劲化矩形截面钢管混凝土短柱力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矩形钢管混凝土的钢管对核心混凝土约束主要集中在角部,在四个侧边中部约束作用较小,所以矩形钢管对核心混凝土的整体约束效应远不及圆形钢管混凝土,导致其承载力远低于圆形钢管混凝土柱。与方形钢管混凝土相比,矩形钢管截面长宽边长不同,长边对核心混凝土的约束作用弱,较短边更易发生局部屈曲。但由于约束作用的存在,只要设置得当,其承载力比按钢管和混凝土两种材料单轴强度简单叠加计算要高。
     为了改善矩形截面钢管混凝土柱构件的力学性能,在矩形截面钢管混凝土柱中沿纵向每隔一定间距的横截面上设置横向水平约束拉杆(钢筋),一方面能限制该部位核心混凝土的横向变形,另一方面能为钢管提供侧向支撑作用而使钢板的局部屈曲强度提高。约束拉杆的设置能极大改进矩形钢管混凝土柱的力学性能,但约束拉杆之间区域仍出现弹塑性局部屈曲现象,对内填混凝土的约束作用受到削弱。
     劲化矩形钢管混凝土柱通过加设劲化带形成劲化带与约束拉杆的和谐搭配,在增加极少用钢量又不增加施工难度,影响施工进度的情况下,最大限度的减缓约束拉杆之间的弹塑性屈曲,提高侧面约束能力,改善矩形钢管混凝土柱的力学性能。
     本文对矩形钢管混凝土柱的劲化设计,基于已有研究成果,在满足高层建筑结构安全的前提下,能较大限度地用较薄的钢板厚度,实现较高的强度、刚度以及延性。
     基于上述分析,本文对劲化矩形钢管混凝土柱的轴压、偏压、滞回性能进行了系列研究。
     (1)以约束拉杆水平间距、纵向间距、劲化带截面、劲化带设置方式为研究参数,共进行10个方形钢管混凝土柱试件的轴压承载力试验。分析各参数对试件的破坏形态、受力特点、应变特点、承载力及延性等力学性能的影响,为后述的研究提供基本试验资料。
     (2)以钢板厚度、约束拉杆直径、约束拉杆强度、劲化带截面、劲化带设置方式为研究参数,采用拟静力试验方法对构件施加低周水平力反复荷载作用,共进行16个方形钢管混凝土柱试件的低周水平力反复荷载试验。分析在不同参数下,各个构件的滞回曲线、骨架曲线,从而计算出各个构件的承载力及其退化,刚度及其退化、位移延性系数、耗能能力。由试验结果采用三折线计算模型回归分析、确定了劲化方钢管混凝土柱的骨架曲线模型参数,为这种新型构件在超高层工程中设计分析提供参考。
     (3)对劲化矩形钢管混凝土柱的约束机理进行了分析。矩形钢管截面长边、短边对混凝土约束作用大小不同,及约束拉杆沿长边、短边布置数量不同。基于核心混凝土真三轴受压的特点,提出了劲化矩形钢板内核心混凝土的等效单轴本构关系。采用该本构关系对劲化矩形钢管混凝土轴压构件的荷载-变形关系曲线进行全过程数值分析,验证了计算曲线与试验曲线的吻合性。
     (4)为与试验监测结果相互印证,根据本文提出的劲化矩形钢板内填混凝土的本构关系,对所有试件进行了三维双重非线性有限元分析,深入揭示劲化带及约束拉杆对核心混凝土及钢管应力分布的影响,对各个试件进行了对比。有限元分析结果与试验结果基本相符。通过建立模型,扩大参数,利用有限元分析各种劲化方式、劲化参数下构件的侧向约束效果。
     (5)该类构件在各种劲化方式下的轴压承载力有很大差别,不能用一个统一的公式表述。采用本文提出的劲化矩形钢板混凝土本构关系,推导得出该类构件在各种劲化方式下的轴压承载力计算公式。采用本文提出的劲化矩形钢管混凝土柱的轴压承载力计算公式对轴压试件的承载力进行计算,计算结果与试验结果、有限元分析结果吻合良好;基于已有研究成果,本文方法能合理地评估劲化矩形钢管混凝土短柱的轴压承载力。
     (6)采用劲化矩形钢管核心混凝土的本构关系,利用截面网格单元法对偏压劲化矩形钢管混凝土柱试件进行数值分析,并用有限元法进行了验证,吻合良好,可以用来合理评估矩形钢管混凝土短柱的偏压承载力。
The constraint role of rectangular CFST column mainly focuses in the corners, and italmost does not exist in the four central sides. So the overall confinement effect on the coreconcrete is much lower than circular CFST column. Compared with that of square CFSTcolumn, rectangular steel tubular section presents the long and short sides, so the bindingeffect of the long side on the core concrete is weaker than the short side. The long side is moresusceptible to local buckling than the short side. However, due to the presence of bindingeffect, if the setting is proper, its bearing capacity is higher than the simple uniaxialsuperposition of steel strength and concrete strength.
