detection of DNA hybridization amplified by nanoparticles. Biosensors and Bioelectronics, 2006, 21(9): 1727-1736
    [33] Sun Y, Yan F, Yang W, et al. Multilayered construction of glucose oxidase and silica nanoparticles on Au electrodes based on layer-by-layer covalent attachment. Biomaterials, 2006, 27(21): 4042-4049
    [34] Dufford R T, Nightingale D, Gaddum L W. Luminescence of grignard compounds in electric and magnetic fields, and related electrical phenomena. Journal of the American Chemical Society, 1927, 49(8): 1858-1864
    [35] Knight A W, Greenway G M. Occurrence, mechanisms and analytical applications of electrogenerated chemiluminescence. Analyst, 1994, 119(5): 879-890
    [36] Deaver D R. A new non-isotopic detection system for immunoassays. Nature, 1995, 377(6551): 758-760
    [37] F?hnrich K A, Pravda M, Guilbault G G. Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta, 2001, 54(4): 531-559
    [38] Clack L C, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 1962, 102(1): 29-45
    [39] Updike S J, Hicks G P. The Enzyme Electrode. Nature, 1967, 214(5092): 986-988
    [40] Campas M, Marty J L. Enzyme sensor for the electrochemical detection of the marine toxin okadaic acid. Analytica Chimica Acta, 2007, 605(1): 87-93
    [41] Alonso B, Armad P G, Losad J, et al. Amperometric enzyme electrodes for aerobic and anaerobic glucose monitoring prepared by glucose oxidase immobilized in mixed ferrocene-cobaltocenium dendrimers. Biosensors and Bioelectronics, 2004, 19(8): 1617-1625
    [42] Llaudet E, Botting N P, Crayston J A, et al. A three-enzyme microelectrode sensor for detecting purine release from central nervous system. Biosensors and Bioelectronics, 2003, 18(1): 43-52
    [43] Okuda J, Wakai J, Yuhashi N, et al. Glucose enzyme electrode using cytochrome b562 as an electron mediator. Biosensors and Bioelectronics, 2003, 18(3): 699-704
    [44] Gobi K V, Mizutani F. Layer-by-layer construction of an active multilayer enzyme electrode applicable for direct amperometric determination of cholesterol. Sensors and actuators B: Chemical, 2001, 80(2): 272-277
    [45] Di J, Bi S, Zhang M. Third-generation superoxide anion sensor based on superoxide dismutase directly immobilized by sol-gel thin film on gold electrode. Biosensors and Bioelectronics, 2004, 19(5): 1479-1486
    [46] Jia J, Wang B, Wu A, et al. A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel network. Analytical Chemistry, 2002, 74(9): 2217-2223
    [47] Polsky R, Harper J C, Dirk S M, et al. Diazonium-functionalized horseradish peroxidase immobilized via addressable electrodeposition: direct electron transfer and electrochemical detection. Langmuir, 2007, 23(2): 364-366
    [48]肖红玉,柴春彦,刘国艳等.检测动物性食品中克伦特罗残留的免疫电化学传感器反应体系的确定.中国食品学报, 2006, 6(1): 357-361
    [49]马静,张伟尉,李闻等.基于纳米金固定大肠杆菌O157:H7酶免疫传感器的研究.中国卫生检验杂志, 2007, 17(12): 2156-2158
    [50] Preechaworapun A, Dai Z, Xiang Y, et al. Investigation of the enzyme hydrolysis products of the substrates of alkaline phosphatase in electrochemical immuno- sensing. Talanta, 2008, 76(2): 424-431
    [51] Aizawa M, Morioka A, Suzuki S, et al. Enzyme immunosensor III. amperometric determination of human chorionic gonadotropin by membrane-bound antibody. Analytical Biochemistry, 1979, 94(1): 22-28
    [52] Forrow N J, Foulds N C, Frew J. E, et al. Synthesis, characterization, and evaluation of ferrocene-theophylline conjugates for use in electrochemical enzyme immunoassay. Bioconjugate Chemistry, 2004, 15(1): 137-144
    [53] Van Staveren D R, Metzler-Nolte N. Bioorganometallic chemistry of ferrocene. Chemical Review, 2004, 104(12): 5931-5986
    [54] Du D, Ju H, Zhang X, et al. Electrochemical immunoassay of membrane P-glycoprotein by immobilization of cells on gold nanoparticles modified on a methoxysilyl-terminated butyrylchitosan matrix. Biochemistry, 2005, 44(34): 11539-11545
    [55] Cui R, Pan H C, Zhu J J, et al. Versatile immunosensor using CdTe quantum dots as electrochemical and fluorescent labels. Analytical Chemistry, 2007, 79(22): 8494-8501
    [56] Bao Y P, Wei T F, Lefebvre P A, et al. Detection of protein analytes via nanoparticle-based bio-bar code technology. Analytical Chemistry, 2006, 78(6): 2055-2059.
