回转窑内物料运动与传热特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油焦煅烧是预焙阳极和石墨制品生产的主要工序之一。煅烧石油焦是通过在回转窑里的高温加热,排除其中的水分和挥发份,提高碳质原料的密度、导电性、机械强度及化学稳定性。回转窑煅烧石油焦具有产能大,投资少,对原料的适应性较广,产品质量容易控制,易于实现生产过程的自动化控制等优点。目前国内较大型的生产工厂均采用回转窑作为石油焦的煅烧设备。煅烧质量的好坏直接影响产品的质量,如何提高石油焦在回转窑内的煅烧质量问题,越来越受关注。因此,为提高石油焦煅烧质量和煅烧过程热效率,本文通过对回转窑横截面内颗粒运动与传热过程进行数值分析与模拟及简单的惰性物料加热试验,对影响窑内颗粒混合及其传热的各项因素进行了分析。
     本文以分析回转窑横截面内颗粒流动特性为基础,结合颗粒流相关理论及其解法的分析,对加拿大卑诗大学A.A.Boateng教授所建立的回转窑床特性分析模型进行分析,并将此模型应用在直径为0.2~2.5m四个不等的工业窑炉横截面床特性分析中,分别计算得到了不同窑型在不同转速条件下的表面活动层厚度及不同厚度处的颗粒流流速分布。其次,在对国内国际相关研究进行综述的基础上,针对对回转窑内传热途径、各个环节传热机理特征及料床内的颗粒传热特性进行了分析计算,着重探讨了筒体回转对各项传热系数的影响,对窑内高温条件下的传热过程有了更深层次的了解。最后,在热实验台架上进行初步的传热分析,如在不同加热温度下的在不同转速条件下出料量出料温度分析、各稳工况外壁面温度分布、稳工况下窑壁温度与窑内物料温度分布解析及出口10cm处料床表面温度分布等,对该台架的传热特性有了深入的认识,并为下一步实施石油焦在该台架的热解实验进行了初步的准备工作。传输和传热特征研究显示:作为一个慢加热速率的反应器,但回转窑反应器具有广泛的进料适应性及良好物料混合特征等特性。
The calcinations of Petroleum coke is one of the main for producing pre-baked anode and graphite products. Petroleum coke calcinations in the rotary kiln are completed by high temperature heating. Though calcinations to exclude volatile and water to improve the density of carbonaceous materials, electrical conductivity, mechanical strength and chemical stability. Using rotary kiln for petroleum coke calcinations has its virtues, for example a large production capacity, less investment and wider adaptability to raw materials, product quality can be control easily and process production is realize the advantages of automatic control. At present, most of the large-scale production plants are using rotary kiln as petroleum coke calcinations equipment. The quality of calcinations process is a direct factor on the quality of the product quality, so how to improve the petroleum coke calcinations quality in rotary kiln is being concerned day by day. In order to improving the petroleum coke calcinations quality and thermal efficiency. the factor which have effect on the material mixing and heat transfer is analysed ,based on the the numerical analysis and stimulation of the granular flow and heat transfer process in the the cross section,and the simple material heating experiment .
     Based on the features analysis about granular flow in the cross section of the rotary klin,to begin with we will provide a brief background on the theory about granular flow and its solution process,and represent the granular flow constitutive equation model established by Canada professor A.A.Boateng. Then the granular flow model was used to analyze the depth and velocity profile in the active layer in the cross section ,the industry kiln diameter 0.45—2.5m;Second,the path or mechanisms of heat transfer in rotary kiln were analyzed and stimulated. Espacially,the influence of rotaing and gas flow velocity on heat transfer coefficients was originally discussed.Then the pilot_scale evalution studies which the preparation for the Petroleum coke pyrolysis experiment, the Experiment was mainly divided as fellows: the discharging rate、temperature under the different rotating speed, wall and bed surface which 10 cm far from the outlet temperature profile in the steady state and so on.In conclusion,the rotary kiln is a slow-heating process unit,but convenient to the feed of solid with any size limit and favorable to the mixing of carbonous due to its rotation.