     In order to improve mechanical properties of rectangular CFST column components,binding bars (reinforcements) are set at cross section of the columns at regular intervals. Onthe one hand it can limit the lateral deformation of core concrete; on the other hand it canprovide lateral supporting effect for steel pipe, so the local buckling strength is improved. Theset of binding bars can greatly improve mechanical properties of rectangular CFST column,but area between binding bars still appears elastic-plastic local buckling phenomenon, so theconfinement role to internal filled concrete is weakened.
     Stiffened rectangular CFST column forms harmonious collocation by adding stiffeners tobinding bars, with minimal increase of steel consumption without increasing the difficulty ofconstruction and affecting the construction schedule. It can maximize to slow elastic-plasticbuckling between the binding bars, improve the lateral constraint ability and the mechanicalproperties of rectangular CFST column.
     Learning from the existing research results, the stiffening design of rectangular CFSTcolumn in the paper can achieve the higher strength, stiffness and ductility to a large extentwith thinner steel tubular wall in the premise of satisfying the structural safety of high-risebuilding. Based on the above analyses, the author has a series of researches on the mechanicalproperties of stiffened rectangular CFST column under axial load, eccentric compression, andlow cycling quasi-static loading.
     Specific content includes the following main aspects:
     (1) The tests of10square CFST columns under axial load were conducted by varying the parameters such as horizontal spacing, vertical spacing of the binding bars, the section ofstiffeners and its setting style. The paper analyzes the influence of various parameters on themechanical properties such as failure mode, stress, strain, bearing capacity and ductility,providing the basic experimental data for the following research.
     (2)Taking the steel tubular thickness, the diameter and strength of binding bars, the crosssection and setting style of stiffeners as parameters, low cycling quasi-static tests were appliedfor16square CFST columns specimens. The paper analyzes the hysteresis curve, skeletoncurve of each member under different parameter to calculate the bearing capacity and itsdegradation, rigidity degradation, ductility factor of displacement, energy dissipation capacity.Skeleton curve parameters of stiffened square CFST columns are determined with three linearregression analysis from the experimental results. It will provide references for the design andanalysis of the new component in the ultra-high-level engineering design and analysis.
     (3)The constraint mechanisms of stiffened rectangular CFST columns are analyzed. Theconstraints to concrete from the long and short sides are different. The number of binding barsand stiffeners along the long and short side is also different. Based on three axial compressioncharacteristics of core concrete, the equivalent uniaxial constitutive relationship of coreconcrete is proposed. The whole process load-deformation curves of rectangular CFSTcolumns under axial compression are calculated by the equivalent uniaxial constitutiverelationship of the core concrete. It verifies the agreement of the calculated and experimentalcurves.
     (4) For verifying the consistent of experiment and finite element analysis, according tothe proposed constitutive relationship of stiffened rectangular steel tubular concrete, threedimensional nonlinear finite-element analyses are conducted on all specimens. For revealingthe effects of the different setting style of stiffeners and binding bars on stress distribution ofcore concrete and steel tube, all specimens are compared. The finite-element analysis and thetest results are basically consistent. Lateral binding capacities are analyzed under the differentstiffening parameters.
     (5) The axial bearing capacity of stiffened structure in each style is very different, and itcannot be expressed with a uniform formula. The axial bearing capacity formula in each wayis deduced by adoption of the proposed rectangular steel tubular concrete constitutive relationship. The bearing capacities of stiffened rectangular CFST columns under axialcompression are calculated by the formula in the paper. It shows the calculations are in goodagreement with the test results and FEM analysis. Based on existing research results, themethod can reasonably evaluate axial bearing capacity of stiffened rectangular CFST column.
     (6) Based on the constitutive relationship of stiffened rectangular CFST concrete, meshelements' method is presented for numerical analysis of stiffened rectangular CFST columnsunder eccentric compression, and verified with finite element method. The result shows betterconsistent. It can provide a reasonable assessment for rectangular CFST column undereccentric compression.