    [57] Das J, Aziz M A, Yang H. A nanocatalyst-based assay for proteins: DNA-free ultrasensitive electrochemical detection using catalytic reduction of p-nitrophenol by gold-nanoparticle labels. Journal of the American Chemical Society. 2006, 128(50): 16022-16023
    [58] Janata J. An immunoelectrode. Journal of the American Chemical Society, 1975, 97(10): 2914-2916
    [59]袁若,唐点平,柴雅琴等.高灵敏电位型免疫传感器对乙型肝炎表面抗原的诊断技术研究.中国科学B辑化学, 2004, 34(4): 279-286
    [60]唐点平,袁若,柴雅琴.纳米金修饰玻碳电极固载抗体电位型白喉类毒素免疫传感器的研究.化学学报, 2004, 62(20): 2062-2066
    [61] Jiang D, Tang J, Liu B, et al. Ultrathin alumina sol-gel-derived films: allowing direct detection of the liver fibrosis markers by capacitance measurement. Analytical Chemistry, 2003, 75(17): 4578-4584
    [62] Bain C D, Troughton E B, Tao Y. T. et al. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. Journal of the American Chemical Society, 1989, 111(1): 321-335
    [63] Yagiuda K, Hemmi A, Ito S. Development of a conductivity-based immunosensor for sensitive detection of methamphetamine (stimulant drug) in human urine. Biosensors and Bioelectronics, 1996, 11(8): 703-707
    [64]杜晓燕,陈文华,常东.电化学DNA传感器及其在环境和医学检验中的应用.传感技术学报, 2002, 15(4): 347-352
    [65]高志贤,晁福寰. DNA生物传感器及其研究进展.生物技术通讯, 2000, 11(1): 45-53
    [53] Van Staveren D R, Metzler-Nolte N. Bioorganometallic chemistry of ferrocene. Chemical Review, 2004, 104(12): 5931-5986
    [54] Du D, Ju H, Zhang X, et al. Electrochemical immunoassay of membrane P-glycoprotein by immobilization of cells on gold nanoparticles modified on a methoxysilyl-terminated butyrylchitosan matrix. Biochemistry, 2005, 44(34): 11539-11545
    [55] Cui R, Pan H C, Zhu J J, et al. Versatile immunosensor using CdTe quantum dots as electrochemical and fluorescent labels. Analytical Chemistry, 2007, 79(22): 8494-8501
    [56] Bao Y P, Wei T F, Lefebvre P A, et al. Detection of protein analytes via nanoparticle-based bio-bar code technology. Analytical Chemistry, 2006, 78(6): 2055-2059.
