红外小目标检测与跟踪算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红外小目标的检测与跟踪是制导与预警等领域的一项关键技术。在尽可能远的距离上检测并跟踪到敌方目标,以争取在最有利的时机发动攻击,是决定现代战争胜负的重要因素。距离越远,目标成像面积越小,图像质量越差,对目标的检测与跟踪越困难。因此,研究小目标的检测与跟踪算法,对提高红外成像系统的作用距离,具有重要意义。
     红外图像信杂比低、对比度差,目标尺寸小、形状和纹理等信息匮乏,相对于其他目标,红外小目标的检测与跟踪十分困难。机载前视红外图像背景复杂,目标与杂波交织在一起,形成大量虚假目标,进一步增加了检测与跟踪的难度。本文着重对机载前视红外探测系统远距离成像时复杂背景下的小目标图像预处理、小目标检测与跟踪问题进行研究。
     1.红外小目标图像预处理算法研究
     图像预处理的目的是抑制背景中的杂波,现有算法主要针对云杂波和海杂波进行滤除,对地面复杂背景下的杂波抑制效果较差。本文在分析机载前视红外图像特点的基础上,提出了一种基于多结构元素的形态重构开Top-Hat算子滤波算法,有效地去除了背景中的杂波;针对以上算法滤波效果仍然依赖于结构元素的形式及个数的问题,又提出了采用神经网络分类器自动获取标记图像的自适应滤波算法,避免了结构元素的选取问题,进一步提高了背景杂波的抑制能力;针对滤波处理后某些图像对比度较低的问题,提出了一种基于小波变换的目标能量增强算法,融合小波能量图像与小波变换低频图像,提高了图像的对比度,更利于对小目标的检测。
     2.红外图像小目标检测算法研究
     由于目标本身能量较弱,又受到背景杂波的影响,很难在单帧红外图像中准确地检测出小目标,因此常采用多帧检测算法。现有跟踪前检测(DBT)算法在图像信杂比较低时检测效果较差,检测前跟踪(TBD)算法计算量大,难以实时应用。针对上述问题,本文在图像预处理的基础上,将基于核密度估计的Mean-Shift跟踪引入到小目标检测算法中,提出了一种DBT类小目标检测算法。融合初始多帧图像,检测出候选目标,提高小目标的检测概率;采用Mean-Shift算法对候选目标进行跟踪,根据目标运动的连续性,通过跟踪轨迹确认真实小目标,剔除伪目标,降低虚警率;采用伪透视运动模型对传感器全局运动进行补偿,减少由于图像抖动而引起的真实目标漏检。综合以上技术,提高了对小目标的检测成功率,降低了虚警率。
     3.红外图像小目标跟踪算法研究
     在基于模型驱动的跟踪算法中,小目标无明显的形状和纹理信息可以利用,较难对其建立完善的数学模型,且常由于目标模板不能及时更新或过更新引起跟踪失败。本文提出一种基于多特征核密度估计的Mean-Shift跟踪算法。融合灰度和局部加权灰度信息熵特征,对目标模板与候选目标区域进行核密度估计,通过Mean-Shift算法最小化目标候选区域的核密度分布与模板的核密度分布之间的距离来实现跟踪;以Bhattacharyya系数为准则,对目标模板进行自动更新。此算法提高了对小目标跟踪的鲁棒性。
Infrared (IR) small target detection and tracking are key techniques in the fields of guidance, early warning and so on. In the modern wars, it is the vital factors, that detecting and tracking the enemy targets as far as possible in order to attack them at the most favorable time, which even decide the final results of the wars. The farther away from the detector, the smaller of the target size, the poorer of the image quality, and the more difficult to detect and track the targets. Therefore, the research on IR small target detection and tracking algorithms is of great significance to enhance the operating range of IR imaging system.
     Compared to target detection and tracking in the other area, infrared small target detection and tracking are even more difficult due to several aspects, including the low signal-to-clutter ratio, low contrast of IR image, and the small size, lack of shape and texture information of the target. Especially, the background in airborne Forward-looking infrared (FLIR) image is complex, the targets are intertwined with the clutter and there are numbers of false targets that disturb the detection and tracking. The works presented in this dissertation focus on image pre-processing, small target detection and tracking algorithm in the long-range imaging airborne FLIR image sequence under complex background.
