脉动冲击攻丝创新设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺纹连接是机械连接和紧固的最常用手段,而内螺纹的加工方法却不能适应现代制造业的要求,研制和开发高效、实用的内螺纹加工新工艺具有重要意义。在查阅了大量有关内螺纹加工原理和方法的资料基础上分析了各种内螺纹加工技术并探讨了优缺点,得出没有同时满足高加工效率、高加工精度和设备简单的内螺纹加工方法。对应用最广泛的切削攻丝方法存在的问题作了深入分析得出其加工效率和精度低下的原因为:(1)切削速度比较低;(2)切削液不能有效进入切削区;(3)断屑排屑困难;(4)切削扭矩大;(5)提供的是稳态动力不能有效克服动态载荷;(6)切削温度高,散热差。
     本文应用TRIZ理论(发明问题解决理论)技术系统进化法则对攻丝系统进行分析,攻丝系统应向“动态化”阶段发展;运用攻丝系统的物质—场模型确定了攻丝的四对技术冲突,并将其泛化为“物体产生的有害因素”与“装置的复杂性”和“生产率”与“制造精度”两对标准冲突,运用冲突解决原理解决技术冲突得到:(1)脉动冲击攻丝方法(该方法国内外首次提出);(2)实现脉冲单向直线输入运动转化为丝锥往复螺旋运动的两阶段解决方案。对脉动冲击攻丝概念应用冲突解决原理设计了脉动冲击攻丝的机构原理解,最后基于原理解构形设计了脉动冲击攻丝装置。
     脉动冲击攻丝装置是一复杂系统,其详细设计的数字模型要求为实现方案评估、变异设计、制造、工程分析和优化等后续工作提供良好基础。应用UG软件的WAVE技术的系统工程方法和控制结构建立了脉动冲击攻丝装置的系统化的自顶向下的装配模型,完成零部件的详细设计,该模型实现了装配和零件两级参数化,节省了重复建模和模型修改的时间,提高了设计效率,不但可以通过更改总体参数,生成一系列的相关产品实现多种方案的评估,而且也为仿真分析及变型产品设计创造了有利条件。对建模过程中遇到的几个重要问题作了探讨并提供了解决方法,为其他复杂装置设计提供了经验和思路。整个模型可以作为样板供以后的项目参考使用。
     为了对基于UG/WAVE建立的脉动冲击攻丝装置的模型动力学仿真研究,验证脉动冲击攻丝设想,应用ADAMS软件对脉动冲击攻丝装置建立动力学模型、仿真求解和输出各种响应曲线,对曲线分析讨论并验证了施加外部载荷的形式和条件,揭示了脉动冲击攻丝的机理,对脉动冲击攻丝概念设想提供了依据和支持。最后总结了脉动冲击攻丝装置在动力学仿真过程中的经验和体会,为其他复杂装置的动力学仿真提供经验和思路。
     通过以上研究阐明脉动冲击攻丝方法:(1)丝锥往复、级进和动态攻丝降低攻丝扭矩、改善润滑条件、克服动态载荷、易于断屑排屑和散热,提高了加工质量;(2)攻丝时间历程短,提高了加工效率;(3)一套机构实现丝锥的往复螺旋运动较传统攻丝两套机构结构简单;(4)脉动冲击攻丝具有内螺纹加工理论和方法上的创新。脉动冲击攻丝方法具有广阔的开发和应用前景。
The use of screw is the most commonly mechanical means of fastening and joining parts, but the internal thread tapping can not match the demands of modern manufacturing, so research and development of highly efficient, practical and new thread tapping technology is of great significance. None thread processing methods meet the high efficiency and high precision processing and simple equipment by analysis the principles and exploring the advantages and disadvantages methods of thread of processing on the basis of a large amount of information of various threads of processing technology. The followed reasons can be drawn by analysis of issues of the lower efficiency and accuracy of cutting tapping method which is the most extensive applied: (1) cutting speed is relatively low; (2) cutting fluid can not effectively enter into the cutting area, (3) broken and discharged iron scraps difficulty; (4) the cutting torque is too high; (5) the steady-state power can not be effectively overcome dynamic load ;(6) the cutting temperatures is high and heat dismiss slowly.