引文
[1]韩林海、杨有福.现代钢管混凝土结构技术[M].北京:中国建筑工业出版社,2004
    [2]韩林海.钢管混凝土结构-理论与实践[M].北京:科学出版社,2004
    [3]钟善桐.钢管混凝土结构(第三版)[M].北京:清华大学出版社,2003
    [4]蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2003
    [5]钟善桐.高层钢管混凝土结构[M].哈尔滨:黑龙江科学技术出版社,1997
    [6]张正国.方钢管混凝土柱的机理和承载力分析[J].工业建筑,1989,19(11):2-7
    [7] Knowles RB, Park R. Strength of concrete-filled steel tubular columns[J]. Journal ofthe Structural Division, ACI,1969,95(ST12):2565-2587
    [8] Tomii M, Yoshimura K, Morishita Y. Experimental studies on the ultimate moment ofconcrete filled square steel tubular beam-columns.[J]. Trans Architectural Institute ofJapan,1979,(275):55-63
    [9] Uy B, Patil SB. Concrete-filled hight strength steel box columns for tall buildings:behavior and design[J]. The Structural Design of Tall Building,1996,(5):75-93
    [10] Uy B. Loacal and post-local buckling of concrete-filled steel welded box columns[J].Journal of Constructional Steel Research,1998,(47):47-72
    [11] Ge H, Usami T. Strength of concrete-filled thin-walled steel box columns:experimental[J]. Journal of Structural Engineering, ASCE,1992,118(11):3006-3054
    [12] Ge HB, Usami T. Strength analysis of concrete filled thin-walled steel box columns[J].Journal of Constructional Steel Research,1994,(30):259-281
    [13] Susantha KAS, Ge H, Usami T. Uniaxial stress-strain relationship of concrete confinedby various shaped steel tubes[J]. Engineering Structures,2001,(23):1331-1347
    [14] Liang QQ, Uy B. Theoretical study on the post-local buckling of steel plates inconcrete-filled box columns[J]. Computer and Structure,2000,(75):479-490
    [15] Uy B. Strength of concrete filled steel box columns incorporating local buckling [J].Journal of Structural Engineering, ASCE,2000,126(3):341-352
    [16] Shanmugam NE, Lakshmi B, Uy B. An analytical model for thin-walled steel boxcolumns with concrete in-fill[J]. Engineering Structures,2002,24(6):825-8
    [17] Nakai H, Kitada T, Nakanishi K, et.al. Experimental study on ultimate strength andductility of steel and composite bridge piers with thin walled stiffened box crosssection[J]. J Struct Eng, JSCE,1997,39A:225-236
    [18] Nakai H, Kitada T, Sugiyama I, et.al. Experimental study on ultimate strength andductility of concrete filled thin-walled steel box columns after receiving seismicloading[J]. J Struct Eng, JSCE,1993,39A:1347-1360
    [19] Shakir-Khalil H, Mouli M. Further tests on concrete-filled rectangular hollow-sectioncolumns[J]. The Structure Engineer,1990,68(20):405-413
    [20] Shakir-Khalil H, Zeghiche J. Experimental behavior of concrete filled rectangularhollow section columns[J]. The Structure Engineer,1989,67(19):346-353