     1. Research on infrared small target image pre-processing algorithm
     The image pre-processing aims at suppression of the clutter in the background. The existing algorithms are mainly developed to restrain the cloud clutter and sea clutter and appear less effective in the clutter suppression under complex ground backgrounds. On the basis of analyzing the characteristics of the airborne FLIR images, A Multiple Structuring Elements Opening-by-Reconstruction Top-Hat Operator is proposed, which can effectively remove the clutter from the background. Then, according to the filtering result relying on the structuring elements, this study goes on to mark the images automatically using neural network classifier, thus avoiding the problem in the selection of structural elements, implementing the adaptive filter and further enhancing the ability to suppress the background clutter. In addition, considering the existence of certain lower contrast image after the process of filtering, a Target Energy Enhancement Algorithm Based on Wavelet Transform is given, which combines the wavelet energy image and the wavelet transform scaled image, to improve the image contrast and thus contribute to the detection of small targets.
     2. Research on infrared small targets detection algorithm
     Due to the less energy of small targets and the impact of background clutter, it is difficult to accurately detect the small targets in a single frame of FLIR images. Therefore, Multi-frame detection algorithm is typically used. However, the existing Detect-before-Track (DBT) algorithm appears less effective dealing with the images at a relatively low SCR, and the Track-before-Detect (TBD) algorithm is not suitable for real-time applications due to its large amounts of computing. According to these questions, based on image pre-processing, the kernel based Mean-Shift tracking is introduced into small target detection algorithm, a DBT algorithm is proposed: detecting the target candidates by integrating the initial multi-frame images to enhance the probability of detecting; according to the continuity of target, tracking the target candidates using Mean-Shift algorithm to remove the fake targets and reduce the false alarm; compensating the global motion of the sensor using pseudo-perspective motion model to reduce the missing of detection caused by the images shaking. Taking all these technologies above, we finally achieve the fast and accurate detection of small targets.
     3. Research on infrared small targets tracking algorithm
     In the Model-driven Tracking algorithm, little information on the shape and texture of the small target can be used, it is difficult to set up a consummate mathematical model, and often causes the tracking failure due to delay-update or over-update of the template. In this study, a Mean-Shift Tracking algorithm based on multi-characteristics kernel density estimation is proposed. The study goes on to integrate gray-scale and the local weighted intensity entropy features to estimate the kernel density of the template and the region of target candidate, implements the tracking mission by minimizing distance between the kernel density distribution of the target candidate region and that of the template, and then automatically updates the target template according to the Bhattacharyya coefficient. This algorithm achieves the robust tracking of small targets.
引文
1李凯永,何友金,张鹏,徐长爱.地面红外目标图像识别方法研究.电光与控制. 2009, 16(3): 71~74.
    2 I. V. Liviu, P. Ron, R. M. Harley. Detection performance prediction on IR images assisted by evolutionary learning. SPIE, 1999, 3699: 282~292.
    3姚连兴,仇维礼,王福恒.目标和环境的光学特性.北京:宇航出版社, 1995.
    4 R. Edmondson, M. Rodgers, M. Banish, M. Johnson, H. Ranganath. Single-Frame Image Processing Techniques for Low-SNR Infrared Imagery. Infrared Technology and Applications XXXIV. Proc. of SPIE. 2008, 6940: 69402G-1~12.
    5张艳晶.复杂云背景下红外运动小目标检测算法研究.国防科学技术大学工学硕士学位论文. 2003: 14~17.
    6宗思光,王江安.多量级多向梯度海空复杂背景红外弱点目标检测.应用光学. 2005, 26(5): 25~28.
    7刘伟,杨万海.红外图像中小目标检测的新算法.红外与激光工程. 2003, 32(3): 264~266.
    8 X. Mao, W. H. Diao. Criterion to Evaluate the Quality of Infrared Small Target Images. Infrared Milli Terahz Waves. 2009, 30: 56~64.
    9徐军.红外图像中弱小目标检测技术研究.西安电子科技大学博士研究生学位论文. 2001: 3~19.
    10高颖慧,李吉成,沈振康.红外小目标检测的预处理技术研究.红外与激光工程. 2004, 33(2): 154~158.
    11 L. H. Sun, Y. Z. Wang, Y. Q. He. Design and Implement of Infrared Small Target Real-time Detection System Based on Pipeline Technology. 27th International Congress on High-Speed Photography and Photonics, Xi’an, China, 2007. Proc. of SPIE, 6279: 627956-1~6.
