聚乙二醇基复合储热材料的制备、性能及其相变传热过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相变储热技术具有储热密度大和储热过程近似恒温的优点,在太阳能热利用、电子器件热保护以及建筑节能等方面具有广阔的应用前景。聚乙二醇(PEG)是目前最受关注的相变材料之一,具有相变潜热大、相变温度范围广、物化性能稳定和安全环保等优点,但其在实际应用中仍存在导热性能差和液相泄漏问题。本文提出采用材料复合技术对其进行改性,筛选两类不同结构特征的石墨材料为导热强化相,分别制备了PEG/膨胀石墨(EG)和PEG/纳米石墨片(GnPs)复合相变材料;研究了复合材料组成、结构与热物性能之间的关系及其动力学机理;在此基础上设计并制备了新型复合定形相变材料;同时对所制备复合材料的相变传热过程进行了实验测量研究,基于传热性能评价结果反馈指导了复合相变材料的组分优化设计。
     以多孔结构EG为导热强化相,采用真空浸渗工艺制备了PEG/EG复合相变材料,综合运用FE-SEM、XRD、FT-IR、POM和DSC等手段研究了复合相变材料的形貌、结构和热物性能。结果表明:EG丰富的孔结构对液态PEG具有较强的吸附固定作用,当EG含量为8wt.%时可以获得定形相变材料;随着EG含量的增加,PEG基体中逐步形成了完善的导热网络结构,复合相变材料的导热系数逐渐增大,EG含量为10wt.%的复合相变材料导热系数较纯PEG提高了19.4倍;但是当EG含量超过6wt.%后,其微孔结构对PEG分子链段热扩散运动的阻碍作用加剧,导致复合相变材料相变温度和相变焓的显著下降,EG含量为10wt%的复合相变材料熔点(Tm)和凝固点(Tf)分别由纯PEG的50.9和35.7℃降低至41.8和21.5℃,而其融化焓(ΔHm)和凝固焓(ΔHf)则分别仅为理论值的67.4%和73.6%。
     超声粉碎处理EG获得了形状比为300~800倍的GnPs,以之为导热强化相,采用真空浸渗工艺制备了PEG/GnPs复合相变材料,并对其形貌、结构和热物性能进行了研究。结果表明:超声粉碎处理对石墨物相结构及表面化学特性基本没有影响;GnPs较大的形状比令其较易均匀分散在聚合物基体中并形成导热网络,GnPs含量为10wt.%的复合相变材料导热系数较纯PEG提高了10.8倍;与PEG/EG复合相变材料相比,PEG/GnPs复合体系的相变温度变化更小,相变焓更接近其理论计算值。
     针对不同结构特征石墨材料对PEG相变参数影响的差异性,采用DSC研究了纯PEG及复合相变材料的非等温相变过程动力学。结果显示:复合相变材料的表观活化能均高于纯PEG,表明EG与GnPs对PEG分子链段热扩散运动均具有一定的限制作用;与GnPs相比,相同质量分数的EG使复合体系表观活化能的增加幅度更大,表明EG微孔结构较GnPs片层结构对PEG分子链段热扩散运动的阻碍作用更强。
     基于相变动力学分析结果,选取GnPs为导热强化相,以聚甲基丙烯酸甲酯(PMMA)为结构支撑材料,采用超声辅助原位聚合工艺制备了新型PEG/PMMA/GnPs复合定形相变材料。FE-SEM与POM结果显示,PEG被均匀吸附固定在PMMA网络结构中,该复合方式在保证复合定形相变材料相变过程中无液态PEG泄露的同时为其提供了一定的力学性能。XRD与FT-IR结果表明,各组分在复合工艺过程中以物理形式结合。超声辅助原位聚合工艺能使GnPs有效分散在聚合物基体中并形成导热网络,GnPs含量为8wt%的复合定形相变材料导热系数较PEG/PMMA提高了8.4倍。所制备复合定形相变材料均具备可观的储热能力和定形性能,当GnPs含量为8wt%时,复合定形相变材料的ΔHm和ΔHf分别达到114.7kJ·kg-1和97.0kJ·kg-1,55℃时其抗压强度达到3.7MPa,75次相变循环后质量损失率仅为2.5%。
     采用时间-温度法对纯PEG及PEG/EG复合相变材料的相变传热过程进行了实验研究,基于实测结果评价了复合改性对相变材料使用性能的影响。结果表明:纯PEG在相变传热过程中存在显著的自然对流效应;多孔结构EG能有效吸附固定液态PEG,限制自然对流作用;EG能显著提高复合相变材料的导热系数,降低相变传热过程中的热阻,有效提高复合相变材料的相变传热速率;PEG/EG复合相变材料中,EG的优化含量约为6~8wt.%。
     综上所述,本论文分别开展了PEG基复合相变材料的设计与制备,复合材料的微观结构、热物性能和相变动力学机理等方面的研究。研究结果对改善PEG使用性能并促进其实际应用具有一定的参考价值;其中关于PEG/石墨复合相变材料相变动力学机理的研究对理解复合体系中的非常规相变机制具有较大的帮助;另外,关于复合材料相变传热过程的实验研究能有效评价复合改性的效果,可用于指导储热材料的性能调控与优化设计。
Phase change thermal energy storage technique has great potential in many fields such as solar thermal application, thermal management of electronic equipment and building energy conservation owing to its superior advantages of large heat storage capacity and nearly isothermal phase change behavior. Polyethylene glycol (PEG) is one of the most preferential phase change materials during the current research and applications due to its superior advantages such as high latent heat, wide range of phase change temperatures, stable in physical and chemical property, security and environmental protection. In this work the technology of materials compositization was proposed to overcome the disadvantages of PEG including low thermal conductivity and liquid leakage during the phase change process. Expanded graphite (EG) and graphite nanoplatelets (GnPs), with different types of structural characteristics, were employed as