    [21] Uy B. Strength of short concrete filled high strength steel box columns[J]. Journal ofConstructional Steel Research,2001,(57):113-134
    [22] Dabaon M, EI-khoriby S,EI-Boghdadi M, etal.Confinement effect of stiffened andunstiffened stainless steel tubular stub columns[J].Journal of constructional steelresearch,2009,65(8/9):1846-1854
    [23]张正国、左明生.方钢管混凝土轴压短柱在短期一次静载下的基本性能研究[J].郑州工学院学报,1985,6(2):19-32
    [24]张正国.方钢管混凝土偏压短柱基本性能研究[J].建筑结构学报,1989,10(6):10-20
    [25]张正国.方钢管混凝土中长柱稳定分析和实用设计方法[J].建筑结构学报,1993,14(4):28-39
    [26]李四平、霍达、王箐、郭院成、黄玉盈.偏心受压方钢管混凝土柱极限承载力的计算[J].建筑结构学报,1998,19(1):41-51
    [27]李四平、聂建国、霍达、黄玉盈.方钢管混凝土偏压柱压溃荷载的近似计算[J],工程力学,1996,13(11):20-25
    [28]李四平、王箐、蒋晓东、黄玉盈.方钢管混凝土偏压柱极限承载力计算的简化数值法[J].华中理工大学学报,1997,25(4):93-94
    [29]李四平、邹时智、关罡、王箐.方钢管混凝土偏压柱压溃过程的数值模拟[J].华中理工大学学报,1996,24(5):91-94
    [30]王箐、蒋晓东、李四平、霍达.方钢管混凝土偏压柱承载力计算的正割公式[J].建筑结构学报,1998,(9):48-51
    [31]左明生、李四平、王菁.方钢管混凝土偏压柱的试验研究[J].郑州工学院学报,1992,13(2):122-128
    [32]荆树英、郑小庆、朱金铨.方形厚壁钢管混凝土短柱受力性能的研究[J].工业建筑,1989,19(11):8-13
    [33]颜卫亨、张兴武.轴压方形钢管混凝土短柱的承载力计算[J].四川建筑科学研究,1994,(4):11-14
    [34]张兴武、仲鹏.偏压方钢管混凝土短柱的承载力计算[J].建筑结构学报,1994,15(6):16-20
    [35]韩林海、陶忠.方形截面钢管混凝土压弯构件的理论分析和试验研究[C].霍英东教育基金高等院校青年教基金总结报告,1998
    [36]韩林海、陶忠.方形截面钢管混凝土构件的设计计算[J].钢结构,1998,13(4):39-45
    [37]韩林海、陶忠.方钢管混凝土轴压力学性能的理论分析与试验研究[J].土木工程学报,2001,34(2):17-25
    [38]韩林海、陶忠、刘威、陈宝春.长期荷载作用下方钢管轴心受压柱的变形特性[J].中国公路学报,2001,14(2):52-57
    [39]陶忠、韩林海.方钢管混凝土压弯构件荷载-位移滞回性能研究[J].工业建筑,2000,30(6):13-18
    [40]陶忠、韩林海.方形截面钢管混凝土压弯承载力设计计算[J].哈尔滨建筑大学学报,2000,33(6):23-27
    [41]陶忠、韩林海.方形截面钢管混凝土双向压弯构件承载力理论分析和简化计算[J].钢结构,2000,15(1):42-46
    [42]陶忠、韦灼彬、韩林海.方钢管混凝土压弯构件力学性能分析及承载力研究[J].工业建筑,1998,28(10):10-14
    [43]陶忠、韦灼彬、韩林海.方钢管混凝土轴心受压稳定承载力的研究[J].工业建筑,1998,28(10):15-18
    [44]韦灼彬、陶忠、韩林海.方钢管混凝土纯弯构件力学性能及承载力的研究[J].工业建筑,1998,28(10):6-9
    [45]吕西林、陆伟东.反复荷载作用下方钢管混凝土柱的抗震性能试验研究[J].建筑结构学报,2000,21(4):2-11
    [46]吕西林、余勇、陈以一.轴心受压方钢管混凝土短柱的性能研究:I试验[J].建筑结构,1999,29(10):41-43
    [47]余勇、吕西林.方钢管混凝土柱的三维非线性分析[J].地震工程与工程振动,1999,19(3):57-64
    [48]余勇、吕西林.轴心受压方钢管混凝土短柱的性能研究:II分析[J].建筑结构,2000,30(2):43-46
    [49]韩林海、杨有福.矩形钢管混凝土轴心受压构件强度承载力的试验研究[J].土木工程学报,2001,34(4):22-31
    [50]杨有福、韩林海.矩形钢管混凝土构件抗弯力学性能的试验研究[J].地震工程与工程振动,2001,21(3):41-48
    [51]杨有福、韩林海.矩形钢管混凝土柱的耐火性能和抗火设计方法[J].建筑结构学报,2004,25(1):25-35
    [52]韩林海、杨有福、刘威.长期荷载作用对矩形钢管混凝土轴心受压柱力学性能的影响研究[J].土木工程学报,2004,37(3):12-18
    [53]韩林海、游经团、杨有福、陶忠.往复荷载作用下矩形钢管混凝土构件力学性能的研究[J].土木工程学报,2004,37(11):11-22
    [54] Han L-H. Tests on stub columns of concrete-filled RHS sections [J]. Journal ofConstructional Steel Research,2002,58(3):353-372.
    [55] Han L-H, Yao G-H.Influence of concrete compaction on the strength of concrete-filledsteel RHS columns [J].Journal of Constructional Steel Research,2003,59(6):751-767.
