压力容器蒸汽爆炸临界条件分析及后果仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液化气体通常采用压力容器储存,很多种类液化气体属于易燃、易爆、或有毒物质。这些物质一旦发生泄漏,迅速气化并扩散,短时间内即可形成大范围的危险区域,遇点火源,将导致重、特大火灾和爆炸事故。盛装液化气体或超过常温沸点的高温液体的压力容器发生泄漏后,内部物质由于失压、过热,发生蒸汽爆炸(也叫BLEVE),从而引起内部超压。较大的超压可使裂口扩展,造成局部大范围甚至整体失效,继而引发更大的事故。但目前还缺少一种模型或经验公式能够比较准确地说明发生BLEVE现象的临界条件。
     本文采用热力学原理、爆炸力学原理研究压力容器发生BLEVE现象的临界条件;应用断裂力学原理、有限元方法分析在发生BLEVE临界条件下裂口尖端的应力情况,对临界条件下泄漏后果进行仿真。
     应用热力学理论,对发生BLEVE的压力容器,在泄漏过程中内部的压强变化情况进行了理论分析。利用气相空间的饱和蒸汽比体积与质量关系公式及压缩气体泄漏速度公式,根据理想气体状态方程体积与密度变化关系,建立了比体积与泄漏时间关系的数学模型;建立了液化气体或超过常温沸点的高温液体发生BLEVE滞止时间模型。
     运用建立的比体积与泄漏时间关系的数学模型、滞止时间模型、BLEVE超压公式,建立了发生BLEVE的临界面积计算模型。
     由热力学理论,得出了发生BLEVE现象临界面积与压力容器内部气相体积、压强、泄漏速度、液面高度、液体密度之间的关系计算模型。可依据发生BLEVE临界面积与压力容器内部气相体积、压强、泄漏速度、液面高度、液体密度之间的关系计算模型,判定在给定压强条件下存在的裂口是否发生BLEVE现象。
     通过高温、高压热水泄漏实验以及采用参考文献中的实验结果,验证了所建模型得出的计算结果与实际结果基本吻合。
     在以上研究的基础上,分析了2000m3液氨球型压力容器在正常工作压力下,以及最高工作压力下发生BLEVE现象的临界温度、临界压强以及临界面积。采用环境风险评价系统软件(Risk System),仿真了2000m3液氨球型压力容器在BLEVE临界条件下发生泄漏后果的危害性。
Liquefied gases, many of which are inflammable, explosive or toxic substances, are usually contained in pressure vessels. Once leakage occurs, these substances will gasify and spread rapidly and form a wide range of dangerous area in a while. It can lead to heavy, big fires and explosive accidents when facing fire hazard. After leaking of the pressure vessel, in which liquefied gases or high temperature liquids over normal boiling point are loaded, the internal substances explode due to its pressure loss, overheating (it is also called BLEVE), and lead to internal overpressure. Large overpressure can make the split expand, and it can even cause local big scope or the overall failure, leading to more accidents.
     This thesis studies the pressure vessel BLEVE phenomenon in critical condition by using thermodynamics principle, explosion mechanics principle; it analyzes the pressure of cracking tip and the simulation under the critical condition after leaking by using fracture mechanics theory.
     It analyzes the internal intensity of pressure changing situation during the leakage in the pressure vessel when it explosives by using thermodynamics theory. According to the gas phase space saturated steam specific volume and quality formula and compressed gas leak velocity formula, and the changing relations between ideal gas state equation volume and density, we establish a specific volume and leakage time model, and also a exploding stagnation time model for liquefied gases or high temperature liquid over the normal boiling point.
     The critical area calculating model of BLEVE is established by using an established specific volume and leakage time model, stagnation time model and vapor explosion overpressure formula.
     By using the thermodynamics theory, it gets the model formula between the critical area of BLEVE phenomenon and internal gas phase volume, intensity of pressure, leakage speed, liquid surface height, and liquid density in pressure vessel. We can judge whether BLEVE phenomenon occurs in existing crack under the certain intensity of pressure according to the formula of the internal gas phase volume, intensity of pressure, leakage speed, liquid surface height, and liquid density in pressure vessel, as a judgment basis of the BLEVE phenomenon.