    [57] Das J, Aziz M A, Yang H. A nanocatalyst-based assay for proteins: DNA-free ultrasensitive electrochemical detection using catalytic reduction of p-nitrophenol by gold-nanoparticle labels. Journal of the American Chemical Society. 2006, 128(50): 16022-16023
    [58] Janata J. An immunoelectrode. Journal of the American Chemical Society, 1975, 97(10): 2914-2916
    [59]袁若,唐点平,柴雅琴等.高灵敏电位型免疫传感器对乙型肝炎表面抗原的诊断技术研究.中国科学B辑化学, 2004, 34(4): 279-286
    [60]唐点平,袁若,柴雅琴.纳米金修饰玻碳电极固载抗体电位型白喉类毒素免疫传感器的研究.化学学报, 2004, 62(20): 2062-2066
    [61] Jiang D, Tang J, Liu B, et al. Ultrathin alumina sol-gel-derived films: allowing direct detection of the liver fibrosis markers by capacitance measurement. Analytical Chemistry, 2003, 75(17): 4578-4584
    [62] Bain C D, Troughton E B, Tao Y. T. et al. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. Journal of the American Chemical Society, 1989, 111(1): 321-335
    [63] Yagiuda K, Hemmi A, Ito S. Development of a conductivity-based immunosensor for sensitive detection of methamphetamine (stimulant drug) in human urine. Biosensors and Bioelectronics, 1996, 11(8): 703-707
    [64]杜晓燕,陈文华,常东.电化学DNA传感器及其在环境和医学检验中的应用.传感技术学报, 2002, 15(4): 347-352
    [65]高志贤,晁福寰. DNA生物传感器及其研究进展.生物技术通讯, 2000, 11(1): 45-53Communications, 2001, 3(5): 224-228
    [79] Kelley S O, Boon E M, Barton J K, et al. Single-base mismatch detection based on charge transduction through DNA. Nucleic Acids Research, 1999, 27(24): 4830-4837
    [80] Wu Z S, Jiang J H, Shen G L, et al. Highly sensitive DNA detection and point mutation identification: an electrochemical approach based on the combined use of ligase and reverse molecular beacon. Human mutation, 2007, 28(6): 630-637
    [81] Xiao Y, Lubin A A, Baker B R, et al. Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex. Proceedings of the National Academy of Sciences U S A, 2006, 103(45): 16677-16680
    [82] Takenaka S, Uto Y, Kondo H, et al. Electrochemically active DNA probes: Detection of target DNA sequences at femtomole level by hightperformance liquid chromatography with electrochemical detection. Analytical Biochemistry, 1994, 218(2): 436-443
    [83] Gao Z Q, Rafea S, Lim L H. Detection of nucleic acids using enzyme-catalyzed template-guided deposition of polyaniline. Advanced Materials, 2007, 19(4): 602-606
    [84] Kavanagh P, Leech D. Redox polymer and probe DNA iethered to gold electrodes for enzyme-amplified amperometric detection of DNA hybridization. Analytical Chemistry, 2006, 78(8): 2710-2716
    [85] Miranda-Castro R, de-los-Santos-Alvarez P, Lobo-Castanon M J, et al. Hairpin-DNA probe for enzyme-amplified electrochemical detection of legionella pneumophila. Analytical Chemistry, 2007, 79(11): 4050-4055
    [86] Authier L, Grossiord C, Brossier P, et al. Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Analytical Chemistry, 2001, 73(18): 4450-4456
    [87] Cai H, Xu Y, Zhu N N, et al. An electrochemical DNA hybridization detection assay based on a silver nanoparticle label. Analyst, 2002, 127(6): 803-808
    [88] Kawde A, Wang J. Amplified electrical transduction of DNA hybridization based on polymeric beads loaded with multiple gold nanoparticle tags. Electroanalysis, 2004, 16(1-2): 101-107
    [89] Wang J, Liu G, Merkoci A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. Journal of the American Chemical Society,Communications, 2001, 3(5): 224-228
    [79] Kelley S O, Boon E M, Barton J K, et al. Single-base mismatch detection based on charge transduction through DNA. Nucleic Acids Research, 1999, 27(24): 4830-4837
    [80] Wu Z S, Jiang J H, Shen G L, et al. Highly sensitive DNA detection and point mutation identification: an electrochemical approach based on the combined use of ligase and reverse molecular beacon. Human mutation, 2007, 28(6): 630-637
