鸭式布局弹箭滚转飞行侧偏问题的气动分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从气动力角度对鸭式布局弹箭进行了研究。理论分析鸭式布局弹箭滑翔飞行中可能引起侧偏的原因有:鸭舵组合打舵条件不理想造成的侧偏和不对称下洗流作用于尾翼造成的侧偏。通过风洞实验得到了无舵模型和三种不同打舵方式带舵模型的气动力数据,通过对不同模型数据的交叉对比分析,研究了各种模型的阻力、升力、俯仰力矩、滚转力矩、偏航力矩、侧向力等气动参数随马赫数、攻角、舵偏角、滚转角等参数变化的规律和异同,并初步探讨了下洗流对弹体造成侧偏的规律与特点。
     实验结果表明,四种模型的阻力、升力、俯仰力矩系数基本遵循相同的变化机理和规律。四号模型的滚转力矩系数变化比其他三种模型更加剧烈,当弹体处于相对于竖直平面不对称的姿态时,随着攻角增大,下洗流的不对称性愈发显露出来,滚转力矩系数急剧增大,这一现象解释了为什么弹箭在实际飞行中时有转速不均的情况发生。侧向力和偏航力矩系数在有舵时明显大于无舵模型,随攻角和舵偏角的增大,不对称下洗流对侧偏的影响越明显,侧向力和偏航力矩系数增大;侧向力和偏航力矩系数随滚转角的变化呈弦性变化,当弹体滚转到左右对称的姿态时,侧偏值很小,都在零值附近变化,当弹体滚转到左右不对称的姿态时,侧偏值出现明显上下波动。
In this dissertation, canard configuration missiles are studied from the view of aerodynamic. First, the reasons which cause the conrnerning of rolling flight of canard configuration missiles may have two. One is that the cornerning is caused by the non-ideal conditions of rudder swinging, and the other one is that the cornerning is caused by the asymmetric downwash flow acting on the empennage. By the way of wind tunnel experiment, we got aerodynamic data of non-rudder model and other three kinds of models. According to the experimental results of different kinds of models, we got the variation regularity of resistance, lift force, pitching moment, rolling moment, yawing moment and yawing force of the models which vary with Mach number, attack angle, elevator angle and roll angle. By crossed comparative analysising the data of different kind of models, investigate similarities and differences of the aerodynamic characteristics of each kind of model, and analysis the regularity and characteristic of cornering which is caused by the asymmetric downwash flow.
     Experimental results showed that, the four kinds of modes have the same variation mechanism and regularity in resistance, lift and pitching moment. Number 4 model vary moer violently with attack angle than other three kinds of models. When the missile body is on asymmetric posture of the vertical plane, with attack angle increasing, asymmetry of downwash flow show up more obviously, and rolling moment coefficient raise rapidly. This situation explains that why the missiles in actual flight have the phenomenon that rotation speed is uneven. Lateral force and yawing moment of the models with rudders are obviously bigger than the ones without rudders. With the attack angle and elevator angle raising, the influence asymmetric downwash flow acting on cornerning becomes harder, lateral force and yawing moment increase. Lateral force and yawing moment vary in sine or cosine when roll angle change. When the missile body is on symmetric posture, the values about cornerning are small and vary around zero. When the missile body is on asymmetric posture, the values about cornerning show obviously fluctuation.
引文
[1]钱翼稷.空气动力学.北京航空航天大学出版社,2004
    [2]臧国才,何建忠,崔东明,谭俊杰,马洪伟.流体力学实验.华东工程学院,1989
    [3]臧国才,李树常.弹箭空气动力学.兵器工业出版社,1989
    [4]苗瑞生,居贤铭,吴甲生.导弹空气动力学.国防工业出版社,2006
    [5]陈士橹,吕学富.导弹飞行力学.航空专业教材编审组,1983
    [6]谷良贤,温炳恒.导弹总体设计原理.西北工业大学出版社,2004
    [7]武凌斯.有翼导弹引论.国防工业出版社,1979
    [8]浦发.外弹道学.国防工业出版社,1980
    [9]二0三教研室专业教材编写组.外弹道学.华东工程学院,1973
    [10]《箭弹空气动力特性分析与计算》编写组.箭弹空气动力特性分析与计算.国防工业出版社,1979
    [11]白文林,温炳恒.有翼导弹总体设计原理.西北工业大学出版社,1992
    [12]恽起麟.实验空气动力学.国防工业出版社,1991
    [13]恽起麟.风洞试验.国防工业出版社,2000
    [14]A.博普,K.L.戈因.高速风洞试验.科学出版社,1980
    [15]Lamar M.Auman. Aerodynamic Characteristics of a Canard-Controlled Missile with a Free-Spining Tail. AL 35898-5252
    [16]Burt and J.R. The effectiveness of canards for roll control. AD/A 037077,1976
