CO_2跨临界循环系统满液式蒸发器分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO_2是环境友好型制冷剂,在制冷剂替代过程中具有非常大的应用潜力。本文以提高CO_2跨临界循环系统性能为分析重点,对CO_2跨临界循环系统不同的循环形式和满液式蒸发器进行了计算和数值模拟,为提高系统效率提供参考。
     本文从热力学循环角度出发,对CO_2跨临界循环系统不同的循环形式建立了计算模型并分别进行计算,分析比较了单级循环形式和双级循环形式的优化配置方案,通过比较分析发现,在CO_2双级压缩循环中配置回热器和膨胀机对系统性能的改善效果最好,从而为CO_2跨临界循环系统性能的提高提供理论支持。对单管池沸腾换热关联式进行了整理分析,结合实验数据,对应用在CO_2的换热关联式进行了比较发现,各个关联式得到的数据与实验数据相差较大;通
     过实验数据,拟合CO_2单管池沸腾换热系数与热流密度和对比压力的经验公式。以实验室CO_2热泵热水器实验台为基准,结合实际工况及要求,建立CO_2用的管束式满液式蒸发器进行了设计计算、校核计算模型;在此基础上,分析比较了满液式蒸发器中管束池沸腾换热系数随管外径、管间距等的变化特点,从传热学分析角度为CO_2满液式蒸发器的设计优化形式提供参考。
     以设计的满液式蒸发器为研究对象,通过计算机数值模拟软件对管侧水的流动进行了模拟计算,分析其温度场、压力场、速度场的变化特点,对设计的满液式蒸发器进行理论分析,为今后CO_2满液式蒸发器的优化设计奠定基础。
The natural refrigerant CO_2 is an environmentally friendly refrigerant, and possesses a good application prospect in the refrigeration substitution. This study mainly focused on the improvement of CO_2 trans-critical system, combining theoretical analysis on different styles of CO_2 trans-critical system and computational numerical simulation on flooded evaporator, to provide references to improve the system efficiency.
     This study made theoretical analysis on CO_2 trans-critical systems by establishing calculation models of different styles of CO_2 system from thermodynamic prospective, and analyzed the optimal application of single-stage cycles and two-stage cycles. After comparing them, it was found that the system with the regenerator and expander had the highest efficiency.
     On the basis of the experimental data, several heat transfer correlations were analyzed, and an empirical correlation was proposed to show the relationship between the heat transfer coefficients with heat flux and reduced pressure. According to the experimental system of CO_2 heat pump water heater, the flooded evaporator applied in CO_2 trans-critical system was designed, and analysis of heat transfer coefficients of tube bundle pool boiling was presented.
     In this study, the temperature field, pressure field and velocity field of water in tube side of the flooded evaporator were analyzed by CFD software to lay the foundation for optimization of flooded evaporator used in CO_2 trans-critical system.