thermal conductive filler, and the PEG/EG and PEG/GnPs composite phase change materials were prepared, respectively. The relationship between the component, structure and thermo-physical property of composite phase change material and its kinetic mechanism were investigated. On this basis, a new type of composite form-stable phase change material was designed and prepared. Moreover, the phase change heat transfer process of prepared composite phase change material was studied experimentally, and the result was employed to guidance the components optimization design of composite phase change materials.
     Using the method of vacuum infiltration, the porous structure EG serving as conductive filler was combined with PEG to obtain the PEG/EG composite phase change material. The morphology, structure and thermo-physical properties of composite phase change materials were investigated by several means such as FE-SEM, XRD, FT-IR, POM and DSC. The obtained results show that, EG with porous structure can effectively absorb and embed the liquid PEG, and the composite phase change material with EG content of8wt.%can maintain its shape during the phase change process. With the increase of EG content, the thermal conductivity network is gradually formed inside the PEG matrix, and the thermal conductivity of the composite phase change material increased gradually. The thermal conductivity of composite phase change material with EG content of10wt.%changes up to19.4times over that of pure PEG. When the EG content exceeds6wt.%, the diffusion of PEG molecular chain segments is obviously inhibited by the porous structure of EG, which leads to the obvious decrease of phase change temperature and phase change enthalpy of composite phase change material. The melting point (Tm) and the solidification point (Tf) of composite phase change material with EG content of10wt.%decrease from50.9℃and35.7℃of pure PEG to41.8℃and21.5℃, respectively. Moreover, the melting enthalpy (ΔHm) and the solidification enthalpy (ΔHf) are only67.4%and73.6%of their theoretical values, respectively.
     GnPs with large aspect ratios (300~800times) were obtained by sonicating the EG. Using the method of vacuum infiltration, GnPs serving as conductive filler was combined with PEG to obtain the PEG/GnPs composite phase change material, and the morphology, structure and thermo-physical properties of composite were investigated. Results show that, the ultrasonic fragmentation nearly does not impact the phase and chemical surfactant of graphite. The GnPs with large aspect ratio possess advantage of easier to be dispersed in polymer matrix to form conducting network. The thermal conductivity of the composite phase change material with GnPs content of10wt.%changs up to10.8times over that of pure PEG. Compared with PEG/EG composite phase change material, the PEG/GnPs composite possesses more stable phase change temperature, and its phase change enthalpy is more closer to the theoretical value.