    [81] Xiao Y, Lubin A A, Baker B R, et al. Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex. Proceedings of the National Academy of Sciences U S A, 2006, 103(45): 16677-16680
    [82] Takenaka S, Uto Y, Kondo H, et al. Electrochemically active DNA probes: Detection of target DNA sequences at femtomole level by hightperformance liquid chromatography with electrochemical detection. Analytical Biochemistry, 1994, 218(2): 436-443
    [83] Gao Z Q, Rafea S, Lim L H. Detection of nucleic acids using enzyme-catalyzed template-guided deposition of polyaniline. Advanced Materials, 2007, 19(4): 602-606
    [84] Kavanagh P, Leech D. Redox polymer and probe DNA iethered to gold electrodes for enzyme-amplified amperometric detection of DNA hybridization. Analytical Chemistry, 2006, 78(8): 2710-2716
    [85] Miranda-Castro R, de-los-Santos-Alvarez P, Lobo-Castanon M J, et al. Hairpin-DNA probe for enzyme-amplified electrochemical detection of legionella pneumophila. Analytical Chemistry, 2007, 79(11): 4050-4055
    [86] Authier L, Grossiord C, Brossier P, et al. Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Analytical Chemistry, 2001, 73(18): 4450-4456
    [87] Cai H, Xu Y, Zhu N N, et al. An electrochemical DNA hybridization detection assay based on a silver nanoparticle label. Analyst, 2002, 127(6): 803-808
    [88] Kawde A, Wang J. Amplified electrical transduction of DNA hybridization based on polymeric beads loaded with multiple gold nanoparticle tags. Electroanalysis, 2004, 16(1-2): 101-107
    [89] Wang J, Liu G, Merkoci A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. Journal of the American Chemical Society,electrodes with DNA. Electronal.Chem, 1996, 4(3): 183-188
    [103] Marrazza G, Chianella I, Mascini M. Disposable DNA electrochemical sensor for hybridization detection. Biosensors and Bioelectronics, 1999, 14(1): 43-51
    [104] Sastrt M, Ramakrishnan V, Pattarkine M, et al. Hybridization of DNA by sequential immobilization of oligonucleotides at the air-water interface. Langmuir, 2000, 16(24): 9142-9146
    [105] Yau H C M, Chan H L, Yang M S. Electrochemical properties of DNA-intercalating doxorubicin and methylene blue on n-hexadecyl mercaptan-doped 5′-thiol-labeled DNA- modified gold electrodes. Biosensors and Bioelectronics, 2003, 18(7): 873-879
    [106] Ozkan D, Erdem A, Kara P, et al. Electrochemical detection of hybridization using peptide nucleic acids and methylene blue on self-assembled alkanethiol monolayer modified gold electrodes. Electrochemistry Communications, 2002, 4(10): 796-802
    [107] K’Owino I O, Mwilu S K, Sadik O A. Metal-enhanced biosensor for genetic mismatch detection. Analytical Biochemistry, 2007, 369(1): 8-17
    [108]王保珍,杜小燕,郑晶等.铂电极表面生物素-亲和素固载单链脱氧核糖核酸的电化学传感器.分析化学, 2005, 33(6): 789-792
    [109] Hashimoto K, Ito K, Ishimori Y. Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye. Analytical Chemistry, 1994, 66(21): 3830-3833
    [110] Staudt L M. Gene expression physiology and pathophysiology of the immune system. Trends in Immunology, 2001, 22(1): 35-40
    [111] Rodriguez-Mozaz S, de Alda M J L, BarcelóD. Biosensors as useful tools for environmental analysis and monitoring. Analytical and Bioanalytical Chemistry, 2006, 386(4): 1025-1041
    [112] Debouck C, Goodfellow P N. DNA microarrays in drug discovery and development. Nature Genetics, 1999, 21(1): 48-50
    [113] Song L, Ahn S, Walt D R. Fiber-optic microsphere-based arrays for multiplexed biological warfare agent detection. Analytical Chemistry, 2006, 78(4): 1023-1033
    [114] Fabris L, Dante M, Braun G, et al. A heterogeneous pna-based SERS method for DNA detection. Journal of the American Chemical Society, 2007, 129(19): 6086-6087-