引文
[1] http://baike.baidu.com/view/131595.htm
    [2]李敏霞,马一太等,氨在空调制冷领域的应用,暖通空调,2005,35(3): 36-40
    [3]童明伟,吴直娟,董茂林,R290的可燃爆炸性试验及在制冷机组中的试用,重庆大学学报,2005,25(1):36-39
    [4] Lorenzen G. Revival of Carbon dioxide as a refrigerant[J]. International of Refrigeration, 1994,17(5):292-301
    [5] Lorentzen G, Pettersen J. A new, efficient and environmental benign system for car air conditioning. International Journal of Refrigerantion,1993,16(1):4-12
    [6]马一太,魏东等,国内外自然工质研究现状与发展趋势,暖通空调,2003.1:41-46
    [7]丁国良,黄冬平,张春路,跨临界二氧化碳汽车空调特性分析,制冷学报,2001.3:17-23
    [8]陈江平,穆景阳,刘军朴等,二氧化碳跨临界汽车空调系统开发,制冷学报,2002.3:14-17
    [9]刘圣春,马一太,刘秋菊,CO_2热泵热水器实验研究,天津大学学报,41(2):238-242
    [10]管海清,马一太,杨俊兰,日本家用CO_2热泵热水器研究开发现状分析,家电科技,2004,6:59-61
    [11] M Saikawa,K Hashimoto, K Kusakari. Development of prototype of CO_2 heat pump water heater for residential use. The 4th IIR Gustav Lorentzen conference on national working fluids,2000:51-57
    [12]马一太,杨俊兰,芦苇,管海清,制冷剂二氧化碳流动沸腾过程换热性能分析,流体机械,2004,32(1):41-45
    [13] Bredesen AMK, Hafner A, Pettersen J, Neksa P, Aflekt K. Heat transfer and pressure drop for in-tube evaporation of CO_2. International Conference on Heat Transfer Issues in Natural Refrigerants, College Park,1997,1-15
    [14] Yun R, Choi CS, Kim Y C. Convective boiling heat transfer of carbon dioxide inhorizontal small diameter tubes. Preliminary proceedings of the 5th IIR-Gustav Lorentzen Conference on NUatural Working Fluids at Guangzhou, China , 2002, 298-308
    [15] Pettersen J, Ricberer R, Munkejord S T. Heat transfer and pressure drop characteristics of evaporating carbon dioxide in micro-channel tubes. Preliminary Proceedings of The 4th IIR Gustav Lorentzen conference on national working fluids,2000:107-114
    [16] Zhao Y, Molki M, Ohadi M M, Dessiatoun S V. Flow boiling of CO_2 in micro-channels. ASHRAE Transactions,2000,106:437-445
    [17] S Loebl,W E Kraus,H Quack. Pool boiling heat transfer of carbon dioxide on a horizontal tube. In International Journal of Refrigeration 2005,28:1196-1204
    [18] Dieter Gorenflo,Stephan Kotthoff. Review on pool boiling heat transfer of carbon dioxide. International Journal of Refrigeration. :2005,8(28):1169-1185
    [19] Lorentzen G. Revival of carbon dioxide as a refrigerant[J]. In International Journal of Refrigeration, 1994, 17(5):292-301
    [20] European Union. Relating to emissions from air-conditioning systems in motor vehicles and amending Council Directive 70/156/EEC[J].Official Journal of the European Union.2006-6-14, L161/12-18
    [21] Cavallini A, Corradi M, Fornasieri E, et al. Experimental investigation on the effect of the internal heat exchanger and intercooler effectiveness on the energy performance of a two stage trans-critical carbon dioxide cycle [C] . The Proceedings of the 22th International Congress of Refrigeration, Beijing, China, 2007: B1-953
    [22]田华,马一太,王洪利等,CO_2跨临界双级压缩带中间冷却器系统[J],天津大学学报,2010,43(8):685-689
    [23]刘军朴,陈江平,陈芝久,CO_2跨临界两级压缩制冷循环热力学分析[J],上海交通大学学报,2002,36(10):1393-1400
    [24] Yang Jun-lan, Ma Yi-tai, Liu Sheng-chun. Performance investigation of trans-critical carbon dioxide two-stage compression cycle with expander [J]. Energy,2007,32:237-245
    [25]王洪利,田景瑞,马一太,CO_2跨临界双级压缩带回热器与不带回热器循环分析,热能动力工程,2011,26(2):176-180
    [26] Ronald W. Applications for the hinge-vane positive displacement compressorexpander.