     Through the high temperature and high pressure hot water leakage experiment and the experimental results by references, we verify that the calculation results in established models are basically in accordance with the actual results.
     On the basis of above research, we analyze the critical temperature, critical intensity of pressure, and critical area when BLEVE phenomenon occurs in normal working pressure and under the highest pressure in the 2000m3 liquid ammonia ball pressure vessel. The hazard of leakage when in BLEVE critical condition in 2000m3 liquid ammonia sphere pressure vessel is simulated by adopting environmental Risk assessment system software (Risk System).
引文
[1]Birk.A.M, and Cunningham, M.H, The Boiling Liquids Eexpanding Vapour Explosion[J]. Journal of Loss Prevention in the Process Industries,1994,7(6):474-480.
    [2]Jan Stawecyk, Experimental Evaluation of LPG Tank Explosion Hazards [J]. Journal of Hazardous Materials,2003,96(6):189-200.
    [3]B.Boesmans, J.Berghlnans. Modelling Boiling Delay and Transient Level Swell during Emergency Pressure Relief of Liquefied Gases [J]. Journal of Hazardous Materials, 1996,46(2-3):93-104.
    [4]陈思凝.沸腾液体膨胀蒸汽爆炸(BLEVE)动力演化机理的小尺寸模拟试验研究[D].北京:中国科学技术大学,2007.
    [5]Birk.A.M,Scale Effects with Fire Exposure of Pressure-liquefied Gas Tanks[J]. J.Loss Process Ind.1995,8(5):.275-290.
    [6]Birk.A.M, M.H.Cunningham Liquid Temperature Stratification and Its Effect on BLEVES and Their Hazards[J]. Journal of Hazardous Materials,1996,48(6):219-237.
    [7]Birk.A.M, Internal Wall Cooling in Pressure Vessels Exposed to External Fire Impingement[J].International Journal Chemical Engineering Communications,1989, 80(1):153-171.
    [8]Stralen,S.V,& Cole,R. Boiling Phenomena:Physicochemical and Engineering Fundamentals and Applications[M]. New York:Hemisphere Publishing,1979,1:83-86.
    [9]C.M.Pietersen, Analysis of the LPG-disaster in Mexico City[J]. Journal of Hazardous Materials,1988, (20):85-107.
    [10]刘贯学.中国特大事故警世录[M].北京:中国劳动出版社,1995:289~293.
    [11]高忠白,邱清宇,王志文.压力容器安全管理工程[M].北京:中国石化出版社,1992:5.
    [12]胡世明,张政,魏利军.危险物质意外泄漏的重气扩散数学模型(1)[J].劳动保护科学技术,2000,20(2):34~38.
    [13]梁金忠,马昌华.西安“3.5”液化石油气泄漏事故原因分析[J].劳动保护,2000(8):43~44.
    [14]T.A. Roberts, Directed Deluge System Designs and Determination of the Effectiveness of the Currently Recommended Minimum Deluge Rate for the Protection of LPG tanks[J]. Journal of Loss Prevention in the Process Industries,2004,17(2):103-109.
    [15]A Aszodi, E krepper, H M Prasser. Experimental and Numerical Investigation of One and Two Phase Natural Convection in Storage Tank[J].Heat and Mass Transfer,2000, 36(6):497-504.
    [16]Yuming Cheng, G Manfred et al. Bubble Dynamics of Boiling of Propane and Iso-butane on Smooth and Enhanced Tubes[J]. Experimental Thermal and Fluid Science,2004, 28:171-178.
    [17]N Zuber, The Effects of Complexity, of Simplicity and of Scaling in Thermal-hydraulics, Nuclear Engineering and Design[J].2001,204(1):1-27.