    12 Suyog D. Deshpande, M.H.Er, V. Ronda, Phillip Chan. Max-Mean and Max-Median Filters for Detection of Small Targets. Part of the SPIE Conference on Signal and Data Processing of Small Targets, Denver, CO, USA, 1999. SPIE, 3809:74~83.
    13陶剑峰,殷志祥,廖光洪.基于模糊中值滤波的图像处理方法.信息与电子工程. 2007, 5(5): 391~394.
    14 L. Yang, J. Yang, K. Yang. Adaptive Detection for Infrared Small Target Under Sea-sky Complex Background. Electron. Letters. 2004, 40(17): 1083~1085.
    15李恪,王江安,郭谊.舰船热尾流红外图像的频域滤波增强技术.激光与红外. 2007, 37(10):1114~1116.
    16彭嘉雄,周文琳.红外背景抑制与小目标分割检测.电子学报. 1999, 27(12): 47~51.
    17周卫祥,孙德宝,彭嘉雄.红外图像序列运动小目标检测的预处理算法研究.国防科技大学学报. 1999, 21(5):57~60.
    18韩客松.复杂背景下红外点目标检测的预处理.系统工程与电子技术. 2000, 22(1): 52~54.
    19郑文龙,张涌,汤心溢,吴常泳.复杂背景下红外小目标实时识别方法研究.红外与毫米波学报. 2001, 20(6): 433~436.
    20 M. M. Hadhoud, D. W. Thomas. The Two~Dimensional Adaptive LMS(TDLMS) Algorithm. IEEE Trans. Circ. Sys.. 1988, 35(5): 485~494.
    21 M. Ohki, S. Hashiguchi. Two-Dimensional LMS Adaptive Filters. IEEE Trans. Consum. Electron.. 1991, 37(1): 66~73.
    22 S. Tarun, J. R. Zeidler, H. Walter. Performance Evaluation of 2-D Adaptive Prediction Filter for Detection of Small Objects in Image Data. IEEE Trans. on Image Processing. 1993, 2(2): 327~340.
    23朱红,赵亦工.基于背景自适应预测的红外小运动目标检测.红外与毫米波学报. 1999, 18(4): 305~310.
    24王伞,杨莘元.基于空间匹配滤波的红外背景抑制技术.应用科技. 2006, 33(1): 26~28.
    25 L. L. Scharfand, B. Friedlander. Matched Subspace Detectors. IEEE Trans. Signal Proc.. 1994, 42(8): 2146~2156.
    26徐军.背景预测方法在空中红外小目标检测、识别中的应用.西安电子科技大学学报. 1998, 25(4):471~473.
    27 L. M. Kaplan. Small Target Detection in Clutter using Recursive Nonlinear Prediction. IEEE Trans. Aeros. Electron. Sys.. 2000, 36(2): 713~717.
    28 K. L. Gao, M. Dong, W. Cheng. A Small Target Detection Algorithm Based on Immune Computation and Infrared Background Suppression. Third International Conference on Natural Computation, ICNC 2007, Haikou, Hainan, China, 2007. IEEE. 3:630~634.
    29 B. S. Denney, R. J. P. Figuriredo. Optimal Point Target Detection usingAdaptive Auto Regressive Background Predictive. Proc. SPIE.. 2000, (4048): 46~57.
    30史彩成,赵保军,韩月秋,毛二可.基于模糊理论的红外图像滤波.激光与红外. 2001, 31(2):113~114.
    31李国宽,彭嘉雄,李红.基于向量小波变换的小目标检测方法.华中理工大学学报. 2000, 28(1):73~75.
    32李红艳,吴成柯.一种基于小波与遗传算法的小目标检测算法.电子学报. 2001, 29(4):439~422.
    33 N. S. Robin, H. He. Wavelet Transform Methods for Object Detection and Recovery. Traps. Image Proc.. 1997, 6(1): 724~735.
    34 H. Utku, S. Piravadih. Wavelets as a Powerful Method to Filter IR Spectra. Infrared Physics & Technology. 2006, 49(1-2):167~172.
    35李国宽,彭嘉雄.基于小波变换的红外成像小目标检测方法.华中理工大学学报. 2000, 28(5): 69~71.
    36 G. Boccignone. Small Target Detection Using Wavelets. IEEE. 1998. Fourteenth International Conference on Pattern Recognition. 1998, 1776~1778.