引文
[1]肖国俊.石油焦煅烧回转窑综合传热数学模型与数值模拟[D].硕士学位论文,华中科技大学, 2007.
    [2] H.T.波霍金柯.李成林译.石油焦生产[M].中国石化出版社, 1992.
    [3]黄华.影响预焙阳极质量的主要因素.第四届全国轻金属冶金学术会议论文集[C].中国青岛:中国有色金属学会轻金属冶金学术委员会, 2001,(11):840-843.
    [4]角田三尚.石油焦在锻烧过程中的结构变化[J].炭素, 1978, 95(2): 135-140.
    [5]石油焦制备活性炭工艺条件的优化及其孔结构表征.卓海波.硕士学位论文,中国石油大学,2007
    [6] S.J.Porter The design of rotary drier andcoolers.Trans.Intn.Chem.,1963,41:272-280
    [7] P.S.Ghoshdastiadr,G.Bhargava,R.P.Chhabra.Computer simulation of heat tranafer during drying and preheating of wet iron ore in a rotary kiln.Drying Technology, 2002,20(1):19-35
    [8] J.R.Ferron,D.K.Singh.Rotary kiln transport process.AIChE J.,199137(5):747-758
    [9] R.J.Spurling,J.F.Davidson,D.M.Sccott,The no-flow problem for granular material in rotating kilns and dish granulators,chem..Eng.Sci,55(2000)2303-2313.
    [10] E.Lebas,F.Hanrot,D.Abilitzer,et al,Experimental study of residence time,particle movement and bed depth profile in rotary kilns,Can.J.Chem.Eng.,73(1995)173-179
    [11] P.S.T.Sai,G.D.Surender,A.D.Damodaran,V.Suresh,Z.G.Philip,K.Sankaran, Residence time distribution and material flow studies in rotary kiln,Metall.Trans., B,2 1(199 0)1005-1011
    [12] A.Afacan,J.H. Masliyah,Solid hold-up in rotary drums,Power Technol,61(1990) 17 9-184
    [13] A.Chatterjee,A.V.Sathe,M.P.Srivastava et al,Flow of materials in rotary kilns used for sponge iron manufacture:PartⅠ.Effect ofsome operational variables, Metall.Trans. B,14B(1983)375-381
    [14] Kiang Y H,and A.A Menty.Hazardous Waste Processing Technology.Ann Arbor Science Publisher,Inc.Michigan,1982
    [15] A.Sass,Simulation of the heat-transfer phenomena in a rotary kiln,I&EC Process Design And Development,6(1967):532-535.
    [16] G.W.J.Wes,A.A.H.Drinkenburg,,S.Stemerding,Heat transfer in a horizontal rotary drum reactor.Powder Technol,13(1976):185-192.
    [17] J.Lehmberg,M.Hehl,K.Schugerl,Transverse mixing and heat transfer in horizonyal rotary drum reactors. Powder Technol,18(1977):149-163.
    [18] J.R.Ferronand D.K.Singh,Rotary kiln transport processes,AIChE tournal, 37 (199 1) :747-758.
    [19] S.H.TschengA.P.Watkinson,Convectiveheat in a rotary kiln,Can.j.of Chem Eng .,5 7 (19 79):433-443.
    [20] J.P.Gorog,J.K.Brimacombe,Radiative heat transfer in rotary kilns,Metallurgical Trans actions B.12B(1981):55-57.
    [21] J.P.Gorog,T.N.Adams,J.K.Brimacombe,Heat transfer from flames in a rotary kiln,Metallurgical Transactions B,14B(1983):411-424
    [22] J.P.Gorog,T.N.Adams,J.K.Brimacombe,Regenerative heat transfer in a rotary kilns, Metallurgical Transactions B.13B(1982):153-163.