    [18]Birk, A.M, VanderSteen, J.D.J., The Effect of Pressure Relief Valve Blowdown and Fire Conditions on the Thermo-Hydraulics within a Pressure Vessel [J], ASME PVT Journal, 2006,128(3):467-475.
    [19]Avedisian C T. The Homogenous Nucleation Limits of Liquids[J]. J. Phys. Chem. Ref. Data,1985,14(3):695-729.
    [20]Beiyon G V, Cow ley L T, Small M Letal, Fire Engulfment of LPG Tanks, Heatup-appreciative Model[J]. Journal of Hazardous Materials,1988 (20):227-238.
    [21]VanderSteen, J.D.J., Birk, A.M., Fire Tests on Defective Tank-Car Thermal Protection Systems[J]. Journal of Loss Prevention for the Process Industries,2003,16:417-425.
    [22]Rice J R. Rosengren G.F., Plane Strain Deformation Near a Crack Tip in Power-law Hardening Material[J]. Joural of Mechanics andPhysics of Solids,1968,16(1):1-12.
    [23]Hutchinson J.W, Singular Behavior at the End of A Tensile Crack Tip in a Hardening Material [J]. Joural of Mechanics andPhysics of Solids,1968,16:13-31.
    [24]Yu C.M, Venart J.E.S.The Boiling Liquid Collapsed Bubble Explosion (BLCBE):A Preliminary Model[J]. Journal of Hazardous Materials,1996,14(6):197-213.
    [25]Hood J E, Fracture of Steel Pipelines [J].International Journal of Pressures Vessels &. Piping.1974.2(3):165-178.
    [26]Duffy A R., Fracture Design Practices for Pressure Piping[M]. Liebowitz Ed, New York:Academic Press,1969:159-232.
    [27]Ramskiu P K. A description of the"ENGULF"Computer Codes- codes to Model the Thermal Response of an LPG Tank either Fully of Partially Engulfed by Fire[J]. Journal of Hazardous Materials,1989,20(6):177-196.
    [28]David Broek, Elementary Engineering Fracture Mechanics[M]. Martinus Nijhoff Publishers, The Hague:The Netherlands,1982,31(3):56.
    [29]Birk.A.M, VanderSteen, J.D.J, The Survivability of Steel and Aluminum 33.5 Pound Propane Cylinders in Fire[J]. AIChE Process Safety Progress,2003,22(2):129-135.
    [30]Sharples J K.Clayron A M., A leak-before-break Assessment Method for Pressure Vessels and Some Current Unresolved Issues[J]. Intrenational Journal of Pressure Vessels &.Piping,1990,43(1-3):317-327.
    [31]B.Boesmans, J.Berghmans.Modelling Boiling Delay and Transient Level Swell during Emergency Pressure Relief of Liquid Gases[J]. Journal of Hazardous Materials 1996, 46(8):93-104.
    [32]Melhem G A, Croce P A., Data Summary of the National Fire Protection Association's BLEVE Tests[J]. Process Safety Progress,1993,12(2):76-82.
    [33]Birk.A.M,Scale Effects with Fire Exposure of Pressure-liquefied Gas Tanks[J].Journal of Loss Prevention in the Process Industries,1995,8(5):275-190.
    [34]Jan Stawczyk, Experimental Evaluation of LPG Tank Explosion Hazards[J]. Journal of Hazardous Materials,2003,96(2-3):189-200.
    [35]Birk,A.M, The Affect of Reduced Design Margin on the Fire Survivability of ASME Code 500 Gal Propane Tanks[J]. ASME PVT Journal,2005,127 (1):55-60.
    [36]L.C. Shirvill, Efficacy of Water Spray Protection against Propane and Butane Jet Fires Impinging on LPG Storage Tanks[J]. Journal of Loss Prevention in the Process Industries,2004,17(2):111-118.
    [37]G. Hankinson, B.J. Lowesmith,Effectiveness of Area and Dedicated Water Deluge in Protecting Objects Impacted by Crude Oil/gas Jet Fires on Offshore Installations[J]. Journal of Loss Prevention in the Process Industries,2004,17(2):119-125.