    [56] Han L-H, Yang Y-F, Tao Z.Concrete-filled thin walled steel RHS beam columnssubjected to cyclic loading [J].Thin-walled Structures,2003,41(9):801-833
    [57] Han L-H, Yang Y-F.Analysis of thin-walled RHS columns filled with concrete underlong term sustained loads[J].Thin-walled Structures,2003,41(9):849-870
    [58]邓洪洲、傅鹏程、余志伟.矩形钢管和混凝土之间的粘结性能试验[J].特种结构,2005,22(1):50-52
    [59]沈祖炎、黄奎生.矩形钢管混凝土偏心受力构件的设计方法[J].建筑结构,2005,35(1):5-6
    [60]沈之容,蒋涛.矩形钢管混凝土结构的经济分析[J].特种结构,2001,18(4):1-4
    [61]刘永健、周绪红、邹银生、樊海涛.矩形钢管混凝土横向局部承压强度的试验研究[J].建筑结构学报,2003,24(2):42-48
    [62]郝艳娥、翟振东、矩形钢管混凝土短柱轴压承载力神经网络评估[J].长安大学学报(建筑与环境科学版),2004,21(3),24-28
    [63]何保康、杨晓冰、周天华.矩形钢管混凝土轴压柱局部屈曲性能的解析分析[J].西安建筑科技大学学报(自然科学版),2002,34(3):210-213
    [64]樊海涛、周绪红.T型矩形钢管混凝土受压节点性能研究[J].湖南大学学报(自然科学版),2002,29(1):105-109
    [65]钟善桐.圆形、八边、方形与矩形钢管混凝土轴心受压性能的连续性.建筑钢结构进展[J].2004,6(2):14-22
    [66]陈洪涛、钟善桐、张素梅.各种截面钢管混凝土轴压短柱基本性能连续性的理论研究[J].工业建筑,2004,34(8):93-95
    [67]郭兰慧、张素梅.截面长宽比对矩形钢管高强混凝土力学性能的影响[J].哈尔滨工业大学学报,2007,39(4):530-535
    [68]王箐、关罡、李四平、聂建国.方钢管混凝土轴压柱的承载力的计算[J].建筑结构,1997,27(5):13-15
    [69] Uy B. Local and post-local buckling of concrete-filled steel welded box columns[J].Journal of Constructional Steel Research,1998,47(1-2):47-72
    [70] Liang QQ, Uy B. Theoretical study on the post-local buckling of steel plates inconcrete-filled box columns[J]. Computer and Structure,2000,75(5):479-490
    [71] Uy B. Strength of concrete filled steel box columns incorporating local buckling [J].Journal of Structural Engineering, ASCE,2000,126(3):341-352
    [72] Shanmugam NE, Lakshmi B, Uy B. An analytical model for thin-walled steel boxcolumns with concrete in-fill[J]. Engineering Structures,2002,24(6):825-838
    [73] Uy B. Strength of short concrete filled high strength steel box columns [J]. Journal ofConstructional Steel Research,2001,57(2):113-134
    [74] Mursi M, Uy B. Strength of short concrete filled steel box columns incorporatinginteraction buckling[J]. J Struct Eng,2003,129(5):629-639.
    [75] Liang QQ, Uy B, Liew JYR. Nonlinear analysis of concrete-filled thin-walled steel boxcolumns with local buckling effects [J]. Journal of Constructional Steel Research,2006,62(6):581-591
    [76] Liang QQ, Uy B, Liew JYR. Local buckling of steel plates in concrete-filledthin-walled steel tubular beam-columns [J]. Journal of Constructional Steel Research,2007,63(3):396-405
    [77] Uy B,Bradford MA. Elastic local buckling of thin steel plates in composite steelconcrete members[J].Engineering Structures,1996,18(3):193-200
    [78] Ge HB, Usami T. Strength of concrete-filled thin-walled steel box columns:experimental[J]. Journal of Structural Engineering, ASCE,1992,118(11):3006-3054
    [79] Ge HB, Usami T. Strength analysis of concrete filled thin-walled steel box columns [J].Journal of Constructional Steel Research,1994,30(3):259-281
    [80] Bridge RQ, O'Shea MD. Behavior of think-walled steel box sections with or withoutinternal restraint[J]. Journal of Constructional Steel Research,1998,47(1-2):73-91
    [81] Song JY, Kwon YB (1997). Structural behavior of concrete-filled steel box sections(Austria, International Conference Report on Composite Construction Conventionaland Innovative), pp.795-800
    [82] Vrcelj Z, Uy B. Behavior and design of steel square hollow sections filled with highstrength concrete[J]. Australian Journal of Structure Engineering,2001,3(3):153-169
    [83] Liu D, Gho W-M. Axial load behavior of high-strength rectangular concrete-filled steeltubular stub columns[J].Thin-Walled Struct,2005,43(8):1131-1142
    [84] Tsuda K, Matsui C. Limitation on width(diameter)-thickness ratio of steel tube ofcomposite tube and concrete columns with encased type section[C]. Proceedings of theFifth Pacific Structural Steel Conference, Seoul,Korea,1998
    [85]何保康、周天华.矩形钢管截面的b/t、h/t的限值确定[J].钢结构,2001,16(2):29-31.