    37 T. T. Victor, P. Tamar et al. Morphology-based Algorithm for Point Target Detection in Infrared Backgrounds. Signal and Data Processing of Small Targets, Orlando, FL, USA, 1993. Proc. SPIE, 2005, 1954: 2~11.
    38 J. F. Rivest, R. Fortin. Detection of Dim Targets in Digital Infrared Imagery by Morphological Image Processing. Opt. Eng.. 1996, 35(7):1886~1893.
    39汪洋,郑亲波,张钧屏.基于数学形态学的红外图像小目标检测.红外与激光工程. 2003, 32(1):28~31.
    40 M. Zeng, J. X. Li, P. Zhang. The Design of Top-Hat Morphological Filter and Application to Infrared Target Detection. Infrared Phys. & Tech.. 2006 ,48(1): 67~76.
    41 X. Z. Bai, F. G. Zhou, T. Jin, Y. C. Xie. Infrared small Target Detection and Tracking under the Conditions of Dim Target Intensity and Clutter Background. MIPPR 2007: Automatic Target Recognition and Image Analysis and Multispectral Image Acquisition, Wuhan, China, 2007. Proc. of SPIE, 6786: 67862M.
    42 X. Z. Bai, F. G. Zhou, Y. C. Xie. New Class of Top-Hat Transformation to Enhance Infrared Small Targets. Journal of Electronic Imaging. 2008, 17(3): 030501-1~3.
    43 L. Vincent. Morphological Grayscale Reconstruction in Image Analysis: Application and Efficient Algorithms. IEEE Trans. On Image Processing. 1993, 2(2):176~201.
    44 M. Pesaresi, J. Benedikt. A New Approach for the Morphological Segmentation of High-resolution Satellite Imagery. IEEE Transactions on Geoscience and remote sensing. 2001, 39(2):309~320.
    45 S. Mukhopadhyay, B. Chanda. Multiscale Morphological Segmentation of Gray-Scale Image. IEEE Trans. on Image Processing. 2003, 13(5):533~549.
    46 U. Braga-Neto, J. Goutsias. Automatic Target Detection and Tracking in Forward-looking Infrared Image Sequences using Morphological Connected Operators. Electronic Imaging. 2004, 13(4):802~813.
    47 X. Z. Bai, F. G. Zhou, Y. C. Xie. Modified Top-Hat Transformation Based on Contour Structuring Element to Detect Infrared Small Target. 2008 3rd IEEE Conf. Ind. Electron. Appl., ICIEA 2008. Singapore, Singapore, 2008. Institute of Electrical and Electronics Engineers Computer Society. 2008: 575~579.
    48李晓琼,史彩成,毛二可.基于高阶累积量的单帧复杂云背景下红外小目标检测.光学技术. 2008, 34(5): 696~698.
    49 M. Diani, G. Corsini, A. Baldacci. Space-Time Processing for the Detection of Airborne Targets in IR Image Sequences. IEEE Proc. Vision. Image Signal Proc.. 2001, 148(3): 151~157.
    50 H. S. Nie, X. Tian, Z. K. Shen. A Temporal Algorithm for IR Small Targets Detection. 27th International Congress on High-Speed Photography and Photonics, Xi’an, China, 2007. Proc. of SPIE, 6279(2): 62792W.
    51 D. S. K. Chan. A Unified Framework for IR Target Detection and Tracking. SPIE, Signal and Data Processig of Small Targets. 1992, 1689: 66~76.
    52杨德贵,庄钊文,黎湘.复杂背景下红外小目标检测技术研究.系统工程与电子技术. 2004, 26(5): 563~567.
    53 N. Ostu. A Threshold Selection Method from Gray-level Histogram. IEEE Trans. Sys. Man Cyber.. 1979, 9(1):62~66.
    54 A. Yilmaz, K. Shafique, M. Shah. Target Tracking in Airborne Forward-looking Infrared Imagery. Image Vision Comput.. 2003, 21:623~635.
    55任彬,汪炳权,束学斌.红外热图像自动阈值分割方法.安徽大学学报(自然科学版). 1996, 20(2): 58~62.
    56 R. M. Liu, L. Yang. Automatic Extraction of Infrared Small Target Based onSupport Vector Regression and Adaptive Region Growing Algorithm. Optical Engineering. 2007, 46(4): 046402-1~5.
    57 X. Z. Bai, F. G. Zhou, T. Jin, Y. C. Xie. Adaptive Morphological Method for Clutter Elimination to Enhance and Detect Infrared Small Target. ICICSE 2008-2008 International Conference on Internet Computing in Science and Engineering, Harbin, China, 2008: 47~52.