    [38]Birk.A.M,Davison,C,Cunningham, M,Blast Overpressures from Medium Scale BLEVE Tests[J].Journal of Loss Prevention in the Process Industries,2007,20(3):194-206.
    [39]王显政,杨富,王新等.安全评价[M].北京:煤炭工业出版社,2005:554~568.
    [40]Donald L.Ermak, Henry C.Goldwire, WilliamJ.Hogan, Results of 40m3 LNG Spills onto Water[J]. Heavy Gas and Risk Assessment,1983,11(2):183-179.
    [41]P.W.M.Brighton and A.J.Prince,Overall Properties of the Heavy Gas Clouds in the Thorney Island Phase II Trials[J]. Journal of Hazardous Materials,1987,16(5):103-138.
    [42]Al-Khaleefi A M, Terro M J, Alex A P, et al. Prediction of Fire Resistance of Concrete Filled Tubular Steel Columns Using Neural Networks [J]. Fire Safety Journal,2002, 37(3):339-352.
    [43]Anon, Fluent 6.0,Industrial-strength CFD[J]. Chemical Engineering World,2001, 36(12):82-87.
    [44]E. Kreeper, H.M. Prasser. Measurements and CFX-simulations of a Bubbly Flow in a Vertical Pipe, Advances in Fluid Mechanics, Third International Conference on Advances in Fluid Mechanics AFM 2000[C]. Computational Mechanics Inc. 2000:23-31.
    [45]M. An, W. Thompson, etc. Phoenics Simulations of Gas-liquid Flows in Large Piping Components Related to Nuclear Safety Assessment. American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP,2001, 424(2):213-223.
    [46]Jing Yang, Liejin Guo, Ximin Zhang. A Numerical Simulation of Pool Boiling Using CAS Model[J]. Int. J. Heat and Mass Transfer[J].2003,46(5):4789-4797.
    [47]淮秀兰,俞昌铭.盛有液化气的压力容器在高温环境下的热响应[J].油气储运,1993,12(4):18~22.
    [48]王若菌,蒋军成.LPG蒸气云爆炸风险评估中的参数不确定性分析[J].南京工业大学学报,2005,27(6):12~15.
    [49]李格升,俞昌铭,钱耀南等.液化气贮运过程中突发事故机理研究进展[J].武汉交通科技大学学报,1998,22(5):472~475.
    [50]王若菌,蒋军成.LPG沸腾液体扩展蒸气爆炸火球热辐射概率风险评估[J].中国安全生产科学技术,2005,11(3):11~14.
    [51]王三明,蒋军成.沸腾液体扩展蒸气爆炸机理及相关计算理论模型研究[J].工业安全与环保,2001,27(7):30~34.
    [52]陈思凝,孙金华,褚冠全等.锅炉沸腾液体膨胀蒸汽爆炸(BLEVE)的小尺寸模拟试验[J].热能动力工程,2006,21(2):132~135.
    [53]林文盛,顾安忠,鲁雪生.低温容器的蒸汽爆炸现象初探[J].低温与特气,2002,20(2):20~24.
    [54]弓燕舞,林文盛.热分层对蒸汽爆炸过程影响的实验研究[J].工程热物理学报,2004,25(6):925~928.
    [55]林文盛,顾安忠,鲁雪生.液化石油气蒸汽爆炸的模拟实验研究[J].工程热物理学报,2002,23(6):678~680.
    [56]俞昌铭,Venart J E S,熊音.一种冷爆炸现象的物理数学分析初探[J].工程热物理学报,1995,16(6):354~357.
    [57]C.A. McDevitta, C.K. Chanb, F.R..Steward.etc Initiation Step of Boiling Liquid Expanding Vapour Explosions[J]. Journal of Hazardous Materials,1990,25(2):169-180.
    [58]俞昌铭.压力陡降及容积加热条件下气-液两相系统瞬态分析[J].工程热物理学报,1994,15(2):205~209.
    [59]沈士明.压力容器与管道缺陷评定的先漏后爆(LBB)准则[J].南京化工学院报,1995,4(2):52~56.