     Applied TRIZ theory (Theory of Inventive Problem Solving) technical evolving rules for analysis tapping system, tapping system should be "dynamic" phase of development; There are four technical conflict identified by using the Substance -field model to tapping system , and two standards of conflict be generalized to "objects of the harmful factors" , "the complexity of the device" and "productivity" and "precision manufacturing", then conflict resolution principles apply technology to resolve the conflicts: (1) Achieved the pulse impact tapping method—which is proposed firstly; (2) Achieved of transfer pulse input one-way linear movement into a to-and-fro spiral movement of tap output. Consequently pulse impact tapping mechanism is designed on the concept of conflict principles applied to the two-stage solution. Finally,the configuration of pulse impact tapping devices is designed based on the mechanism.
     Pulse impact tapping device is a complex system, the detailed design of the digital model should provide a good foundation for the realization of the assessment, variation design, manufacturing, engineering analysis and optimization etc. The application of systems engineering and control structure methods of UG /WAVE technology established a pulse impact tapping devices systematic top-down assembly model, which achieve the assembly and parts of two parameters through the completion of the detailed design of parts and components of the model, and shorten the repeat modeling and model updating time and improve the efficiency of the design. The model not only can be changed by the overall parameters and generated a series of products related to the assessment of a variant design, but also create favorable conditions for the analysis and simulation of product variant design. Encountered in the modeling of several important issues were discussed and provided solutions which can supply experiences and thoughts for other complex designed devices. The whole model can serve as a model for future projects use and reference.
     To simulate the model of pulse impact tapping device based on UG / WAVE and validate pulse impact tapping ideas, software ADAMS is applied to pulse impact tapping device to establish dynamic model, solve simulation and output various response curves. The conditions of external load are analyzed ,discussed and verified. The pulse impact tapping mechanism is revealed and feasible by analysis response curves. Finally the experience summed up of the pulse impact tapping device in the course of dynamics simulation provide other complex device dynamics simulation.
     Conclusions can be drawn safely through the above stated pulse impact tapping research: (1) the method shortens the tapping time course, improves processing efficiently;(2) the reciprocating and fluctuant movement of tap reduces tapping torque, improves lubrication conditions to overcome dynamic load, breaks and discharges iron scraps and heat dismisses easily, so it improves the quality of processing;(3) it is simpler that the pulse impact tapping achieving spiral movement by one mechanism than traditional tapping method by two structure. (4) the pulse impact tapping has theoretical and methodological innovation . So the pulse impact tapping has broad prospects for development and application.
引文
[1]新井实根.全高速高效率孔加工[J].机械技术,1999,47(6):18-29
    [2]庞思勤.金属切削技术的发展与展望[J].兵工学报,1999,20(3):268-272
    [3]王先边.精密加工和超精密加工技术综述[J].中国机械工程,1999,10(5):570-576
    [4]张德远,陈鼎昌.钛合金振动攻丝降低攻丝扭矩的研究[J].机械工程学报,1994,30(Ⅰ):23-26
    [5]James R.All taped out ?[J].Manufacturing Engineering,1990,10(5):49 -52.
    [6]Henderer W.E..On the mechanics of tapping by cutting[J].Journal of Engineering for Industry,1977,5(2):257-262
    [7]Emuge Co,Gewindeschneid technik & Spanntechnik[M].Katalog 102,1999
    [8]曹俊.冲击攻丝系统的动力学模型及仿真[硕士学位论文].昆明理工大学,2003
    [9]Gajdosik Dan,Threads will roll[J].Cutting Tool Engineering,1995,10(8):44-50.
    [10]崔长华.螺纹的滚压加工[M].北京:机械工业出版社,1978.
    [11]John Allmett.Thread milling:the inside story[J].Cutting Tool Engineering,1994(6):95-99
    [12]陆邦春等,超大强度钢大直径螺纹数控铣加术,航天制造技术,2003,(3):4-7
    [13]James R,Koelsch.Thread milling takes on tapping[J].Manufacturing Engineering,1995(4):77-84.