    [86] Tao Z, Han LH, Wang ZB. Experimental behavior of stiffened concrete-filledthin-walled hollow steel structural(HSS) stub[J]. Journal of Constructional SteelResearch,2005,61(7):962-983
    [87]王志滨、陶忠.带肋薄壁方钢管混凝土轴压短柱设计探讨[J].工业建筑,2007,37(12):13-17
    [88] Popovics S. A numerical approach to the complete stress-strain curves for concrete [J].Cement and Concrete Research,1973,3(5):583-599
    [89] Mander JB, Priestley MJN, Park R. Theoretical stress-strain model for confinedconcrete[J]. Journal of Structural Engineering, ASCE,1988,114(8):1087-1826
    [90] Susantha KAS, Ge H, Usami T. Uniaxial stress-strain relationship of concrete confinedby various shaped steel tubes[J]. Engineering Structures,2001,23(10):1331-1347
    [91]张正国.方钢管混凝土中长柱稳定分析和实用设计方法[J].建筑结构学报,1993,14(4):28-39
    [92]韩林海、冯九斌.混凝土的本构关系模型及其在钢管混凝土数值分析中的应用[J].哈尔滨建筑大学学报,1995,28(5):26-32
    [93]余勇、吕西林.三向受压混凝土的三维本构关系[J].同济大学学报,1998,26(6):622-626
    [94]李学平.矩形钢管混凝土柱的静、动力学性能研究[D].同济大学大学,2004
    [95] EC4. Design of Steel and Concrete Structures, Part1.1, General Rules and Rules forBuilding[S]. DD EVV1994-1-1:1996: British Standards Institute, London QIA2BS
    [96] BS5400. Steel concrete and composite bridges: Part5: Code of practice for design ofcomposite bridge[S]. British Standards Institution, London, UK
    [97] ACI318-05. Building code requirements for structural concrete and Commentary [S].American Concrete Institute, Detroit(MI), American Concrete Institute,2005
    [98] AISC-LRFD1999. Load and resistance factor design specification for structural steeltubular structures[S]. American Institute of Steel Construction(AISC), Chicago, USA
    [99] AIJ1997. Recommendations for design and construction of concrete filled steel tubularstructures[S]. Architectural Institute of Japan (AIJ), Tokyo, Japan
    [100] CECS159:2004,矩形钢管混凝土结构技术规程[S]
    [101] DL/T5085-1999,钢与混凝土组合结构设计规程[S].北京:中国电力出版社,1999.
    [102] GJB4142-2000,战时军港抢修早强型组合结构技术规程[S]何155
    [103] DBJ13-51-2003,钢管混凝土结构技术规程[S]
    [104] Huang CS, Yeh YK, et.al. Axial load behavior of stiffened concrete-filled steelcolumns[J]. Journal of Structural Engineering, ASCE,2002,128(9):1222-1230
    [105] Cai Jian, He Zhen-Qiang. Axial load behavior of square CFT stub column with bindingbars [J], Journal of Constructional Steel Research,2006,62(5):472-483
    [106]何振强.带约束拉杆方形钢管混凝土短柱受压性能的研究[D].华南理工大学,2006
    [107]何振强、蔡健、陈星.带约束拉杆方钢管混凝土短柱轴压性能试验研究[J].建筑结构,2006,36(8):49-53.
    [108]蔡健、林焕彬、侯磊,朱昌宏.带约束拉杆矩形钢管混凝土短柱延性分析[J].深圳大学学报理工版,2011,28(3):214-217.
    [109]蔡健、郑新志.劲化方形截面钢管混凝土短柱轴压试验研究[J].建筑结构学报,2014,35(3):174-185
    [110]蔡健、何振强.带约束拉杆方形钢管混凝土的本构关系[J].工程力学,2006,23(10):145-150
    [111]蔡健、何振强.带约束拉杆方形钢管混凝土柱偏压性能[J].建筑结构学报,2007,28(4):25-35
    [112]何振强、蔡健.带约束拉杆方形钢管混凝土偏压短柱的试验研究[J].华南理工大学学报(自然科学版),2006,34(2):107-111
    [113]朱昌宏、苏广群、赵小芹、蔡健.带约束拉杆方形钢管混凝土短柱延性计算[J].科学技术与工程2010,10(28):6921-6925
    [114]蔡健,朱昌宏,苏广群.带约束拉杆方形钢管混凝土柱偏压承载力特性[J].广西大学学报(自然科学版).2010,35(4):524-530.
    [115]蔡健,龙跃凌.带约束拉杆矩形钢管混凝土短柱的轴压承载力[J].建筑结构学报.2009,30(1):7-14
    [116]蔡健,龙跃凌.带约束拉杆矩形钢管混凝土的本构关系[J].工程力学,2008,25(2):137-143.
    [117]龙跃凌、蔡健.带约束拉杆矩形钢管混凝土短柱偏压性能的试验研究[J].工业建筑,2007,39(10):126-130.
    [118]蔡健,朱昌宏,林焕彬.带约束拉杆矩形钢管混凝土短柱偏压承载力特性研究[J].长江大学学报(自然科学版),2010,7(1):92-94.
    [119]左志亮、蔡健、朱昌宏.带约束拉杆L形钢管混凝土短柱的偏压承载力[J].工程力学,2010,7(7):161-167.
    [120]蔡健、孙刚.带约束拉杆L形钢管混凝土的本构关系[J].工程力学,2008,25(10):174-179.