    58史凌峰.基于小波分析的一种红外小目标检测新方法.系统工程与电子技术. 2003, 25(8): 1024~1027.
    59 C. I. Chang, K. Chen, J. Wang. A Relative Entropy-based Approach to Image Thresholding. Pattern Recongn. 1994, 27(99):1275~1289.
    60 P. Sahoo, C. Wilkins, J. Yeager. Threshold Selection using Renyi’s Entropy. Pattern Recogn. 1997, 30(1):71~84.
    61 M. Cheriet, J. N. Said, C. Y. Suen. A Recursive Thresholding Technique for Image Segmentation. IEEE Trans. on Image Proc.. 1998, 7(6):918~921.
    62吴一全,吴文怡,潘喆.二维最大类间方差阈值分割的快速迭代算法.中国体视学与图像分析. 2007, 12(3):216~220.
    63涂建平,彭应宇.飞机目标红外图像序列双阈值分割方法.兵工学报. 2004, 25(1): 37~40.
    64 W. N. Lie. Automatic Target Segmentation by Locally Adaptive Image Thresholding. IEEE Trans. on Image Proc. 1995, 4(7): 1036~1041.
    65苏峰,凌清,高梅国.红外小目标实时检测系统实现.激光与红外. 2008, 38(8): 826~829.
    66 S. G. Sun. Target Detection using Local Fuzzy Thresholding and Binary Template Matching in Forward-looking Infrared Images. Optical Engineering, SPIE. 2007, 46(3): 036402-1~9.
    67 S. Greenberg, S. R. Rontman, H. Guterman, S. Zilberman, A. Gens. Region-of-interest-based Algorithm for Automatic Target Detection in Infrared Images. Optical Engineering. 2005, 44(7):077002-1~10.
    68杨卫平,李智勇,沈振康等.长波红外导引头空间自动目标识别智能系统(二).红外与激光工程. 1996, 25(5): 17~23.
    69廖斌,杨卫平,沈振康.基于多帧移位叠加的红外小目标检测方法.红外与激光工程. 2002, 31(2): 150~153.
    70 G. Wang, R. M. Inigo, E. S. McVey. A Pipeline Algorithm for Detection and Tracking of Pixel-sized Target Trajectories. SPIE Signal and Data Proc. ofSmall Targets. 1990, 1305:167~177.
    71杨卫平,李吉成,沈振康.分层投票表决目标检测方法及其性能分析.红外技术. 2003, 25(6): 10~13.
    72杨卫平,沈振康.红外图像序列小目标检测预处理技术.红外与激光工程. 1998, 27(1): 23~28.
    73邹江威,陈曾平.应用形态学与图像流法的空间小目标提取方法.光电工程. 2005, 32(4): 13~15.
    74王凯,孙德宝,彭嘉雄.红外图像序列运动小目标的图像流检测法.华中理工大学学报. 1998, 26(9): 1~4.
    75 Z. C. Wang, J. W. Tian, J. Liu. Small Infrared Target Fusion Detection Based on Support Vector Machines in the Wavelet Domain. SPIE, Opt. Eng. 2006, 45(7): 1~9.
    76 I. S. Reed, R. M. Gagliardi, H. M. Shao. Application of Three-dimensional Filtering to Moving Target Detection. IEEE Trans. on AES. 1983, 19(2): 898~905.
    77张长城,杨德贵,王宏强.红外图像中弱小目标检测前跟踪算法研究综述.激光与红外. 2007, 37(2): 104~107.
    78 J. H. Choi, A. R. Sarah. Three-dimensional Location Estimation of Trajectories of Point Targets using a Projection-based Transformation Method. Optical Engineering. 1995, 34(3): 933~939.
    79 D. G. Falconer. Target Tracking with the Hough Transform. Proc. of 11th Conf. on Circuits, Systems and computers. 1977: 249~252.
    80黄勇,曲长文,苏峰.基于Hough变换的检测前跟踪算法的性能分析.现代雷达. 2004, 26(12):37~41.
    81 H. Askar, Z. M. Li. A Dim Moving Point Target Detection Technique Based on Distribution Transform Method. Systems Engineering and Electronics. 2003, 25(1):103~106.
    82 F. Zhang, C. F. Li, L. N. Shi. Algorithm Based on Mathematical Morphology for Dim Moving Point target Detection. Optical Technique. 2004, 30(5):600~602.