    [60]罗艾民,刘骥,魏利军等.锅炉BLEVE爆炸能量及其效应研究[J].中国安全生产科学技术,2006,2(5):29~32.
    [61]鲁钟琪.两相流与沸腾传热[M].北京:清华大学出版社,2002:147~153.
    [62]王翔.关于关于球罐缺陷简述[J].化工设备与管道,2003,40(3):57~58.
    [63]韦俊林.5000m3液氨球罐缺陷分析[J].大氮肥,2002,25(6):424~425.
    [64]张忠政,巩建鸣,涂善东.含缺陷球罐的安全评定[J].静设备,2007,28(1):11~12.
    [65]王宽福.球罐的安全评定和缺陷的断裂力学分析[J].石油工程建设,1991,20(4):55~56.
    [66]谢里阳,林文强.压力容器和管道失效预测模型[J].理化检验-物理分册,2001,37(4):139~143.
    [67]易志坚,赵廷仕.Ⅰ型平面应变定常扩展裂纹线场分析[J].华中理工大学学报,1992,20(3):69~76.
    [68]易志坚.Ⅰ型平面应力裂纹弹塑性场在裂纹线附近匹配方程的一般形式研究[J].应用数学和力学,2001,22(10):1058~1066.
    [69]刘强,王芳,黄小平等.裂纹尖端塑性区三维有限元分析[J].船舶力学,2006,10(5):90~99.
    [70]胡殿印,王荣桥,邓俊等.基于有限元方法的裂纹扩展寿命预测机械强度[J].2009,31(2):264~268.
    [71]陶伟明,班勇婷.一种裂纹扩展的有限元仿真分析方法及其实现[J].力学季刊,2009,30(4):612~617.
    [72]刘莎,张芳.基于ANSYS有限元软件裂纹扩展模拟[J].化工装备技术,2006,27(1):55~57.
    [73]俞树荣,严志刚,陈剑虹.解理断裂前裂纹尖端变形与开裂的有限元模拟[J].兰州理工大学学报,2004,30(2):10~14.
    [74]黄向平,王建华.裂纹跟踪的网格生成技术[J].上海交通大学学报,2001,35(4):493~495.
    [75]赵国.球形容器裂纹问题[J].工业安全与防尘,1994,26(6):1~3.
    [76]沈士明.带纵向裂纹容器及管道的失效分析[J].压力容器,1987,4(5):31~37.
    [77]葛润广,岳烨,毛洲明等.基于ANSYS的应力强度因子计算[J].湖南城市学院学报(自然科学版),2009,18(2):10~12.
    [78]何庆芝,郦正能.工程断裂力学[M].北京:北京航空航航天出版社,1993,96~101.
    [79]匡震邦,马法尚.裂纹端部场[M].西安:西安交通大学出版社,2002,45~101.
    [80]邢志祥,蒋军成.液化石油气储罐对火灾的热响应[J].消防科学与技术,2002,21(5):36~39.
    [81]国家质检总局特种设备事故调查处理中心.特种设备典型事故案例集[M].北京:航空工业出版社,2005:105~230.
    [82]Robert E.Melcher, William R.Feutrill Risk assessment of LPG Aautomotive Refueling facilities Reliability[J]. Engineering and System Safety,2001,74(3):283-290.
    [83]吴宗之,高进东,魏利军.危险评价方法及其应用[M].北京:冶金工业出版社,2001:31~32.
    [84]柯轩.HAN阻隔防爆技术与成品油安全储运[J].劳动保护,2005,32(9):81.
    [85]罗艾民,刘伟,吴宗之等.HAN阻隔防爆模型研究[J].中国安全科学学报,2008,18(4):87~89.
    [86]郑远攀.工业危险物质(重气)扩散数学模型研究综述[J].安全与环境学报,2008,8(3):106~109.
    [87]魏利军,张政,胡世明.重气扩散的数值模拟[J].中国安全科学学报,2000,10(2):26~34.