     Aim at the difference between the impacts of graphite structures on the phase change parameters of PEG, the non-isothermal phase change kinetics of pure PEG and composite phase change materials were studied by means of DSC. Results show that, the apparent activation energy of composite phase change material is higher than that of pure PEG, which indicates that the EG and GnPs are both inhibiting the diffusion of PEG molecular chain segments at certain limitations. Compared with GnPs, the same mass fraction of EG leads to the greater increase of apparent activation energy of the composite phase change material, which indicates that the inhibition of lamellar structure of GnPs on the diffusion of PEG molecular chain segments is relatively smaller than the porous structure of EG.
     Based on the phase change kinetics results, GnPs selecting as conductive fillers and polymethyl methacrylate (PMMA) acting as supporting material were combined with PEG to obtain a new-type of PEG/PMMA/GnPs composite form-stable phase change material by using the method of in situ polymerization upon ultrasonic irradiation. XRD and FT-IR results indicated that all the components are physically combined with each other during polymerization process. FE-SEM and POM results show that the PEG is uniformly dispersed and embedded inside the micro-level network structure of PMMA, which contributed to the well package and self-supporting properties of composite form-stable phase change material. Ultrasonic-assisted in situ polymerization process could effectively disperse the GnPs into the polymer matrix to build the thermal conductivity network. The thermal conductivity of composite form-stable phase change material with content of8wt.%changs up to8.4times over that of PEG/PMMA composite. It is also confirmed that all the prepared specimens possess available thermal storage density and form-stable performance. When the content of EG is8wt.%, the ΔHm, ΔHf, compressive strength at55℃and mass loss rate after75cycles of composite form-stable phase change material are114.7kJ-kg-1,97.0kJ-kg-1,3.7MPa and2.5%, respectively.
     The phase change heat transfer processes of pure PEG and composite phase change materials were experimentally studied by time-temperature method. According to the experimental results, the influence of composite modification on the usability of phase change material was evaluated. Results show that there is a significant natural convection effect during the phase change heat transfer process of pure PEG. The porous structure of the EG is able to effectively absorb and embed the liquid PEG to limit natural convection effect. The EG is able to significantly increase the thermal conductivity of the composite phase change material and reducing the thermal resistance of phase change heat transfer process. Then the phase change rate of composite phase change material is able to be increased effectively. The optimize content of EG among PEG/EG composite phase change material is approximately6~8wt.%.
     In this paper, the design and preparation of PEG based composite phase change materials, the microstructure, the thermo-physical property and the kinetic mechanism of composite phase change materials are together investigated. The research results may be helpful to improve the usability of PEG and promote its practical application. One point deserved mentioning is that the research on phase change kinetics of PEG/graphite composite phase change materials may be helpful to understand the unconventional phase transition mechanism inside the composite system. Moreover, the experimental measurement of phase change heat transfer processes is able to effectively evaluate the influence of composite modification on the usability of phase change material, and it has a great guiding significance on the performance control and optimum design of thermal energy storage materials.
引文
[1]王宏珍.浅谈我国能源危机应对策略[J].山西财经大学学报,2010,32(1):50.
    [2]Faith H E. Technical assessment of solar thermal energy storage technologies[J]. Renewable Energy,1998,14:35-40.
    [3]王胜林,王华.高温相变蓄热的研究进展[J].研究与探讨,2004,6:6-12.
    [4]Cabeza L F, Castella A, Barrenechea C, et al. Materials used as PCM in thermal energy storage in buildings:A review[J]. Renewable and Sustainable Energy Reviews,2011,15: 1675-1695.
    [5]Zhu N, Ma Z, Wang S. Dynamic characteristics and energy performance of buildings using phase change materials:a review[J]. Energy Conversion and Management,2009,50:3169-3181.
