数控机床伺服系统刚度对定位精度影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代数控机床向高精度、高速化方向不断发展,对其性能、精度和效率的要求日趋提高,特别是对伺服系统提出了很高的要求。数控机床对伺服系统的性能指标可归纳为:定位精度要高、跟踪指令的响应要快、系统的稳定性要好。可见数控机床的定位精度是衡量其性能的重要指标,影响数控机床定位精度的因素很多,其中伺服系统的刚度是最主要的因素之一,因此研究伺服系统的刚度对定位精度的影响有十分重要的意义。
     本文对伺服系统的刚度和定位精度作了研究,得出了影响伺服系统刚度和定位精度的因素,分析了刚度对定位精度的影响,并提出了通过改善伺服系统的刚度以提高定位精度的措施。具体包括:
     1.把数控机床伺服进给系统抽象为伺服驱动模块和机械传动系统模块的串联。分别建立了电枢控制的伺服电机的数学模型和机械传动机构的等效动力学模型,得出了传递函数,然后综合为伺服系统的传递函数。
     2.伺服系统的刚度可分为机械刚度和伺服刚度。分别对机械刚度和伺服刚度作了分析,得出了伺服系统的结构和功能部件的参数对系统刚度的影响和刚度的变化规律,并提出了改善刚度的方法和措施。
     3.根据建立的数控伺服系统的数学模型,分析了伺服进给系统在位置信号、速度信号输入下的稳态误差和伺服系统在开环和闭环时的定位误差,求出了闭环伺服系统伺服误差的表达式,并对表达式作了分析。
     4.分析了开环、半闭环、闭环时伺服系统的刚度对定位精度的影响。重点分析了影响伺服系统定位精度的主要因素伺服静刚度误差。并采用前馈控制的方法来消除伺服静刚度误差以提高伺服系统的定位精度,并通过simulink仿真对此方法作了验证。
Modern numerical control machine trends toward to high precision , high speed, the structure is request more and more appropriate. The performance ,precision and efficiency tend towards advance, too. Especially, the requirement for machine tool servo system has been more and more higher. The performance index of servo system in NC machine can summary to: high precision, quick-response, stabilization. Obviously, positioning precision of the NC machine is the important guideline to judge the performance .The influence factor of the positioning precision are multiform, rigidity of the feed system is the uppermost Therefore, study for influence of rigidity of feed system in NC machine on position precision have very signification.
    In the paper, have studied the rigidity and the position precision. The influence factor of the rigidity and the position precision have educed. After then, have analysed the influence of rigidity on position precision, and put forward the improvement measure of rigidity and position precision. Including:
    1. Divide the NC feeding system into servo drive module and machine drive module. Parted create the servo drive system mathematic model and the actuating mechanism dynamic model and mathematic model. Educed the transfer function, then association with the transfer function of the feed system.
    2. The rigidity of the feeding system can divide into mechanical rigidity and servo rigidity and then analysed them. The structure and parameter of function unit in the feed system have been educed, and the regular pattern too, and then put forward the improvement measure of rigidity.
    3. According to the created model of the feed system. The steady error that create in feed system when input position signaling and rate signal, and the position error when open loop and close loop in the feed system. Working-out the servo error expression of the feed system in close loop, and analysed the expression.
    4. Study for influence of rigidity of feed system on position precision in open loop and close loop. The servo statically rigidity error has been study emphasis, and put forward the method to eliminate the servo statically rigidity error by taking the feedforward control. The validity of this method has proved by simulink simulation.
引文
[1] 廖效果,朱启逑主编 数字控制机床[M].武汉:华中科技大学出版社,2002.
    [2] 王爱玲 现代数控机床结构与设计[M].北京:兵器工业出版社,1999.
    [3] 戴曙主编 金属切削机床[M].北京 机械工业出版社 1993.
    [4] 杨有君主编 数字控制技术与数控机床[M].北京:机械工业出版社,1999
    [5] 毕承恩 现代数控机床[M].北京:机械工业出版社,1992.
    [6] 王爱玲,白恩远等编著 现代数控机床[M].北京:国防工业出版社,2003.
    [7] 邱国富 数控机床进给系统的研究[D].东北大学,2006.
    [8] 艾兴等编著 高速切削加工技术[M].北京:国防工业出版社,2004.
    [9] 张伯霖 高速切削技术及应用[M].北京:机械工业出版社,2003.
    [10] 刘玉荣 高速进给单元刚度与定位精度的研究[D].广东工业大学,2000.
    [11] 吴南星,孙庆鸿 直线电机与高速精密数控机床进给系统的研究.制造业自动化[J],2003,25(10):46—48.
    [12] Seamus Gordon, Michael T. Hillery. Development of a high-speed CNC cutting machine using Linear motor. Joural of Materials Processing Technology 166(2005)321-329.
    [13] Min-Seok Kim, Sung-Chong Chung. A systematic approach to design high-performance feed drive systems. Inernational Journal of Machine Tools & Manufacture 45 (2005)1421-1435.
    [14] 王先逵等 机床进给系统用直线电动机综述.制造技术与机床[J],2001,8:18-20.
    [15] 毛丽青 直线电机在数控领域中的应用和发展.机械工程师[J],2006,22—23.
    [16] 何俐萍 加工中心伺服进给系统动态优化设计及仿真[D].甘肃工业大学,2002.
    [17] 张颜海 数控进给伺服系统智能控制研究[D].青岛理工大学,2005.
