特种弯曲材料试验机设计及鱼体材料粘弹性性质测量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究生物材料的力学性质是生物力学的重要内容之一,对于人类深入认识鱼类的游动机理有重要作用,而且具有重要的工程应用价值。本文设计了一种用于测量鱼体材料粘弹性性质的特种弯曲材料试验机,通过模拟鱼体摆动实验测量鲫鱼尾鳍及脊柱椎骨连接处的材料粘弹性性质,并采用复数型粘弹性本构模型对实验结果进行分析,讨论了材料粘弹性性质对于鱼类游动的贡献。
     本文研究工作的主要内容和结论如下:
     1.介绍特种弯曲材料试验机的研制过程,对装置中不同结构和系统进行详细说明并标定实验装置部件。
     2.分别进行弹性(铜片)和粘弹性(橡胶)材料试件实验,计算出材料的弹性特性和粘弹性特性,将计算结果与已知弹性体和粘弹性体特性进行对比,发现基本符合,表明本试验机设计的正确性。
     3.完成鲫鱼尾鳍鳍条实验,发现尾鳍摆动所需的力矩幅值M随摆幅的增大而增大。滞后相位角δ、耗散模量E2随摆幅和频率的增大而减小。储能模量E1在摆幅为3°时随着频率的增加而略有增加,在摆幅为5°时,随着频率的增加而减小。
     4.完成鲫鱼脊柱椎骨连接处实验,发现脊柱连接处前段所需力矩幅值要略大于后段所受力矩幅值。滞后相位角δ、耗散模量E2随频率的增加而减小,且脊柱后段δ、E2小于脊柱前段δ、E2。储能模量E1随频率增加略有下降,脊柱后段E1大于脊柱前段E1。滞后相位角很小,并随摆幅的增大而接近于0。
The research of the mechanical property of the biomaterial is one of the most significant parts in the biomechanics, which plays an important role in understanding the mechanism of fish swimming and has important engineering value. In this thesis a special type of material test machine used in bending test was designed, which can be used to measure the viscoelastic properties of the fish material. Through simulating fish oscillation, the viscoelastic properties of the caudal fin and intervertebral joint in a crucian carp were measured, a complex number model was adopted to analyze the results of the biomaterial test and the effect of the viscoelastic on fish swimming was discussed.
     The main results of this thesis are as follows:
     1. Design process, the details of the structure and systems and the calibration of of the material test machine are presented.
     2. The specimens of an elastic material (coppor) and a viscoelastic material (rubber) are tested. The material characteristic is calculated. Comparison between the obtained results and the known properties of elastic and viscoelastic materials shows that the results are reasonable and the design of the test machine is suitable.
     3. Test results of the caudal fin ray in crucian show that the moment(M) needed by swinging the caudal fin increases as the swing amplitude, while the phase angleδof hysteresis and the loss modulus E2 decrease as the amplitude and the frequency increase. The storage modulus E1 increases slightly as the frequency for the amplitude of 3°, while it decreases for the amplitude of 5°.
     4. Testing results of the intervertebral joint in crucian show that the intervertebral joint in the anterior part of fish body needs larger moment than the posterior part. The phase angleδof hysteresis and loss modulus E2 decrease as the frequency increases.δand E2 of the intervertebral joints in the posterior part are less than in the anterior part. The storage modulus E1 decreases slightly as the frequency increases and E1 of the posterior part is larger than the anterior part. The phase angle of hysteresis is very small and close to zero as the amplitude increases.
引文
Adam PS, John HL. 2005. Skin and bones, sinew and gristle: the mechanical behavior of fish skeletal tissues[J]. In Fish Biomechanics, 23:141-177.
    Alben S, Madden PG, Lauder GV. 2007. The mechanics of active fin-shape control in ray-finned fishes[J]. Journal of the Royal Society, 4:243-256.
    Alben S, McGee RL, 2010. Optimizing a fin ray for stiffness[J]. Journal of the Mechanics and Physics of Solids, 58:656-664.
    Bao L, Hu JS, Yu YL, Cheng P, Xu BQ, Tong BG. 2006.Viscoelastic constitutive model related to deformation of insect wing under loading in flapping motion[J]. Applied Mathematics and Mechanics, 27(6):741-748.
    Becerra J, Montes GS, Bexiga SRR, Junqueira LCC. 1983. Structure of the tail fin in teleosts[J]. Cell and Tissue Research, 230:127-37.
    Cuvier G, Valenciennes A. 1831. Histoire Naturalle des Poissions[M], ed. Amsterdam: A Asher, 1969.