    [6]Mettawee E B S, Assassa G M R. Experimental study of a compact PCM solar collector[J]. Energy,2006,31:2958-2968.
    [7]王毅,夏天东,冯辉霞.有机相变储热材料的研究进展[J].材料导报,2011,25(2):68-72.
    [8]吴会军,朱冬生,李军,等.蓄热材料的研究进展[J].材料导报,2005,19(8):96-98.
    [9]Herrmann U, Kelly B, Price H. Two-tank molten salt storage for parabolic trough solar power plants[J]. Energy,2004,29:883-893.
    [10]Laing D, Steinmann W, Tamme R, et al. Solid media thermal storage for parabolic trough power plants[J]. Solar Energy,2006,80:1283-1289.
    [11]朱教群,童雨舟,周卫兵,等.太阳能发电用高温混凝土储热材料的制备及性能研究[J].节能,2009,(8):23-25.
    [12]Lovegrove K, Luzzi A, Soldiani I, et al. Developing ammonia based thermochemical energy storage for dish power plants[J]. Solar Energy,2004,76:331-337.
    [13]张寅平,胡汉平,孔祥冬,等.相变贮能-理论和应用[M].合肥:中国科学技术大学出版社,1996.
    [14]Farid M M, Khudhair A M, Razack S A K, et al. A review on phase change energy storage: materials and applications[J]. Energy Conversion and Management,2004,45:1597-1615.
    [15]Telkes M, Raymond E. Storing solar heat in chemicals—a report on the Dover house[J]. Heat Vent,1949,46(11):80-86.
    [16]张仁元.相变材料与相变储能技术[M].北京:科学出版社,2009.
    [17]Hasnain S M. Review on sustainable thermal energy storage technologies, part I:heat storage materials and techniques[J]. Energy Conversation and Management,1998,39:1127-1137.
    [18]王志强.相变储热材料的种类、应用及展望[J].安徽化工,2005,(2):28-30.
    [19]张太平,阮德水,张道圣.固-固相变贮热的研究(Ⅲ)-三羟甲基乙烷-三羟甲基丙烷二元系[J].华中师范大学学报(自然科学版),1996,30(1):65-68.
    [20]邢登清,迟广汕,阮德水,等.多元醇二元体系固—固相变贮热的研究[J].太阳能学报,1995,16(2):131-137.
    [21]Abhat A. Low temperature latent heat thermal energy storage:heat storage materials[J]. Solar Energy,1983,30:313-332.
    [22]Tyagi V V, Buddhi D. PCM thermal storage in buildings:a state of art[J]. Renewable and Sustainable Energy Reviews,2007,11:1146-1166.
    [23]Adine H A, ElQarnia H. Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials[J]. Applied Mathematical Modelling,2009,33: 2132-2144.
    [24]Wang Y, Amiri A, Vafai K. An experimental investigation of the melting process in a rectangular enclosure[J]. Heat and Mass Transfer,1999,42:3659-3672.
    [25]Pielichowski K, Flejtuch K. Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials[J]. Polymers for Advanced Technologies,2002,13:690-696.
    [26]Parameshwaran R, Kalaiselvam S, Harikrishnan S, et al. Sustainable thermal energy storage technologies for buildings:A review[J].2012,16:2394-2433.
    [27]Sharma A, Wona L D, Buddhi D, et al. Numerical heat transfer studies of the fatty acids for different heat exchanger materials on the performance of a latent heat storage system[J]. Renewable Energy,2005,30:2179-2187.
    [28]Sharma A, Tyagi V V, Chen C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews,2009,13:318-345.
    [29]Kenisarin M, Mahkamov K. Solar energy storage using phase change materials[J]. Renewable and Sustainable Energy Reviews,2007,11:1913-1965.
    [30]Esen M, Durmus A, Durmus A. Geometric design of solar-aided latent heat store depending on various parameters and phase change materials[J]. Solar Energy,1998,62:19-28.