    [115] Mallard F, Marchand G, Ginot F, et al. Opto-electronic DNA chip: highperformance chip reading with an all-electric interface. Biosensors and Bioelectronics, 2005, 20(9): 1813-1820
    [116] Marquette C A, Blum L J. Conducting elastomer surface texturing: a path to electrode spotting: Application to the biochip production. Biosensors and Bioelectronics, 2004, 20(2): 197-203
    [117] Yao X, Li X, Toledo F, et al. Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification. Analytical Biochemistry, 2006, 354(2): 220-228
    [118] Cooper M A, Dultsev F N, Minson T, et al. Direct and sensitive detection of a human virus by rupture event scanning. Nature Biotechnology, 2001, 19(9): 833-837
    [119] Chiu C S, Gwo S. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates. Analytical Chemistry, 2008, 80(9): 3318-3326
    [120] Su X D, Robelek R, Wu Y J, et al. Detection of point mutation and insertion mutations in DNA using a quartz crystal microbalance and MutS, a mismatch binding protein. Analytical Chemistry, 2004, 76(2): 489-494
    [121] Hansen K M, Thundat T. Microcantilever biosensors. Methods, 2005, 37(1): 57-64
    [122] Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers. Biosensors and Bioelectronics, 2005, 20(12): 2424-2434
    [123] Hansen J A, Mukhopadhyay R, Hansen J O, et al. Femtomolar electrochemical detection of DNA targets using metal sulfide nanoparticles. Journal of the American Chemical Society, 2006, 128(12): 3860-3861
    [124] Lucarelli F, Tombelli S, Minunni M, et al. Electrochemical and piezoelectric DNA biosensors for hybridisation detection. Analytica Chimica Acta, 2008, 609(2): 139-159
    [125] Bakker E, Qin Y. Electrochemical sensors. Analytical Chemistry, 2006, 78(12): 3965-3984
    [126] Drummond T G, Hill M G, Barton J K. Electrochemical DNA sensors. Nature Biotechnology, 2003, 21(10): 1192-1199
    [127] Anne A, Bouchardon A, Moiroux. J. 3'-Ferrocene-labeled oligonucleotide chains end-tethered to gold electrode surfaces: novel model systems for exploring flexibility of short DNA using cyclic voltammetry. Journal of the AmericanChemical Society, 2003, 125(5): 1112-1113
    [128] Fan C, Plaxco K W, Heeger A J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proceedings of the National Academy of Sciences U S A, 2003, 100(16): 9134-9137
    [129] Yu C J, Wan Y, Yowanto H, et al. Electronic detection of single-base mismatches in DNA with ferrocene-modified probes. Journal of the American Chemical Society, 2001, 123(45): 11155-11161
    [130] Fredriksson S, Gullberg M, Jarvius J, et al. Protein detection using proximity-dependent DNA ligation assays. Nature Biotechnology, 2002, 20(5): 473-477
    [131] Gullberg M, Fredriksson S, Taussig M, et al. A sense of closeness: protein detection by proximity ligation. Current Opinion in Biotechnology, 2003, 14(1): 82-86
    [132] Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 2003, 31(13): 3406-3415
    [133] Ellingtion A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287): 818-822
    [134] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968): 505-510
    [135] Hansen J A, Wang J, Kawde A N, et al. Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. Journal of the American Chemical Society, 2006, 128(7): 2228-2229
    [136] Centi S, Tombelli S, Minunni M, et al. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Analytical Chemistry, 2007, 79(4): 1466-1473
    [137] Bang G S, Cho S, Kim B G.. A novel electrochemical detection method for aptamer biosensors. Biosensors and Bioelectronics, 2005, 21(6): 863-870
    [138] Xiao Y, Piorek B D, Plaxco KW, et al. A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. Journal of the American Chemical Society, 2005, 127(51): 17990-17991