    83 S. D. Blostein, T. S. Huang. Detecting Small Moving Objects in Image Sequences using Sequential Hypothesis Testing. IEEE Trans. on Signal Processing. 1991, 39(7): 1611~1629.
    84 S. D. Blostein, H. S. Richardson. A Sequential Detection Approach to TargetTracking. IEEE Trans. on AES. 1994, 30(1): 197~212.
    85 H. Im, T. Kim. Optimization of Multiframe Target Detection Schemes. IEEE Trans. on Aeros. Electron. Sys.. 1999, 35(1): 176~187.
    86崔常嵬,林英,陈景春.低信噪比缓动点目标的序贯检测算法的分析和改进.电子学报. 2001, 29(6): 820~823.
    87 I. S. Reed, R. M. Gagliardi, L. Stotts. Optical Moving Target Detection with 3-D Matched Filtering. IEEE Trans. on AES. 1988, 24(4): 327~336.
    88孙翠娟,杨卫平,沈振康.一种基于匹配滤波的红外小目标检测系统.激光与红外. 2006, 36(2), 147~150.
    89 R. Liou, M. R. Azimi-Sadjadi. Dim Target Detection using High Order Correlation Method. IEEE Trans. on AES. 1993, 29(3): 841~856.
    90 R. Liou, M. R. Azimi-Sadjadi. Multiple Target Detection using Modified High Order Correlations. IEEE Trans. on AES. 1998, 34(2): 553~567.
    91 J. Ellis, A. Dogariu. High Order Correlations in Speckle Fields. Seventh International Conf. on Corr. Optics., Chernivtsi, Ukraine, 2005. Proc. of SPIE. 2006, 6254: 1~10.
    92 J. H. Nanbara, M. R. Azimi-Sadjadi. Target Detection Utilizing Neural Networks and Modified High-order Correlation Method. Detection Technologies for Mines and Minelike Targets, Orlando, FL, USA, 1995. Proc. SPIE, 2005:687-697.
    93 Y. Barniv. Dynamic Programming Solution for Detecting Dim Moving Targets. IEEE Trans. on AES. 1985, AES-21(1): 144~156.
    94 Y. Barniv, O. Kella. Dynamic Programming Solution for Detecting Dim Moving Targets Part II: Analysis. IEEE Trans. on AES. 1987, AES-23(6): 776~788.
    95 Y. Bamiv. Dynamic Programming Solution for Detecting Dim Moving Targets. IEEE Trans. on AES. 1985, 21(1):144~156.
    96 S. M. Tonissen, R. J. Evans. Performance of Dynamic Programming Track Before Detect Algorithm. IEEE Trans. on AES. 1996, 32(4): 1440~1451.
    97 L. A. Johnston, V. Krishnamuthy. Performance of a Dynamic Programming Track Before Detect Algorithm. IEEE Trans. on AES., 2002, 38(1): 228~242.
    98陈尚峰,陈华明,卢焕章.基于加权动态规划和航迹关联的小目标检测技术.国防科技大学学报. 2003, 25(2): 46~50.
    99 S. Tantaratana, H.V. Poor. Asymptotic Efficiencies of Truncated Sequential Tests. IEEE Trans. on Information Theory. 1982, 8(6):911~923.
    100 Y. Chen. On Suboptimal Detection of 3-dimensional Moving Targets. IEEE Trans. on AES. 1989, 25(3): 343~350.
    101 W. Koch, K. G. Van. Multiple Hypothesis Track Maintenance with Possibly Unresolved Measurements. IEEE Trans on AEIS. 1997, 33(3):883~892.
    102 B. Porat, B. Friedlander. A Frequency Domain Algorithm for Multiframe Detection and Estimation of Dim Targets. IEEE Trans. on Pattern Analysis and Machine Intelligence. 1990, 12(4): 398~401.
    103 I. S. Reed, R. M. Gagliardi, L. Stotts. A Recursive Moving-target Indication Algorithm for Optical Image Sequences. IEEE Trans. On AES. 1990, 26(3): 434~440.
    104侯志强,韩崇昭.视觉跟踪技术综述.自动化学报. 2006, 32(4): 603~617.
    105 M. R. Morelande, S. Challa. Manoeuvring Target Tracking in Clutter using Particle Filters. IEEE Trans. Aeros. Electron. Sys.. 2005, 41(1): 252~269.