    [31]Choi J C, Kim S D. Heat transfer characteristics of a latent heat storage system using MgC12·6H2O[J]. Energy,1992,17:1153-1164.
    [32]Pincemin S, Olives R, Py X, et al. Highly conductive composites made of phase change materials and graphite for thermal storage[J]. Solar Energy Materials and Solar Cells,2008, 92:603-613.
    [33]Kenisarin M M. High-temperature phase change materials for thermal energy storage [J]. Renewable and Sustainable Energy Reviews,2010,14:955-970.
    [34]Tufen R, Petitet J P, Denielou I, et al. Experimental determination of the thermal conductivity of molten pure salts and salt mixtures[J]. International Journal of Thermophysics, 1985,6(4):315-330.
    [35]Wang X, Liu J, Zhang Y, et al. Experimental research on a kind of novel high-temperature phase change storage heater[J]. Energy Conversation and Management,2006,47:2211-2222.
    [36]Tuncbileka K, Saria A, Tarhanb S, et al. Laurie and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications[J]. Energy,2005,30:677-692.
    [37]张奕,张小松.有机相变材料储能的研究和进展[J].太阳能学报,2006,27(7):725-728.
    [38]Kauranen P, An organic PCM storage system with adjustable melting temperature[J]. Solar Energy,1991,46:275-280.
    [39]He B, Martin V, Setterwall F. Phase transition temperature ranges and storage density of paraffin wax phase change materials[J]. Energy,2004,29:1785-1804.
    [40]Shapiro A B. Solar thermal energy storage using a paraffin wax phase change material[J]. Energy Production and Conversion,1980,26:65-72.
    [41]陈枭,张仁元,毛凌波.石蜡类相变材料的研究及应用进展[J].材料研究与应用,2008,2(2):89-92.
    [42]Canbazoglu S, hinaslan A, Ekmekyapar A, et al. Enhancement of solar thermal energy storage performance using sodium thiosulfate pentahydrate of a conventional solar water-heating system[J]. Energy and Buildings,2005,37:235-242.
    [43]Jurinak J J, Adbel K S I. On the performance of air-based solar heating systems utilizing phase change energy storage[J]. Solar Energy,1979,24:503-522.
    [44]Sharma S D, Buddhi D, Sawhney R L, et al. Design, development and performance evaluation of a latent heat unit for evening cooking in a solar cooker [J]. Energy Conversation and Management,1997,38:493-498.
    [45]Pasupathy A, Velraj R, Seeniraj R. Phase change material-based building architecture for thermal management in residential and commercial establishments[J]. Renewable and Sustainable Energy Reviews,2008,12:39-64.
    [46]Zhang Y, Zhou G, Lin K, et al. Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook[J]. Building and Environment,2007,42:2197-2209.
    [47]李爱菊.无机盐/陶瓷基复合储能材料制备、性能及其熔化传热过程的研究[D].广东:广东工业大学,2004.
    [48]Farid M M, Husian R M. An electrical storage heater using the phase change method of heat storage[J]. Energy Conversation and Management,1990,30:219-230.
    [49]Tan F L, Tso C P. Cooling of mobile electronic devices using phase change materials[J]. Applied Thermal Engineering,2004,24:159-169.
    [50]尹辉斌,高学农,丁静,等.热适应复合材料应用于电子器件散热的研究进展[J].化工进展,2007,26(6):830-833.
    [51]Burknshaw S M. Infrared camouflage[J]. Review of Progress in Coloration and Related Topics,1996,26(1):47-53.
    [52]孙文艳,吕绪良,郑玉辉,等.微胶囊相变材料制备及其在红外隐身涂料中的应用[J].解放军理工大学学报(自然科学版),2009,10(2):156-159.
    [53]Mondal S. Phase change materials for smart textiles-An overview[J]. Applied Thermal Engineering,2008,28:1536-1550.
    [54]陈中华,马丽丽,余飞.有机相变储能材料及其复合化研究进展[J].化工新型材料,2010,38(9):42-45.
