无尾翼布局飞行器涡流控制的方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在飞行器设计采用无尾翼布局后,减小了重量、阻力和雷达散射面积,可以极大提高飞行器的作战和隐身性能,也是当今全隐身飞行器的发展趋势。但同时在操纵效率和阻尼特性上比有尾飞行器差,稳定性控制的难度也增大。为了进一步提高和改善飞行器的操作性能,特别是在大迎角、过失速机动等情况下,常规的飞行器控制方法控制效率低或失效,必须借助新概念操纵机构。本文在对无尾翼飞机进行研究的基础上,提出了涡流控制方法,并进行了初步的探讨和仿真分析。
     本文首先建立了无尾翼飞机在典型状态下的数学模型,之后介绍了对模型的线性化和在Matlab环境下实现的方法。为下一步的仿真分析做好了准备。
     然后在简单介绍空气动力学和流体力学的理论基础上,对涡流的产生机制和控制原理进行了说明,并对涡流的控制方法、分类和特点进行了介绍。结合当前涡流控制的热点的MEMS技术,详细的介绍了MEMS技术的发展、特点和硬件基础、原理。
     最后,针对基于MEMS技术的涡流控制简化三角翼模型,结合实验数据提出了不同作动器配置下飞行器的控制方案,并对方案进行比较分析。在对作动器的仿真分析同时针对涡流控制的强非线性和耦合性,提出了应用涡流控制的简化思想。在将简化涡流控制应用于飞机模型,进行仿真分析。
     大量的仿真分析表明,涡流控制方法能实现对飞行器的控制,并可以辅助常规的控制方法,从而改善飞行器的操作性能。
Aircraft used in the design of the layout with no tail, reduced weight, resistance and radar scattering area can be greatly enhanced the combat and stealth aircraft performance, but also all the contemporary trend of the development of stealth aircraft. But at the same time in the control efficiency and damping characteristics than the vertical tail aircraft is poor, stability control also increases the difficulty. To further enhance and improve the aircraft's performance, particularly in the high angle of attack, and post-stall maneuver, and other circumstances, the conventional control methods to control the aircraft or inefficient failure, we must use new concept manipulation institutions. In this paper, with no tail carried out on the basis of proposed vortex control methods, and conducted a preliminary exploration and simulation analysis.
     This paper established a plane with no tail in a typical state of the mathematical model, introduced after the model of linear and Matlab under way. For the next phase of simulation analysis prepared for.
     Then briefly aerodynamics and fluid dynamics on the basis of the theory of the mechanism of the formation of eddy current and control principle is that the control and eddy current method, classification and characteristics were introduced. In connection with the vortex control of the hot spots of the MEMS technology, detailed account of the development of the MEMS technology, features and hardware based, principle.
     Finally, based on MEMS technology to simplify the vortex control delta wing model, the experimental data with a different actuator configuration of the aircraft under control scheme, scheme and carried out comparative analysis. In the actuator at the same time for the simulation of the control of highly nonlinear eddy current coupling and, by using the simplified thinking vortex control. To be applied to simplify the swirl control aircraft models, simulation analysis.
     Simulation analysis showed that a large number of, vortex control method to achieve control of the aircraft control, and can support the conventional control methods, thereby improving vehicle performance.
引文
[1]郦正能主编.飞行器结构学[M].北京,北京航空航天大学出版社,2005.1:1-3.
    [2]方宝瑞.飞机空气动力布局设计[M].北京,航空工业出版社,1997:13-17.
    [3]王彦民,陆宇平,李丽荣.飞翼式UCAV低空段动静稳定性研究[J].飞机设计,2005,(6):32~36.
    [4]吴立新,左重,刘平生.无尾飞翼气动布局是UCAV总体设计的最佳选择[J].洪都科技,2003,(1):1-5.
    [5] Patel, Mehul Prince, Troy Carver,et al.“Deployable flow effectors for phantom yaw control of missiles at high alpha”[C].1st AIAA Flow Control Conference, Saint Louis, MO, June 24-26, 2002, 12:2-4.
    [6] Herbst.W.B.“Super maneuverability”proceedings of Workshop on Unsteady Separated Flow ,edited by Francis and Luttges ,U.S. Air Force Academy,1983:1-9.
    [7]陈再新,刘福长,龚定一等.飞行器空气动力学[M].南京航空学院印刷厂1985.6:138.
    [8]郭锁凤,申功璋,吴成富等.先进飞行控制系统[M].北京,国防工业出版社,2003.3:247.
    [9]黄忠霖.控制系统MATLAB计算及仿真[M].北京,国防工业出版社,2003:183-202.
    [10]文传源.现代飞行控制系统[M].北京,北京航空航天出版社,2004:5-12.
    [11]高浩,朱培申,高正红.高等飞行动力学[M].北京,国防工业出版社,2004:30-33. [12申安玉,申学仁,李云保等.自动飞行控制系统[M].北京,国防工业出版社,2003:105-110.