    [139] Zuo X, Song S, Zhang J, et al. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. Journal of the American Chemical Society, 2007, 129(5): 1042-1043
    [140] Wu Z S, Guo M M, Zhang S B, et al. Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Analytical Chemistry, 2007, 79(7): 2933-2939
    [141] Piganeau N, Jenne A, Thuillier V, et al. An allosteric ribozyme regulated by doxycyline. Angewandte Chemie International Edition, 2000, 39(23): 4369-4373
    [142] Radi A E, Acero Sánchez J L, Baldrich E, et al. Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. Journal of the American Chemical Society, 2006, 128(1): 117-124
    [143] Baker B R, Lai R Y, Wood M S, et al. An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. Journal of the American Chemical Society, 2006, 128(10): 3138-3139
    [144] Lai R Y, Plaxo K W, Heeger A J. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Analytical Chemistry, 2007, 79(1): 229-233
    [145] Green L S, Jellinek D, Jenison R, et al. Inhibitory DNA ligands to platelet-derived growth factor b-chain. Biochemistry, 1996, 35(45): 14413-14424
    [146] Fahlman R P, Sen D. DNA conformational switches as sensitive electronic sensors of analytes. Journal of the American Chemical Society, 2002, 124(17): 4610-4616
    [147] Heldin C H, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiological Reviews, 1999, 79(4): 1283-1316
    [148] Steel A B, Levicky R L, Herne T M, et al. Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly. Biophysical Journal, 2000, 79(2): 975-981
    [149] Lai R Y, Plaxco K W, Heeger A J. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Analytical Chemistry, 2007, 79(1): 229-233
    [150] Vitzthum F, Behrens F, Anderson N L, et al. Proteomics: from basic research to diagnostic application. A review of requirements & needs, Journal of Proteome Research, 2005, 4(4): 1086-1097
    [151] Michal B M, Buchner V, Rishpon J. Electrochemical biosensors for pollutants in the environment. Electroanalysis, 2007, 19(6): 2015-2028
    [152] Cooper K M, Samsonava J V, Plumpton L, et al. Enzyme immunoassay forsemicarbazide-the nitrofuran metabolitr and food contaminant. Analytica Chimica Acta, 2007, 592(1): 64-71
    [153] Tang L, Zeng G M, Shen G L, et al. Rapid detection of picloram in agricultural field samples using a disposable immunomembrane-based electrochemical sensor. Environmental Science and Technology, 2008, 42(5): 1207-1212
    [154] Uttamchandani M, Huang X, Chen G Y J, et al. Nanodroplet profiling of enzymatic activities in a microarray. Bioorganic and Medicinal Chemistry Letters, 2005, 15(7): 2135-2139
    [155] Bhattacharya D, Bhattacharya R, Dhar T K. A novel signal amplification technology for ELISA based on catalyzed reporter deposition. Demonstration of its applicability for measuring aflatoxin B1. Journal of Immunological Methods, 1999, 230(1): 71-86
    [156] Jin L J, Giordano B C, Landers J P. Dynamic labeling during capillary or microchip electrophoresis for laser-induced fluorescence detection of protein-SDS complexes without pre- or postcolumn labeling. Analytical Chemistry, 2001, 73(14): 4994-4999
    [157] Ng E M, Yang F, Kameyama A, et al. High-throughput screening for enzyme inhibitors using frontal affinity chromatography with liquid chromatography and mass spectrometry. Analytical Chemistry, 2005, 77(20): 6125-6133
    [158] Schroder S, Zhang H, Yeung E S, et al. Quantitative gel electrophorsis: sources of variation. Journal of Proteomic Research, 2008, 7(4): 1226-1234
    [159] Bangham A D , Standish M M , Watkins J C . Diffusion of univalentions across the lamella of swollen phospholipid. Journal of Molecular Biology, 1965, 13(1): 238-252

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700