    106杨磊.复杂背景条件下的红外小目标检测与跟踪算法研究.上海交通大学工学博士学位论文. 2006:11~12.
    107陈晓荣,陈淑芬.变维卡尔曼滤波实现运动目标的跟踪.仪器仪表学报. 2006, 27(9): 1163~1166.
    108陈礼斌,刘钊.一种新的自适应扩展卡尔曼滤波算法.激光与红外. 2006, 36(3):210~212.
    109 D. L. Alspach, H. W. Sorenson. Nonlinear Bayesian Estimation using Gaussian Sum Approximation. IEEE Trans. on AC. 1972, 17(4):439~448.
    110 E. A. Wan, M. R. Van. The Unscented Kalman Filter. Kalman Filtering and Neural Networks (chapter 7). New York: Wiley. 2001:1~49.
    111 S. J. Julier, J. K. Uhlmann. Unscented Filtering and Nonlinear Estimation. IEEE Proc. of Aerospace and Electronic Systems. 2004, 92(3):401~422.
    112 S. Zhou, R. Chellappa, B. Moghaddam. Visual Tracking and Recognition using Appearance-adaptive Models in Particle Filters. IEEE Trans. Image Proc.. 2004, 13(11): 1491~1505.
    113 R. M. Mark, M. K. Christopher, K. Keith. A Bayesian Approach to Multiple Target Detection and Tracking. IEEE Trans. On Sig. Proc. 2007, 55(51):1589~1604.
    114 C. Chang, R. Ansari. Kernel Particle Filter for Visual Tracking. Signal Proc. Lett.. 2005, 12(3): 242~245.
    115 D. B. Reid. An Algorithm for Tracking Multiple Targets. IEEE Trans. onAutomatic Control. 1979, 24(6):843~856.
    116 S. Mori. Tracking and Classifying Multiple Targets Without a Priori Identification. IEEE Trans. on Aerospace and Electronic Systems. 1986, (31):401~409.
    117刘城霞,王宝树.适于复杂信息融合系统的近似联合概率数据关联算法.电子与信息学报. 2003, 25(10):1355~1360.
    118 Y. B. Shalom, E. Tse. Tracking in a Cluttered Environment with Probabilistic Data Association. Automatica. 1975, 11:451~460.
    119 C. Rasmussen, G. D. Hager. Probabilistic Data Association Methods for Tracking Complex Visual Objects. IEEE Trans. on Pattern Analysis and Machine Intelligence. 2001, 23(6): 560~576.
    120 S. S. Ahmeda, M. Keche, I. Haarison. Adaptive Joint Probabilistic Data Association Algorithm for Tracking Multiple Targets in Cluttered Environment. Radar Sonar and Navigation. 1997, 144(6): 309~314.
    121 J. J. Koenderink, A. J. V. Doorn. The Internal Representation of Solid Shape with Respect to Vision. Bio. Cyb.. 1979, 32: 211~216.
    122 G. A. Mohammad. A Fast Globally Optimal Algorithm for Template Matching using Low-resolution Pruning. IEEE Tans. Image Proc.. 2001, 10(4): 626~633.
    123 M. K. Hu. Visual Pattern Recognition by Moment Invariants. IRE Trans. Inform. Theory.. 1962, 8(2): 179~187.
    124张天序.成像自动目标识别.湖北科学技术出版社, 2005: 41~51.
    125 Z. Z. Li, G. Jin, N. L. Dong. Novel Approach for Tracking and Recognizing Dim Small Moving Targets Based on Probabilistic Data Association Filter. SPIE, Opt. Eng.. 2007, 46(1): 1~8.
    126 A. Bal and M. S. Alam. Automatic Target Tracking in FLIR Image Sequences. Proc. of SPIE, Automatic Target Recognition XIV. 2004, 5426: 30~36.
    127栾泽成,崔祜涛,范敏霞,荆卫东.红外成像制导跟踪算法评述.航空兵器. 1994, (5):27~31.
    128 K. Fukanaga, L. D. Hostetler. The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition. IEEE Trans. Info. Theory. 1975, 21(1): 32~40.
    129刘靳,姬红兵.基于移动式加权管道滤波的红外弱小目标检测.西安电子科技大学学报(自然科学版). 2007, 34(5): 743~747.
    130 D. Comaniciu, V. Ramesh, P. Meer. Kernel-based Object Tracking. IEEE Trans.Patt. Analy. Mach. Intell.. 2003, 25(5): 564~575.