    [121]陈宗弼、陈星、叶群英、罗赤宇.广州新中国大厦结构设计[J].建筑结构学报,2000,21(3):3-9
    [122]蔡健、黄泰赟.钢管混凝土柱节点的应用现状和存在问题[J].建筑结构,2001,31(7):8-10,13
    [123] Kitada T. Ultimate strength and ductility of state of art on concrete-filled steel bridgespiers in Japan [J]. Engineering Structures,1998,20(4-6):347-354
    [124] Tsutomu Usami. Ductility of concrete-filled steel box columns under cyclic loading.Journal of Structural Engineering. ASCE.1994,120(7):2021~2038.
    [125] Huan C S, Yeh Y K, Liu G Y, etc. Axial load behavior of stiffened concrete filled steelcolumns.Journal of Structural Engineering,ASCE,2002,128(9):1222-1230
    [126]董志军.设肋方形薄壁钢管混凝土短柱静力性能研究.哈尔滨工业的大学硕士论文.2005.6
    [127] Tao Z, Wand Z B, Han L H. Behavior of concrete-filled square steel tubular columnswith stiffeners under concentric compression. Proceedings of the Eighth InternationalSymposium on Structural Engineering for Young Exports,August20~23,Xi'an China,2004:907~913
    [128]陈勇.新型薄壁钢管混凝土柱静力性能研究.哈尔滨工业大学博士论文.2006.3
    [129]黄宏、张安哥、李毅等.带肋方钢管混凝土轴压短柱试验研究及有限元分析[J].建筑结构学报,2011,32(2):75-82
    [130]韩林海、陶忠.方钢管混凝土轴压力学性能的理论分析与试验研究[J].土木工程学报,2001,34(2):17-25
    [131] Qing Yu,Zhong Tao,Ying-Xing Wu.Experimental behavior of high performanceconcrete-filled steel tubular columns[J].Thin-Walled Structures,2008,46(4):362-370.
    [132] Zhong Tao,Brian Uy,Lin-Hai Han,Zhi-Bin Wang.Analysis and design of concrete-filledstiffened Thin-walled steel tubular columns under axial compression[J].Thin-WalledStructures,2009,47(12):1544-1566
    [133] Sakino K, Nakahara H, Morino S, Nishiyama I. Behavior of centrally loadedconcrete-filled steel-tube short columns [J].J Struct Eng2004,130(2):180-188
    [134] Varma AH, Ricles JM, Sause R, Lu L-W. Experimental behavior of high strengthsquare concrete-filled steel tube beam-columns [J].J Struct Eng2002,128(3):309-318
    [135] Park R. Evalution of ductility of structures and structural sub-assemblage fromlaboratory testing [J]. Bull of the New Zealand Soc for Earthquake Engrg,22(3):155-166
    [136] Ye ZL, Zhang SM. Behavior of concrete-filled rectangular steel tube short columns [C].Proceedings of Sixth Pacific Structural Steel Conference. Beijing, China,2001
    [137]余勇、吕西林.轴心受压方钢管混凝土短柱的性能研究:II分析[J].建筑结构,2000,(2):43-46
    [138] Vrcelj Z,Uy B.Behavior and design of steel square hollow sections filled with highstrength concrete[J].Australian Journal of Structure Engineering,2001,3(3):153-169.
    [139] Ellobody,Young.Design and behavior of concrete-filled cold-formed stainless steel tubecolumns[J].Engineering Structures.2006.28(5):716-728.
    [140] Tsuda K, Matsui C. Limitation on width(diameter)-thickness ratio of steel tube ofcomposite tube and concrete columns with encased type section[C]. Proceedings of theFifth Pacific Structural Steel Conference, Seoul,Korea,1998
    [141] DL/T5085-1999,钢一混凝土组合结构设计规范[S].北京:中国电力出版社,1999
    [142]周继忠、郑永乾,陶忠.带肋薄壁和普通方钢管混凝土柱的经济性比较[J].福州大学学报(自然科学版),2008.36(4):598-603
    [143] Schneider S P.Axially loaded concrete-filled steel tubes [J]. J.Struct.Engrg.1998,124(10):1125-1138.
    [144] Sun WL. Behavior of stiffened concrete-filled steel beam-columns[D].Master Thesis,National Taiwan University, Taiwan, China,2000.
    [145] Fardis MN, Alibe B, Tasoulas JL. Monotonic and cyclic constitutive law for concrete[J]. Journal of Engineering Mechanics, ASCE,109(2):516-536
    [146]吕西林、陆伟东.反复荷载作用下方钢管混凝土柱的抗震性能试验研究[J].建筑结构学报,2000,(4):2-11
    [147]方小丹、李少云、钱稼茹等.钢管混凝土柱-环梁节点抗震性能的试验研究.建筑结构学报,2002,23(6):10-18
    [148]张耀春、徐超、卢孝哲.带肋薄壁方钢管混凝土柱的滞回性能[J].东南大学学报:自然科学版.2007,37(1):100-105.