    [55]Fan L W, Khodadadi J M. Thermal conductivity enhancement of phase change materials for thermal energy storage:A review[J]. Renewable and Sustainable Energy Reviews,2009,15: 24-46.
    [56]张东,康祥,李凯莉.复合相变材料研究进展[J].功能材料,2007,38(12):1936-1940.
    [57]李夔宁,郭宁宁,王贺.改善相变材料导热性能研究综述[J].制冷学报,2008,29(6):46-50.
    [58]程文龙,韦文静.高孔隙率泡沫金属相变材料储能、传热特性[J].太阳能学报,2007,28(7):739-744.
    [59]Zhao C Y, Lu W, Tian Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)[J]. Solar Energy,2010,84: 1402-1412.
    [60]Zeng J L, Sun L X, Xu F. Study of a PCM based energy storage system containing Ag nanoparticles[J]. Journal of Thermal Analysis and Calorimetry,2007,87(2):369-373.
    [61]曾亮,周春玉,张东.相变材料导热性能强化的研究进展[J].材料科学与工程学报,2010,28(6):946-950.
    [62]苏俊敏,张兴祥,孟庆杰,等.多壁碳纳米管对正十八烷相变性能的影响[J].化工新型材料,2008,36(8):62-65.
    [63]Elgafy A, Lafdi K. Effect of carbon nanofiber additives on thermal behavior of phase change materials[J]. Carbon,2005,43:3067-3074.
    [64]Cheng W L, Zhang R M, Xie K, et al. Heat conduction enhanced shape-stabilized paraffin/ HDPE composite PCMs by graphite addition:Preparation and thermal properties [J]. Solar Energy Materials and Solar Cells,2010,94:1636-1642.
    [65]Xia L, Zhang P, Wang R Z. Preparation and thermal characterization of expanded graphite/ paraffin composite phase change material[J]. Carbon,2010,48:2538-2548.
    [66]Chen G H, Weng W G, Wu D J, et al. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique[J]. Carbon,2004,42:753-759.
    [67]Kim S, Drzal L T. High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets[J]. Solar Energy Materials and Solar Cells, 2009,93:136-142.
    [68]湛立智,李素平,张正国,等.添加碳素复(混)合相变储热材料的研究及应用进展[J].化工进展,2007,26(12):1733-1737.
    [69]李建平,薛平,丁文嘉,等.定形相变材料研究进展[J].化工进展,2007,26(10):1425-1428.
    [70]Tyagi V V, Kaushik S C, Tyagi S K, et al. Development of phase change materials based microencapsulated technology for buildings:a review[J]. Renewable and Sustainable Energy Reviews,2011,15:1373-1391.
    [71]胡小芳,曾文雄,胡大为.树脂基稻草吸附石蜡储能单元相变储能材料[J].合成材料老化及应用,2007,36(2):6-8.
    [72]张伟,张薇,张师军.聚合物基相变储能材料的研究与发展[J].塑料,2008,37(1):56-61.
    [73]Chen Z, Fang G Y. Preparation and heat transfer characteristics of microencapsulated phase change material slurry:A review[J]. Renewable and Sustainable Energy Reviews,2011,15: 4624-4632.
    [74]庄秋虹,张正国,方晓明.微/纳米胶囊相变材料的制备及应用进展[J].化工进展,2006,25(4):388-396.
    [75]Zou G L, Tan Z C, Lan X Z, et al. Preparation and characterization of microencapsulated hexadecane used for thermal energy storage[J]. Chinese Chemical Letters,2004,15(6): 729-732.
    [76]Salaiina F, Devauxa E, Bourbigot S, et al. Influence of process parameters on microcapsules loaded with n-hexadecane prepared by in situ polymerization[J]. Chemical Engineering Journal,2009,155:457-465.
    [77]樊耀峰,张兴祥,王学晨,等.相变材料纳米胶囊的制备与性能[J].高分子材料科学与工程,2004,21(1):288-292.