    [23] S.J.Porter The design of rotary drier and coolers. Trans.Intn.Chem., 1963, 41: 272 -280
    [24] P.S.Ghoshdastiadr,G.Bhargava,R.P.Chhabra.Computer simulation of heat tranafer during drying and preheating of wet iron ore in a rotary kiln.Drying Technology, 2002,20(1):19-35
    [25] J.R.Ferron,D.K.Singh.Rotary kiln transport process.AIChE J.,199137(5):747-758
    [26] R.J.Spurling,J.F.Davidson,D.M.Sccott,The no-flow problem for granular material inrotating kilns and dish granulators,chem..Eng.Sci,55(2000)2303-2313.
    [27] E.Lebas,F.Hanrot,D.Abilitzer,et al,Experimental study of residence time,particle movement and bed depth profile in rotary kilns,Can.J.Chem.Eng.,73(1995)173-179
    [28] P.S.T.Sai,G.D.Surender,A.D.Damodaran,V.Suresh,Z.G.Philip,K.Sankaran, Residence time distribution and material flow studies in rotary kiln,Metall.Trans., B,21(1990)1005-1011
    [29] A.Afacan,J.H. Masliyah,Solid hold-up in rotary drums,Power Technol,61(1990) 179-184
    [30] A.Chatterjee,A.V.Sathe,M.P.Srivastava et al,Flow of materials in rotary kilns used for sponge iron manufacture:PartⅠ.Effect ofsome operational variables, Metall. Trans. B,14B (1983)375-381
    [31] Kramer H, Croocke P. The passage of granular solids through inclined rotary kilns [J]. Chemical Engineering Science, 1952, 1(6): 259 - 265.
    [32] Spurling R J, Davidson J F, Scott D M. The Non-flow problem for granular material in rotating kilns and dish granulators [J]. Chemical Engineering Science, 2000, 55(12): 2303 - 2313.
    [33] Sherrita R G, Chaokib J , Mehr A K, et al. Axial dispersion in the three 2 dimensional mixing of particles in a rotating drum reactor [J]. Chemical Engineering Science, 2003, 58(2): 401 - 415.
    [34] Guptda, Kha Khar D V, Bhatia S K. Axial transport of granular solids in horizontal rotating cylinders: Part I. Theory [J]. Powder Technology, 1991, 67(2):145 - 151.
    [35] Suda Hos, Cherter A W, Kowalski J A, et al. Quantitative characterization of mixingprocesses in rotary cylinders [J]. Powder Technology, 2002, 126(2): 166 - 173.
    [36]李水清等.城市垃圾在回转窑内传输过程的模拟和优化.化工学报. vol.53 (No.10) Oct. 2002
    [37]李爱民.城市垃圾在回转窑内传输过程的冷实验[J]化工学报vol53 no.9 September 2002
    [38] ROGERS R S C, GARDNER R P. A Monte Carlo method for simulating dispersion and transport through horizontal rotating cylinder [J]. Powder Technology, 1979, 23(2): 159 - 167.
    [39] Perron J, Bui R T. Canadian Journal of Chemical Engineering, 1990, 68: 61—68
    [40] Chatterjee, A., Sathe, A.V., Mukhopadhyay, P.K. 1983b. Flow of materials in rotary kilns used for sponge iron manufacture: part II. Effect of kiln geometry. Metallurgical Transaction B 14B, 383–392.
    [41] Chatterjee, A., Sathe, A.V., Srivastava, M.P., 1983. Flow of materials in rotary kilns used for sponge iron manufacture: part I. Effect of some operational variables. Metallurgical Transaction B 14B, 375–381.
    [42]刘刚,池涌,蒋旭光等.模拟危险废物颗粒回转窑内运动特性试验研究[J ] .工程热物理学报, 2005 , 26 (2) :343 - 346.