    Curry JD.1999. The design of mincralised hard tissues for their mechanical functions[J]. Journal of Experimental Biology, 202:3285-3294.
    Doehring TC, Freed AD, et al. 2005. Fraetional order viscoelasticity of the aortic valve cusp: An alternative to quasilinear viscoelasticity[J]. Journal of Biomechanical Engineering-Transactions of the ASME, 127:700-708.
    Fish FE, Lauder GV. 2006. Passive and active flow control by swimming fishes and mammals[J]. Annual Review of Fluid Mechanics, 38:193-224.
    Geerlink PJ, Videler JJ. 1987. The relation between structure and bending properties of teleost fin rays[J]. Netherlands Journal of Zoology, 37:59-80.
    Gregory WK, Conrad. 1937. The comparative osteology of the swordfish (Xiphias) and the sailfish (Istiophorus)[J]. American Museum Novitates, 952:7-25.
    Hebrank MR. 1982. Mechanical properties of fish backbones in lateral bending and in tension[J]. Journal of Biomechanics, 15(2):85-89.
    Hebrank JH, Hebrank MR, Long JH, Block BA, Wright SA. 1990. Backbone mechanics of the blue marlin Makaira nigricans (Pisces, Istiophoridae)[J]. Journal of Experimental Biology, 148:449-459.
    Hess F, Videler JJ. 1984. Fast continuous swimming of saithe (Pollachius virens): a dynamic analysis of bending moments and muscle power[J]. Journal of Experimental Biology, 109:229-251.
    Johnsrude C, Webb PW. 1985. Mechanical properties of the myotomal musculo-skeletal system of rainbow trout (Salmo gairdneri)[J]. Journal of Experimental Biology, 119:171-177.
    Johnston IA, Salamonski J. 1984. Power output and force-velocity relationship of red and white muscle fibres from the pacific blue marlin (Makaira nigricans)[J]. Journal of Experimental Biology, 1l1:171-177.
    Lauder GV, Madden PG, Mittal R, Dong H. 2006. Locomotion with flexible propulsors: I. Experimental analysis of pectoral fin swimming in sunfish[J]. Bioinspiration and Biomimetics, 1:S25-S34.
    Long JH. 1992. Stiffness and damping forces in the intervertebral joints of blue marlin (Makaira nigricans)[J]. The Journal of Experimental Biology, 162:131-155.
    Long JH, Pabst DA, Shepherd WR, McLellan WA.1997.Locomotor design of dolphin vertebral columns: bending mechanics and morphology of Delphinus delphis[J]. Journal of Experimental Biology, 200:65-81.
    Long JH, Koob-Emunds M, Sinwell B, Koob TJ. 2002. The notochord of hagfish Myxine glutinosa: visco-elastic properties and mechanical functions during steady swimming[J]. The Journal of Experimental Biology, 205:3819-3831.
    McCutchen CW.1970.The trout tail fin: a self-cambering hydrofoil[J]. Journal of Biomech, 3:271–281.
    Rockwell H, Evans FG, Pheasant HC.1938. The comparative morphology of the vertebrate spinal column: its form as related to function[J]. Journal of Morph, 63:87-117.
    Standen EM, Lauder GV. 2005. Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus: three-dimensional kinematics during propulsion and maneuvering[J]. The Journal of Experimental Biology, 208:2753-2763.
    Leeuwen JL, Lankheet MJM, Akster HA, Osse JWM. 1990. Function of red axial muscles of carp (Cyprinus carpio): recruitment and normalized power output during swimming in different modes[J]. Journal of Zoology, 220:123-145.
    Zhu Q, Shoele K. 2008. Propulsion performance of a skeleton-strengthened fin[J]. The Journal of Experimental Biology, 211:2087-2100.
    鲍麟. 2006.昆虫翼柔性变形的力学效应研究[D]. [博士].北京:中国科学院研究生院.
    陈明,贾来兵,尹协振.2011.描述鱼鳍材料松弛特性的分数Zener模型[J].力学学报,43:217-220.
    冯元祯. 1983.生物力学[M],北京:科学出版社.
    贺德馨. 2001.风洞天平[M],北京:国防工业出版社.
    周光泉,刘孝敏. 1996.粘弹性理论[M],合肥:中国科学技术大学出版社.
    赵亮. 2006.鱼类C型起动尾鳍模型受力特性实验研究[D]. [硕士],合肥:中国科学技术大学.
    周萌,尹协振,童秉纲.2010.鲫鱼皮肤和肌肉的力学性能研究[J].实验力学,25:(5):536-545.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700