    [78]Zhang H Z, Wang X D, Wu D Z. Silica encapsulation of n-octadecane via sol-gel process:A novel microencapsulated phase-change material with enhanced thermal conductivity and performance[J]. Journal of Colloid and Interface Science,2010,343:246-255.
    [79]叶四化,郭元强,吕社辉,等.微胶囊相变材料及其应用[J].高分子材料科学与工程,2004,20(5):6-9.
    [80]余飞,陈中华,曾幸荣.纳米Si02改性相变储热微胶囊的制备及性能研究[J].化工新型材料,2009,37(3):44-46.
    [81]Sari A, Alkan C, Kolemen U, et al. Eudragit S (methyl methacrylate methacrylic acid copolymer)/fatty acid blends as form-stable phase change material for latent heat thermal energy storage[J]. Journal of Applied Polymer Science,2006,101:1402-1406.
    [82]Ye H, Ge X S. Preparation of polyethylene-paraffin compound as a form-stable solid-liquid phase change material[J]. Solar Energy Materials and Solar Cells,2000,64:37-44.
    [83]Wang L J, Meng D. Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage[J]. Applied Energy,2010,87:2660-2665.
    [84]郭元强,童真,陈鸣才等.聚乙二醇/二醋酸纤维素共混物的相变行为[J].高分子材料科学与工程,2003,19(5):149-153.
    [85]姜勇,丁恩勇,黎国康.化学法和共混法制备的PEG/CDA相变材料的性能比较-储热性能与链结构的关系[J].纤维素科学与技术,2000,8(1):17-24.
    [86]Sari A. Form-stable paraffin/high density polyethylene composites as solid-liquid phase change material for thermal energy storage:preparation and thermal properties [J]. Energy Conversion and Management,2004,45:2033-2042.
    [87]Alkan C, Sari A. Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage[J]. Solar Energy,2008,82:118-124.
    [88]张梅,那莹,姜振华.接枝共聚法制备聚乙二醇(PEG)/聚乙烯醇(PVA)高分子固-固相变材料性能研究[J].高等学校化学学报,2005,26(1):170-174.
    [89]张梅,李全明,邱发贵,等.聚乙二醇(PEG)/聚乙烯醇(PVA)固-固相变材料受限非等温结晶动力学研究[J].功能材料,2007,38(10):1709-1712.
    [90]McCann J T, Marquez M, Xia Y. Melt coaxial electrospinning:a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers[J]. Nano Letters, 2006,6:2868-2872.
    [91]肖敏,龚克成.良导热、形状保持相变蓄热材料的制备及性能[J].太阳能学报,2001,22(4):427-430.
    [92]Zhang L, Zhu J Q, Zhou W B, et al. Characterization of polymethyl methacrylate/ polyethylene glycol/aluminum nitride composite as form-stable phase change material prepared by in situ polymerization method[J]. Thermochimica Acta,2011,524:129-135.
    [93]赵磊,董发勤,王光华,贺小春.多孔矿物材料的孔道结构及应用进展[J].中国粉体技术,2008,(1):46-49.
    [94]Zhou X F, Xiao H N, Feng J, et al. Preparation and thermal properties of paraffin/porous silica ceramic composite[J]. Composites Science and Technology,2009,69:1246-1249.
    [95]马保国,骞守卫,金磊,等.无机相变定型储能材料的制备研究进展[J].材料导报,2008,22(12):36-39.
    [96]施韬,孙伟,王倩楠.凹凸棒土吸附相变储能复合材料制备及其热物理性能表征[J].复合材料学报,2009,26(5):143-147.
    [97]Mills A, Farid M, Selman J R, et al. Thermal conductivity enhancement of phase change materials using a graphite matrix [J]. Applied Thermal Engineering,2006,26:1652-1661.
    [98]陈中华,肖春香.十二醇/蒙脱土复合相变储能材料的制备及性能研究[J].功能材料,2008,39(4):629.
    [99]马烽,李艳,程立媛.十八烷-棕榈酸/膨胀石墨相变储能材料的制备与性能[J].航空材料学报,2010,33(3):66-68.