    [14]Eugene Sprow.Tapping goes hightech[J]Tooling & production,1991,8:35-40
    [15]钱国强.高速攻丝技术[J].机械工程师,2002(1):79-80
    [16]Bi Zhang,Fulun Yang,Jiexin Wang.Fundamental aspects in Vibration-assisted Tapping[J].Materials Processing Technoly,2003(132):345-352
    [17]苟琪,陈鼎昌.振动攻丝工艺研究[J].航空精密制造技术,1998(02):21-23
    [18]限部淳一郎.精密加工-振动切削〔基础与应用)[M).北京:机械工业出版社,1985
    [19]陈学永.工艺参数对振动攻丝加工影响的实验研究[J].江苏理工大学学报 2001,22(1):4-7
    [20]吕英波.振动攻丝的研究及发展前景J.机电技术,2005(1):19-20
    [21]孙德跃.电火花加工螺纹[J]装备机械,2005(2):52-53
    [22]Tom Doppke.A Solution to Thin Metal[J].American Fastener Journal;Jan/Feb 2006,(23):42-44
    [23]Tengyun Cao,John W.Sutherland.Investigation of thread tapping load characteristics through mechanistics modeling and experimentation [J].International Journal of Machine Tools & Manufacture,2002,(42):21-26
    [24]张鄂.现代设计方法[M].西安:西安交通大学出版社 1999.10
    [25]廖林清,王化培,石晓辉等.机械设计方法学[M].重庆:重庆大学出版社,2000
    [26]唐林.产品概念设计基本原理及方法[M].北京:国防工业出版社,2006
    [27]邓家禔,韩晓建,曾硝等.产品概念设计-理论方法与技术[M].北京:机械工业出版社,2002.5
    [28]李喜桥.创新思维与工程训练[M].北京航空航天大学出版社,2005
    [29]曲继方.技术创新教程[M].冶金工业出版社,2005
    [30]刘彦生.西方创新思维方式论[M].天津大学出版社,2007
    [31]梁锡昌.机械创造方法与专利设计实例[M].北京:国防工业出版社,2005
    [32]孙林夫.现代产品设计技术及其发展中国制造业信息化[J].2003,32(1):37-40
    [33]路甬祥.工程设计的发展趋势和未来[J].机械工程学报,1997,33(1):1-10
    [34]沈惠平.机械创新设计及其研究[J].机械科学与技术,1997,16(5):791-795.
    [35]J.S.Gero.Design prototypes:A knowledge representation scheme for design[J].AI Magazine,1990,11(4):26-36.
    [36]Robert L.Norton.Design of Machinery[M].Worcester Polytechnic Institute,Massachusetts.1999
    [36]闻邦椿,张国忠,柳洪义.面向产品广义质量的综合设计理论与方法[M].北京:科学出版社 2007
    [37]G.帕尔 W.拜茨.工程设计学学习与实践手册[M].北京:机械工业出版社,1992
    [38](美)Nam Pyo Suh 著;谢友柏译.公理设计-发展与应用[M].北京:机械工业出版社,2004
    [39]Ako Y,Ono S,Harada.Quality deployment including cost,reality and technology.Quality,1983.13(3):61-77
    [40]王传友,王国洪.创新思维与创新技法[M].北京:人民交通出版社,2006
    [41]Genrich Altshuler.40Principles TRIZ Keys to Technical Innovation [M].Worcester:Technical Innovation Center,1997
    [42]Genrich Altshuler.And Suddenly the Inventor Appeared[M].Worcester:Technical Innovation Center,1996.
    [43]陈志同,王彦丰,韩小刚等.手动攻丝扭矩降低效果的实验研究[J].航空精密制造技术.2006,38(3):32-34
    [44]储德新,何帮贵,段振华.冲击加工螺纹的方法研究[J].机械设计与制造,2007,6:131-133
    [45](联邦德国)柯勒(Koller,R.)著;党志梁等译.机械设计方法学[M].北京:科学出版社,1990
    [46]邹慧君.机械系统概念设计[M].北京:机械工业出版社 2002
    [47]Unigraphics Solutions Inc.UG NX2 CAD快速入门指导[M].北京:清华大学出版社,2004
    [48]洪如瑾,NX知识工程应用技术-CAD/CAE篇[M].北京:清华大学出版社,2006
    [49]Unigraphics Solutions Inc.UG WAVE产品设计技术培训教程[M].北京:清华大学出版社 2002
    [50]赵波,陈向军.UG NX4相关参数化培训教程[M].北京:清华大学出版社,2007
    [51]戴春祥.UG NX4高级装配培训教程[M].北京:清华大学出版社,2006
    [52]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002
    [53]李增刚,ADAMS入门详解与实例[M].北京:国防工业出版社,2006
    [54]陈立平,张云清,任卫群等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版,2005
    [55]孙东,林福永编著.系统工程引论[M].北京:清华大学出版社 2004
    [56]郑凯,胡仁喜,陈鹿民等编著.ADAMS200机械设计高级应用实例[M].北京:机械工业出版社,2006
    [57]MSC.Software 著,邢俊文,陶永忠译.MSC.ADAMS/View高级培训教程[M].北京:清华大学出版社,2004
    [58]胡宗武.工程振动分析基础[M].上海:上海交通大学出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700