    [149] Ge HB, Usami T. Cyclic test of concrete-filled steel box columns [J]. Journal ofStructural Engineering, ASCE,1996,122(10):1169-1177
    [150]陶忠、韩林海.方钢管混凝土压弯构件荷载-位移滞回性能研究[J].工业建筑,2000,(6):13-18
    [151]张素梅、张大旭.钢管混凝土柱与梁节点荷载-位移滞回曲线理论分析[J].哈尔滨建筑大学学报,2001,34(4):1-6
    [152]韩林海、姜绍飞等.大轴压比情况下钢骨混凝土柱滞回性能的试验研究[J].钢结构,1999,14(2):21-25
    [153]屠永清.钢管混凝土压弯构件恢复力特性的研究[D].哈尔滨:哈尔滨建筑大学,1994
    [154] Varma AH, Ricles JM, Sause R, Lu L-W. Seismic behavior and design of high strengthsquare concrete-filled steel tube beam columns[J]. Journal of Structural Engineering,ASCE,2004,130(2):169-179
    [155] William KJ, Warnke EP. Constitutive model for the triaxial behavior of concrete[J].International Association for Bridge and Structural Engineering,1975,19:1-30
    [156]过镇海、王传志、张秀琴.多轴应力下混凝土的强度和破坏准则[J].土木工程学报,1991,24(3):1-14
    [157]韩林海、冯九斌.混凝土的本构关系模型及其在钢管混凝土数值分析中的应用[J].哈尔滨建筑大学学报,1995,28(5):26-32
    [158]陈惠发、萨里普著AF、余天庆、王勋文译.土木工程材料的本构方程[M].武汉:华中科技大学出版社,2001
    [159]潘有光、钟善桐.钢管混凝土轴心受拉本构关系[J].工业建筑,1990,20(4):30-37
    [160] Chen ES, Buyukozturk O. Constitutive model for concrete in cyclic compression[J].Journal of Engineering Mechanics, ASCE,1985,111(6):797-814
    [161]陈洪涛、钟善桐、张素梅.钢管混凝土中混凝土的三向本构关系[J].哈尔滨建筑大学学报,2000,23(6):13-16
    [162] Ottosen NS. Constitutive model for short-time loading of concrete[J]. Journal ofEngineering Mechanics Divisions, ASCE,1979,105(EM1):127-141
    [163] Darkwin D, Pechnold DA. Nonlinear biaxial stress-strain law for concrete[J]. Journal ofEngineering Mechanics Divisions, ASCE,1977,103(EM2):229-241
    [164] Elwi AA, Murray DW. A3D hypo elastic concrete constitutive relationship [J]. Journalof Engineering Mechanics Divisions, ASCE,1979,105(EM4):623-641
    [165] Balan TA, Filippou FC, Hnorary EP. Constitutive model for3D cyclic analysis ofconcrete structures[J]. Journal of Engineering Mechanics, ASCE,1997,123(2):143-153
    [166]董毓利.混凝土非线性力学基础[M].北京:中国工业建筑出版社,1997
    [167]王勖成、邵敏.有限单元基本原理和数值方法(第二版)[M].北京:清华大学出版社,1996
    [168]余勇、吕西林.方钢管混凝土柱的三维非线性分析[J].地震工程与工程振动,1999,(3):57-64
    [169] Kwon M, Spacone E. Three-dimensional finite element analyses of reinforced concretecolumns[J]. Computers and Structures,2002,80:199-212
    [170] Pagnoni T, Slater J, Ameur-Moussa R, Buyukozturk O. A nonlinear three-dimensionalanalysis of reinforced concrete based on a bounding surface model[J]. Computers andStructures,1992,43(1):1-12
    [171] Shams M, Saaseghvaziri M A. Nonlinear response of concrete-filled steel tubularcolumns under axial loading [J]. Structural Journal, ACI,1999,96(6):1009-1017
    [172]屠永清、钟善桐.混凝土本构关系的边界面模型的讨论[J].哈尔滨建筑大学学报,1994,27(4):41-48
    [173]屠永清、钟善桐.混凝土本构关系边界面模型的改进[J].哈尔滨建筑大学学报,1995,28(3):29-34
    [174]蔡绍怀、焦占栓.钢管混凝土短柱的基本性能和强度计算[J].建筑结构学报,1984,5(6):13-29
    [175]顾维平、蔡绍怀、冯文林.钢管高强混凝土的性能与极限强度[J].建筑科学,1991,7(1):23-27
    [176] Ge HB, Usami T. Strength analysis of concrete filled thin-walled steel box columns [J].Journal of Constructional Steel Research,1994,30(3):259-28
    [177]蔡绍怀、顾万黎.钢管混凝土长柱的性能和强度计算[J].建筑结构学报,1985,6(1):32-40
    [178]顾维平、蔡绍怀、冯文林.钢管高强混凝土长柱性能和承载力的研究[J].建筑科学,1991,7(3):3-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700