    [100]张正国,黄弋峰,方晓明.硬脂酸/二氧化硅复合相变储热材料制备及性能研究[J].化学工程,2005,33(4):35-37.
    [101]黄仁和,王力。纳米石墨薄片及聚合物/石墨纳米复合材料制备与功能特征研究[J].功能材料,2005,36(1):6-10.
    [102]Verma P, Varun, Singal S K. Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material[J]. Renewable and Sustainable Energy Reviews,2008,12:999-1031.
    [103]Halawa E, Bruno F, Saman W. Numerical analysis of a PCM thermal storage system with varying wall temperature [J]. Energy Conversion and Management,2005,46:2592-2604.
    [104]Zhao C Y, Wu Z G. Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite[J]. Solar Energy Materials and Solar Cells,2011, 95:636-643.
    [105]晋瑞芳,付海明,徐芳,等.同心套管式相变蓄热装置凝固过程的数值模拟[J].建筑热能通风空调,2009,28(1):14-17.
    [106]郭志强,吴文健,满亚辉.基于ANSYS有限元方法对相变材料相变过程的分析[J].材料与表面处理技术,2007,11:87-89.
    [107]刘凤青.泡沫金属对相变蓄热强化性能的数值模拟及实验研究[D].河北:河北科技大学,2010.
    [108]Lafdi K, Mesalhy O, Elyafy A. Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications[J]. Carbon, 2008,46:159-168.
    [109]曹乃珍,沈万慈,刘英杰,等.膨胀石墨的微观孔结构分析[J].炭素技术,1996,(1):1-6.
    [110]Lerf A, He H, Forster M, et al. Structure of graphite oxide revisited[J]. Journal of Physical Chemistry B,1998,102:4477-4482.
    [111]Matsuo Y, Hatase K, Sugie Y. Selective intercalation of aromatic molecules into alkyltrimethylammonium ion-intercalated graphite oxide[J]. Chemistry Letters,1999,10: 1109-1111.
    [112]Feng L L, Zheng J, Yang H Z, et al. Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials[J]. Solar Energy Materials and Solar Cells,2011,95:644-650.
    [113]Zhang D, Zhou J M, Wu K R, et al. Granular phase changing composites for thermal energy storage[J]. Solar Energy,2005,78:471-480.
    [114]罗发亮,张秀芹,李荣波,等.聚丁二酸丁二酯/纳米二氧化硅共混体系的结晶和动态力学性能研究[J].高分子学报,2009,(10):1043-1049.
    [115]Fornes T D, Paul D R. Crystallization behavior of nylon 6 nanocomposites[J]. Polymer, 2003,44:3945-3961.
    [116]陈云深,陈凯,沈斌君,等.交联定形相变储能材料的研制[J].复合材料学报,2006,23(3):67-70.
    [117]韩旭,李疏芬,赵凤起,等.富勒烯灰对聚乙二醇热分解和红外光谱的影响[J].光谱学与光谱分析,2008,28(12):2789-2792.
    [118]Suslick, Kenneth S. Sonochemistry[J]. Science,1990,247:1439-1445.
    [119]赵睿新,武克忠,孙越,等.多元醇二元体系固-固相变动力学参数确定[J].太阳能学报,2004,25(3):295-298.
    [120]张建军,武克忠,张建玲,等.三羟甲基乙烷、新戊二醇及其二元体系相变动力学的DSC研究[J].太阳能学报,2000,21(4):399-402.
    [121]Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Analytical Chemistry, 1957,29(11):1702-1706.
    [122]张克惠.塑料材料学[M].西安:西北工业大学出版社,2000.
    [123]Zhang P, Hu Y, Song L, et al. Effect of expanded graphite on properties of high-density polyethylene/paraffin composite with intumescent flame retardant as a shape-stabilized phase change material[J]. Solar Energy Materials and Solar Cells,2010,94:360-365.
    [124]陈俊.相变蓄热技术的数值研究[D].郑州:郑州大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700