    [88]黄琴,蒋军成.重气扩散研究综述[J].安全与环境工程,2007,14(4):36~39.
    [89]潘旭海.事故性泄漏动力学过程的理论与实验研究[D].南京:南京工业大学,2004.
    [90]郭海鹏,李浩.液化蒸气爆炸—火球对人体的伤害评价[J].世界海运.2002,25(5):17~18.
    [91]丁晓晔,蒋军成,黄琴.液氨球型压力容器事故性泄漏扩散过程模拟分析[J].中国安全生产科学技术,2007,3(3):7~11.
    [92]李海峰.两相临界流泄漏模型及其应用研究[D].南京:南京工业大学,2003:34~41.
    [93]马晓茜,王晶晶.液化天然气BLEVE机理研究及其事故后果评价[J].华南理工大学学报(自然科学版),2007,35(10):189~192.
    [94]丁信伟,王淑兰,徐国庆.可燃及毒性气体扩散研究[J].化学工程,2000,28(1): 33~36.
    [95]彭昌军,杨国恒,吴元欣.低沸物过热亚稳态与相变爆炸[J].石油与天然气化工,1998,27(3):164~169.
    [96]Moodie K. Experiments and modeling:An Overview with Particular Reference to Fire Engulfment[J]. Journal of Hazardous Materials,1988,20(10):149-175.
    [97]Venart J E S. Experiments on the Physical Modeling of LPG Tank Cars under Accident Conditions.Int.Conf[J]. Storage and Transport of LPG and LNG Brugge,1984, 15(6):33-41.
    [98]Birk AM.An Experimental Investigation of Cylindrical Vessel Engulfed in Fire with a Burning Relief Valve Flare Present. Am.Soc.Meeh.Eng.Proc.of the National Heat Transfer Conf,1988:125-135.
    [99]Martinsen W. E, Johnson D W, Terrel W F. BLEVE:Their Causes Effects and Prevention[J]. Hydrocarbon Processing,1986,65(11):141-148.
    [100]Blander.M, Katz J. I.,Bubble Nucleation in Liquids[J]. AI ChE Journal,1975, 21(5):833-848.
    [101]LA.Payan-Rodriguez, A.Gallegos-Munoz, G.l.Porrasloaiza, etc. Critical Heat Flux Prediction for Water Boiling Tubes of a Steam Generator[J]. Internation Journal of Thermal Sciences,2005,44(2):179-188.
    [102]董守华.事故爆炸冲击波破坏准则综述[J].石油化工安全技术,1996,12(4):40~41.
    [103]Dorofeev S.B,Sidorov V.P, Kurchatov M S, et al. Effect of Scale on the Onset of Detonation[J]. Shock Waves,2000,10(2):137-149.
    [104]林文胜,顾安忠,俞永华.液化石油气储罐快速降压过程的初步模型[J].油气储运,2000,19(4):25~27.
    [105]刘宝兴.工程热力学[M].北京:机械工业出版社,2006:391~395.
    [106]戴光,魏安安,李伟等.压力容器安全工程学[M].北京:中国石化出版社,2010:45.
    [107]L.Haar and J.S.Gallaher, Thermodynamic Properties of Ammonia[J]. The Journal of Physical Chemistry,1978,7(2):635-792.
    [108]丘志坚,王艳,支淑民等.2000m3丙烯球型压力容器设计研究[J].石油工程建设,2009,35(4):21~23.
    [109]李永泰,黄金国.球型压力容器支柱型式及其与球壳连接的结构[J].压力容器,2003,20(10):28~29.
    [110]中国就业培训技术指导中心,中国安全生产学会.安全评价师[M].北京:中国劳动社会保障出版社,2010:116.
    [111]丁信伟,王淑兰,徐国庆.可燃及毒性气体扩散研究[J].化学工程,2000,28(1):33~36.
    [112]郝吉胆,马广大.大气污染控制工程[M].北京:高等教育出版社,1989:121.
    [113]余常昭.环境流体力学导论[M].北京:清华大学出版社,1992:272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700