    [13]张明廉.飞行控制系统[M].北京,国防工业出版社,1994:13-15.
    [14]方振平.飞机飞行动力学[M].北京,北京航空航天大学出版社,19 78:169-175.
    [15]冯昊.无人机自动着陆控制[D].江苏南京,南京航空航天大学,2003.7:23-35.
    [16]邓进军.基于MEMS的微致动器阵列用于三角翼气动控制研究[D].西北工业大学,2003.2: 17-21.
    [17] Peckham,D.H.“Low-speed Wind-Tunnel Tests on a Research Council,R&M. No.3186,1958”NASA TM-101697, 1990:3~16
    [18] Werle.H.“Flow Visualization Techniques for the study for High Incidence Aerodynamics”, AGARD/VKI Lecture Series, Mar.121-3(1982):22-38.
    [19] Adam Huang, James Lew, Yong Xu,et al.“Micro sensors and Actuators for Macro fluidic Control”, Sensors Journal, IEEE, 2004.8:498.
    [20]忠宇,吴学忠,李圣怡.基于MEMS的流动主动控制技术及其研究进展[J].力学进展(ADVANCES IN MECHANICS ), 2005.35(4): 577~582页.
    [21]夏雪湔,周丹杰,麻树林.前体边条控制技术应用[J].空气动力学学报,1997, 15(1): 53-58.
    [22] Bradley R. G,Wray W. O.“A Conceptual Study of Leading-Edge-Vortex Enhancement by Blowing,”Journal Aircraft, Vol.11, No. 1, 1974:33-38.
    [23] Gad-el-Hak, Black welder,R. F.“Control of the Discrete Vortices from a Delta Wing”. AIAA Journal, Vol. 25, 1987:1024-1049.
    [24] Hummel.“Zur Umstromung sharfkantiger shlanker Deltaflugel bei grossen Anstellwinkeln,”Z. Flugwiss., Vol. 15, No. 10, 1967:376-385
    [25] Marchman J. F.,“Effect of heating on Leading Edge Vortices in Subsonic Flow,”Journal of Aircraft, Vol. 12, No. 2, 1975:121-123
    [26] Bryzel J.“Impacts of MEMS technology on society”[J].Sensor and Actuators A,1996,56:l-9
    [27]张威,张大成,王阳元.MEMS概况及发展趋势[J].微纳电子技术,2002,(1):22-27.
    [28]林忠华,胡国清,刘文艳,等.微机电系统的发展及其应用.纳米技术与精密工程[J],2004.2(2):117-123.
    [29]欧毅,白宏磊,石沙莉,等.应用于流动控制的MEMS传感器和执行器[J].电子工业专用设备,2006;132:25-27.
    [30]刘成刚.MEMS技术的发展与应用[J].济南职业学院学报2007.2(1)21-32.
    [31]李德胜,王东红,孙金玮,等.MEMS技术及其应用[M].哈尔滨工业大学出版社.1986:23-29.
    [32] Jiang.F.K, Lee. G.B.“A flexible Micro machine-based Shear-stress Sensor Array and Its Application to Separation–point Detection”[J].Sensors and Actuators A : Physical,2000,79(3):194-196 ,
    [33] Xu.Y ,Jiang.F.K .“Flexible Shear-stress Sensor Skin and Its Application to Unmanned Aerial Vehicles”[J].Sensors and Actuators A:Physical,2003,105(3):321-329.
    [34] Sturzebecher, Anders,Nitsche.“The Surface Hot Wire As a Mean of Measuring Mean and Fluctuating Wall Shear Stress”[J].Experiments in Fluids, 2001,31(3):249-302.
    [35] Paredis.C.J.J, et al.“Kinematics design of fault tolerant manipulators”[J]. Compute Elect. Eng., 1994, 20(3):211-220.
    [36] Gwo-Bin Lee,Adam Huang ,Chi-Ming Ho.et al.“SENSING AND CONTROL OF AERODYNAMIC SEPARATION BY MEMS”[J]. The Chinese Journal of Mechanics, Vol. 16, No. 1, 2000.3:46.
    [37]杨岳,周兆英,叶雄英.微型热致动器研究[J].半导体技术,2000,25(1):14-18.
    [38] Gwo-Bin Lee, Yu-Chong Tai.“Leading-edge Vortices Control on a Delta Wing by Micromachined Sensors and Actuators”, AIAA 2004-3275: 7-16
    [39] Polhamus E.C.“Predictions of Vortex-lift Characteristics by a Leading-Edge Suction Analogy,”Journal of Aircraft, Vol.8, No.4, 1971:33-38.
    [41] Henry Helvajian.“MEMS Components and Applications for Industry, Automobiles , Aerospace”[J],Proceedings of SPIE,2001:34-42
    [42] Wesley Chu,Chih-Ming Ho“.Control of Systems with MEMS Sensors and Actuators via Data Mining Techniques”. ADVANCED SOFTWARE TECH & ALGOR, 9216. 2001: 85

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700