    131刘宝生,阎莉萍,周东华.几种经典相似性度量的比较研究.计算机应用研究. 2006, (11): 1~3.
    132柏长冰,齐春,杨莹,宋福民. Hausdorff匹配快速检测PCB基准标记.光电子·激光. 2006, 17(4): 498~501.
    133廖云涛,任仙怡,张桂林,张天序.一种新的基于对应像素距离度量的图像相关匹配方法.红外与激光工程. 2001, 30(6): 418~421.
    134吴文健,胡碧茹,满亚辉译.地面目标和背景的热红外特性.国防工业出版社, 2004.
    135申洋,唐明文.机载红外搜索与跟踪系统(IRST)综述.红外技术. 2003, 25(1): 13~18.
    136张金全,曹艳君.机载前视红外(FLIR)系统现状及发展趋势.红外技术. 2000, 22(2): 17~22.
    137郝继平,黄平华,杜成功.红外搜索设备作用距离等效分析与应用.应用光学. 2004, 25(4): 41~44.
    138李朝晖,陈明.对于杂散背景中的目标红外成像特性研究.红外技术. 2005, 27(2): 109~114.
    139 V. Howard, Kennedy. Modeling Noise in Thermal Imaging Systems. Proc. SPIE. 1969: 66~76.
    140 R. C. Gonzalez, R. E. Woods著,阮秋琦,阮宇智译.数字图像处理(第二版).电子工业出版社. 2003: 420~453.
    141 C. I. Hilliard. Selection of a Clutter Rejection Algorithm for Real-time Target Detection from an Airborne Platform. Signal and Data Processing of Small Targets. Orlando, FL, USA, 2000. Proc. of SPIE, 4048: 74~84.
    142 J. F. Khan, M. S. Alam. Target Detection in Cluttered FLIR Imagery Using Probabilistic Neural Networks. Automatic Target Recognition XV, Orlando, FL, USA, 2005. Proc. of SPIE, 5807: 55~66.
    143 P. Wang, J. W. Tian, C. Q. Gao. Infrared Small Target Detection using Directional Highpass Filters Based on LS-SVM. Electronics Letters. 2009, 45(3):156~158.
    144 G. P. Wang, K. Gao, G. Q. Ni. Infrared Dim Small Target Track Predicting using Least Squares Support Vector Machine. Proc. of SPIE, 2007, 6835: 68531Q.
    145李宏东,姚天翔等译.模式分类.机械工业出版社,中信出版社. 2003.
    146 J. F. Haddon, J. F. Boyce. Texture Classification of Segmented Regions of Forward-looking Infrared Images. SPIE Vol. 1957:144~155.
    147 W. B. Blanton, K. E. Barner. Infrared Region Classification using Texture and Model-Based Features. ICASSP, IEEE Int Conf Acoust Speech Signal Process Proc. 2008, Las Vegas, NV, United States: 1329~1332.
    148王永忠,赵春晖,梁彦等.一种基于纹理特征的红外成像目标跟踪方法.光子学报. 2007, 36(11): 2163~2167.
    149周开红,康耀红.神经网络模型及其MATLAB仿真程序设计.清华大学出版社. 2005: 70~83.
    150 M. F. Moller. A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning. Neural Networks. 1993, (6): 525~533.
    151冉启文,谭立英.小波分析与分数傅里叶变换及应用.国防工业出版社. 2003.
    152叶增军,王江安等.海空复杂背景下红外弱点目标的检测算法.红外与毫米波学报. 2000, 19(2): 121~124.
    153 B. Y. Zhang, T. X. Zhang, Z. G. Cao, K. Zhang. Fast New Small-Target Detection Algorithm Based on a Modified Partial Differential Equation in Infrared Clutter. Optical Engineering, SPIE. 2007, 46(10): 106401-1~6.
    154 M. I rani, P. Anandan. Video Indexing Based on Mosaic Representations. Proc. of IEEE. 1998, 86(5): 905~921.
    155高陈强,田金文,王鹏.基于时域特性分析的红外运动小目标检测算法.红外与激光工程. 2008, 37(5): 907~910.
    156盛骤等.概率论与数理统计.北京:高等教育出版社. 1989.
    157栗素娟,王纪,阎保定,叶宇程.卡尔曼滤波在跟踪运动目标上的应用.现代电子技术. 2007, (13): 110~112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700