    [43]李爱民等.固体废弃物在回转窑内停留时间的试验研究[J]化学反应工程与工艺Vol.18, No 2 Jun, 2002
    [44] Spurling R J, Davidson J F, Scott D M. Chem. Eng. Sci., 2000, 55: 2303—2313
    [45] Lebas E , Hanrot F , Ablitzer D , Houzelot J L. Canadian Journal of Chemical Engineering , 1995 , 73 (4) : 173—179
    [46] Sai P S T , Surender G D , Damodaran A D , Suresh V , Philip Z G, Sankaran K. Metallurgical Transaction B , 1990 , 21B: 1005—1011
    [47]楼波等.基于多层BP神经网络的回转窑内物料传输模型研究[J]热能动力工程报Vol.21, No. 4 July, 2006
    [48] H. Ahn, C. E. Brennen, and R. H. Sabersky.“Measurements of velocity, velocity fluctuation, density, and stresses in chute flows of granular materials,”J. Applied Mech., 58, 792–803, 1991.
    [49] R. A. Bagnold.“Experiments on a gravity-free dispersion of large solids spheres in a Newtonian fluid under shear,”Proc. R. Soc. London, A225, 49–63, 1954.
    [50] P. V. Barr, J. K. Brimacombe, and A. P. Watkinson.“A heat-transfer model for the rotary kiln: Part II. Development of the cross-section model,”Met.Trans. B, 20, 403–419, 1989.
    [51] A. A. Boateng. Rotary Kiln Transport Phenomena: Study of the Bed Motion and Heat Transfer, PhD Dissertation, The University of British Columbia,Vancouver, 1993.
    [52] A. A. Boateng and P. V. Barr.“A thermal model for the rotary kiln including Heat transfer within the bed,”Int. J. Heat Mass Transfer, 39(10),2131-2147, 1996.
    [53] J. P. Gorog, J. K. Brimacombe, and T. N. Adams“Radiative heat transfer in rotary kilns,”Met.Trans. B, 12, 55-69, 1981.
    [54] J. P. Gorog, T. N. Adams, and J. K. Brimacombe.“Regenerative heat transfer in rotary kilns,”Met. Trans. B, 13(2), 153163,1982.
    [55] J. P. Gorog, T. N. Adams, and J. K. Brimacombe.“Heat transfer from flames in a rotary kiln,”Met. Trans. B, 14(3), 411-423, 1983.
    [56] H. K. Guruz and N. Bac.“Mathematical modelling of rotary cement kilns by the zone method,”Can. J. Chem. Eng., 59, 540-548, 1981.
    [57] H. C. Hottel and A. Sarofim. Radiative Heat Transfer. McGraw-Hill,New York, 1967.
    [58] H. C. Hottel and E. S. Cohen.“Radiant heat exchange in a gas-filled enclosure: Allowance for nonuniformity of gas temperature,”AIChE J., 4(1),314, 1958.
    [59] B. G. Jenkins and F. D. Moles.“Modelling of heat transfer from a large enclosed flame in a rotary kiln,”Trans. IChemE, 59, 1725, 1981.
    [60] R. Siegel and J. R. Howell. Thermal Radiation Heat Transfer. McGraw-Hill, New York, 1981.
    [61] F. White. Heat and Mass Transfer. Addison-Wesley, New York, 1988.
    [62] P.V.Barr and J.K.Brimacombe,A Heat-transfer model for rotary kiln:PartⅠ.Pilot kiln trials,MteallurgicalsB,20B(1989):391-402
    [63] D.W.Pershing,J.S.Lightly,et al,Solid Waste Incineration in rotary kilns, Combust. Sci.Technol,93(1993):245-276
    [64] J.Kerm,Heat transfer in a rotary heat exchange,Int.J.Heat Mass Transfer, 17 (197 4 ) :981-990
    [65] Kiang Y.H,and A.A.Metry,Hazardous Waste Processing Technology,Ann Arbor Science Publisher,Inc Michigan ,1982
    [66] J.Lehmberg,M.Hehl,K.Schugerl,Transverse mixing and heat transfer in horizontal rotary drum reactors,Power Technol,18(1977):149-163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700