    [17]Michael GLanders, Lamar M.Auman. Experimental Investigation of Nose-ounted Controls for a Hypersonic Missile.19th AIAA Applied Aerodynamics Conference, AIAA 2001-2433, June 2001, Anaheim, California
    [18]Michael G.Landers, Les H.Hall, Lamar M.Auman. Aerodynamic Predictions of Pitch and Roll Control for Canard-ontrolled Missiles18th AIAA Applied Aerodynamics Conference. AIAA 2000-516, August 2000, Denver, Co
    [19]郑征兵,田武.远程精确打击武器技术发展现状和趋势.国防科技,No.27
    [20]郭美芳等.国外地基/舰载精确打击弹药的发展研究.防空反导与远程弹药技术论文集,2001
    [21]吴甲生,雷娟棉.制导兵器气动布局发展趋势及有关气动技术.北京理工大学学报,2003,23(6):665-670
    [22]曾广存,丁庆国,秦伊贤,袁幼新.鸭式布局导弹滚动气动控制方案及力矩分析.北京空气动力研究所,Vol.6 No.3,1988
    [23]曾广存,丁庆国,秦伊贤.鸭式布局导弹滚转气动方案研究.北京空气动力研究所,1989
    [24]曾广存,丁庆国,秦伊贤.“T”型翼片组合尾翼导弹气动特性研究.北京空气动力研究所,1984
    [25]魏靖彪,郑华利.旋翼下洗流干扰条件下导弹初始弹道分析.兵工学报,Vol.27No.6,Nov.2006
    [26]孟令涛.鸭式气动布局导弹流场数值模拟.系统仿真学报,Vol.20,No.14,Jul.2008
    [27]吕志咏,蔡为民,马玉明.鸭翼双三角翼流态及气动力特性研究.空气动力学学报,1994,9,12(3):344-349
    [28]马宝峰,刘沛清,邓学蓥.近距耦合鸭式布局气动研究进展.空气动力学学报,空气动力学学报,Vol.21 No.3,Sep 2003
    [29]雷娟棉,居贤铭,吴甲生.自旋尾翼鸭式布局导弹的滚转特性.北京理工大学学报,Vol.24,No.8,Aug 2004
    [30]李岩,王中原,易文俊,陈洋.基于鸭式布局的有控弹药攻角运动仿真研究.南京理工大学学报(自然科学版),Vo.l33,No.2,Apr.2009
    [31]刘激瀛,王晋军,薛启智.60°三角翼前缘涡破裂及其控制实验研究.实验力学,Vol.15,No.2,Jun 2000
    [32]谭凤岗,顾余铨.采用鸭舵控制使先进炮弹射程增大和精度改进.弹箭技术,Vol.1No.15,1998
    [33]丁志杰.炮弹滑翔飞行的弹道特性与舵偏规律研究.南京理工大学(硕士学位论文),2008
    [34]史金光,王中原,许厚谦,张冰凌.滑翔增程弹鸭式舵的气动设计与分析.弹道学报,Vol.18,No.4,Dec.2006
    [35]史金光,王中原,曹小兵,刘巍,杨凯.滑翔增程弹滑翔弹道设计.南京理工大学学报,Vo.l31,No.2,Apr.2007
    [36]朱如华.增大炮射程的技术途径.现代军事,1995
    [37]李文胜.超音速滑翔增程弹的气动计算和分析.南京理工大学(硕士学位论文),2003
    [38]陈霞.鸭式布局弹箭滚转气动特性的研究.南京理工大学(硕士学位论文),2007
    [39]刑琳琳.远程弹滚转特性的实验研究.南京理工大学(硕士学位论文),2006
    [40]孙新.弹道修正弹鸭舵修正方法研究.南京理工大学(硕士学位论文),2005
    [41]徐涛.鸭式布局不同尾翼结构对弹箭滚转及其他气动特性的影响.南京理工大学(硕士学位论文),2008
    [42]武频,赵润祥,谭俊杰,郭锡福.滑翔增程弹气动特性分析.弹道学报,Vol.13, No.4,Dec.2001
    [43]张涵信.亚、超声速旋涡流动特征的定性分析研究.空气动力学学报,Vol.13,No.3,Sep.1995
    [44]马宝峰,刘沛清,邓学蓥.大迎角下鸭翼涡与边条涡的干扰特性.航空学报,Vol.26,No.6,Nov.2002
    [45]王良益.翼涡与体涡的相互干扰及其对翼涡破裂的影响.南京航空航天大学学报,Vol.26,No.2,Apr 1994
    [46]罗伯特·沃尔.新颖的鸭式布局旋翼/机翼飞机设计.国际航空,1998
    [47]张天肖.T型尾翼跨音速颤振模型风洞实验研究.民用飞机设计与方案,1997(4):11-17.
    [48]黄达,吴根兴.三角翼俯仰滚转耦合运动气动特性气动特性研究.航空学报,1999,11,20(6):485-488
    [49]张鸣,祝学军,陈海东.滚转导弹耦合分析.导弹与航天运载技术,No.4,2005,SumNo.277
    [50]雷延花,陈士橹.导弹气动耦合分析与解耦算法研究.弹道学报,Vol.15,No.1,March 2003
    [51]Blair, A.B.Jr. Wind tunnel investigation at supersonic speeds of a controlled canard missile with fixed and free-rolling tail fins. NASA,78-32067,1978
    [52]Regan F.J., Holmes J.E. Statie Wing Tunnel Tests of the M823 Researeh Store with Fixed and Freely Spinning Tails. NOLTR,65-14,1967
    [53]Tang M. Z. An Experimental Investigation on Dynamic Flow by Oscillating Canard. Proce of the Fourth Sino-Russian Symp, on Aeredynamics,1995.4,177-184
    [54]Payne F. M. Visualization and Flow Surveys of the L.E. Vortex structure on Delta Wing Planforms. AIAA-86-0330
    [55]Nelson R.C. Visualization Techniques for studying High Angle of Attack Separated Vortical Flows. AIAA-88-2025
    [56]Reynolds. An experimental investigation of circumstances which determine whether the motion of water shall be direct or sinuous and of the law of regisance in parallel channels, Phil.Trans. Roy.Soc. London,174(1883).
    [57]Steeles G. F., Lu F. K. Conical similarity of Shock/Boundary Layer Interacations Generated by Swept and Unswept Fins. AIAA, J,1985,23,1021-1027
    [58]A.J.Ponton, M.V.Lowson. The Evaluation of canard couplings at High Angles of Attack. AIAA, Paper 92-0281

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700