    [18] A. T. Elfizy, G. M. Bone, M. A. Elbestawi. Model-based controller design for machine tool direct feed drives. Inernational Journal of Machine Tools & Manufacture 44 (2004)465-477.
    [19] M. Ebrahimi, R. Whalley. Analysis, modeling and simulation of stiffness in machine tool drivers. Computers & Industrial Engineering 38(2000)93-105.
    [20] 吴南星 高速高精数控车床结构动力学特性与仿真技术研究[D].东南大学,2004.
    [21] 黄祖尧 精密高速滚珠丝杠副的最新发展及其应用.航空制造技术与机床[J],2003,4:36-40.
    [22] 廖德岗 进给系统刚度对数控机床失动量影响[J].制造技术与机床,1999(11):22-23.
    [23] 谢红,高健加工中心的工作台和伺服进给系统设计.现代机械[J],2002,2:3—5.
    [24] 王志民,张西忠,厉勇 滚珠丝杠传动使用与发展.机电工程技术[J],2004,33(9): 88—90.
    [25] 初永坤,李益民,白绥滨 精密滚珠丝杠螺母副预紧的方法[J],机械工艺师,1996,9
    [26] 徐创文,朱琪 数控机床进给系统刚度所引起的失动量分析计算[J],淮海工学院学报,2002,11(1):16—19.
    [27] 吴南星,胡如夫,孙庆鸿 数控车床丝杠进给系统刚度对定位精度的影响.中国机械工程科学[J],2004,6(9):46—49.
    [28] Min Hu, Zhaoying Zhou, Yong Li, Hejun Du. Development of a linear electrostrictive servo motor. Journal of the International Societies for Precision Engineering and Nanotechnology 25(90) 316-320.
    [29] 杨橚,唐恒龄,廖伯瑜 机床动力学[M].北京:机械工业出版社,1983.
    [30] Chin-Yin Chen, and Chi-Cheng Cheng. Integrated Design for a Mechatronic Feed Drive System of Machine Tool. Inernational Conference on Advanced Intelligent Mechatronics, Monterey, Califorina, USA, 24-28 July, 2005.
    [31] 廖德岗 进给系统德刚度对数控机床失动量的影响.制造技术与机床[J],1999,11:22—23.
    [32] 卓迪仕主编 数控技术及应用[M].北京:国防工业出板社,1997.
    [33] Kaan Erkorkmaz, YusufAltintas. High speed CNC system design. Part Ⅱ:modeling and identification of feed drives. Inernational Journal of Machine Tools & Manufacture 41 (2001)1487-1509.
    [34] 罗勇 直线电机伺服单元伺服刚度及其自适应控制[D].广东工业大学,2001.
    [35] Jia-Yush Yen, Hui-Man Chang. Performance robustness and stiffness analysis on a machine tool servo design. Inernational Journal of Machine Tools & Manufacture 44 (2004)523-531.
    [36] 精密滚珠丝杠副(产品说明书)中国南京工艺装备制造厂,2002年版.
    [37] 林砺宗 测量机数控系统开发与精度分析[D].华东理工大学,2004.
    [38] Ebrahimi M and Whalley R. Analysis, modeling and simulation of stiffness in machine tool drives. Computer and Industrial Engineering, 2000: 93-105.
    [39] 杜君文,谷祖强等 机械制造技术装备及设计[MI.天津大学出版社,1998.
    [40] 王文熙,机床数字调节技术[M].北京中国科学技术出版社,1992.
    [41] 王文熙,数控机床进给驱动系统的伺服性能.安徽工学院学报[J],1982,2:34—46
    [42] 包胜华,张仲伟 数控机床的伺服系统性能探究.机械[J],2003,30(5):91—93.
    [43] 覃学东,徐冠 数控机床导轨的选用.桂林航天工科高等专科学校学报[J],2004,3:36-37.
    [44] Kaan Erkorkmaz, Yusuf Altintas. High speed CNC system design, Part Ⅲ: high speed tracking and contouring control of feed drives. International Journal of Machine Tool and Manufacture, 2001: 1637-1658
    [45] 胡秋 数控机床伺服进给系统的设计.机床与液压[J],2004,6:55—57.
    [46] 靳龙 数控加工中心进给系统设计分析.机械研究与应用[J],2005,18(3):71—73.
    [47] 李沪曾,郭俊辉,赵仲义,郭重庆 高速切削机床进给系统.机械设计与制造[J],2002,2:84—86.
    [48] 田军委,王建华 超精密驱动机构比较.西安工业学院学报[J],2002,22(1):62-66.
    [49] 高国炎,彭康拥 自动控制原理[M].广州:华南理工大学出版社,2005.
    [50] 王益群,等编著 机械控制工程基础[M].武汉:武汉理工大学出版社,2002.
    [51] 计亚平 数控机床伺服系统参数选择及其刚度的研究[J],1998(3):32—34
    [52] 孙宝德等编著 自动控制原理[M].北京:化学工业出版社,2002.
    [53] George Younkin. Modeling Machine Tool Feed Servo Drive Using Simulation Techniques to Predict Performance[J]. IEEE Trans Journal of Machine Tool and Manufacture, 1999: 1699-1706.
    [54] 李颖,朱伯立,张威编Simulink动态系统建模与仿真基础[M].西安:西安电子科技大学出版社,2004.
    [55] 科技产品研发中心编著MATLAB7辅助控制系统设计与仿真[M].北京:电子工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700