    [27]马一太,安青松,王洪利,CO_2跨临界双级压缩循环性能研究及理论分析[J].天津大学学报,2009,4(11):992-996
    [28]杨俊兰,马一太,李敏霞等,CO_2跨临界两级压缩及膨胀机循环的性能分析。天津大学学报,2005,38(11):996-1000
    [29]彦启森,石文星,田长青,空气调节用制冷技术(第三版)
    [30]杨俊兰,马一太,管海清,李敏霞,CO_2跨临界循环双级压缩循环中膨胀机的优化配置性能分析,流体机械,2005,33(2):54-58
    [31]杨世铭,陶文铨,传热学,高等教育出版社,315-316。
    [32] Rohse W M, Hartnett J P, Ganic E N. Handbook of heat transfer, fundamentals. 2nd ed. New York: McGraw-Hill Book Company, 1985: 12.2-12.18
    [33] Stephan K, Abdelsalam M. Heat-transfer correlations for natural convection boiling. In International Journal of Heat and Mass Transfer. Volume 23, Issue 1, January 1980, Pages 73-87
    [34] K.Nishikawa, Y.Fujita, S.Uchida and H.Ohta. Effect of the surface roughness on the nucleate boiling heat transfer over a wide range of pressure. In Proceedings of the 7th International Heat Transfer Conference, vol4,1982,p.1-66
    [35] Cooper MG. Heat flow rates in saturated nucleate pool boiling—a wide-ranging examination using reduced properties. In: Advances in Heat Transfer. Volume 16, 1984, Pages 157-239.
    [36] W. Leiner. Heat transfer by nucleate pool boiling—general correlation based on thermodynamic similarity. International Journal of Heat and Mass Transfer. Volume 37, Issue 5, March 1994, Pages 763-769
    [37] D Jung , Y Kim , Younghwan Ko , Kilhong Song . Nucleate boiling heat transfer coefficients of pure halogenated refrigerants. In International Journal of Refrigeration 26(2003) 240-248
    [38] D. Gorenflo, U. Chandra, S. Kotthoff and A. Luke, Influence of thermo-physical properties on pool boiling heat transfer of refrigerants. In: International Journal of Refrigerant 27(2004)492-502
    [39] Dieter Gorenflo, Stephan Kotthoff. Review on pool boiling heat transfer of carbon dioxide. International Journal of Refrigeration. Volume 28, Issue 8, December 2005, Pages 1169-1185
    [40] Ribatski S Jabardo. Roughness and surface material effects on nucleate boiling heat transfer from Cylindrical surfaces to refrigerants R-134a and R-123. In Experimental Thermal and Fluid Science 33(2009) 579-590
    [41]杨少华,高学农,王世平,R142b在水平管束外池沸腾实验研究,制冷学报,1999(3):1-4
    [42]高学农,杨少华,王世平等人,替代工质R134a/R142b管束外沸腾传热强化实验研究,广州化工,1999,27(3):28-31
    [43]陈学俊,朱长新,周芳德,张鸣远,水平管束池沸腾换热机理的研究,西安交通大学学报,1994,28(5):108-113
    [44]赵玺灵,段常贵,张兴梅,王海龙,水平管束外沸腾换热的计算与强化,煤气与热力,2005,25(6):70-73
    [45]施明恒,丁峰,纵向阳,池内泡状沸腾的管束效应,工程热物理学报,1993,14(2):182-186
    [46] Palen J W,Taborek J J .Refinery kettle reboilers [J].Chemical Engineering Progress,1962, 58(7):37—46
    [47] Mostinski I L.Application of rule of corresponding states for the calculation of heat transfer and critical heat flux to boiling liquids[J].Brit.Chemical Engineering,1963,8(8):579—591
    [48] Chen J C. Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow. Ind. Eng. Chem. Process Design and Development,1966,5(3):322
    [49] McNelly MJ.A Correlation of the Rates of Heat Transfer to Nucleate Boiling Liquids.J.Imp.Coll.Chem.Eng.Soc.,1953,7:18
    [50] Mostinski I L. Application of Rule of Corresponding States for the Calculation of Heat Transfer and Critical Heat Flux to Boiling of Liquids. Brit. Chem. Eng. 1963,8(8):580
    [51] Zukauskas A. Heat Transfer from Tubes in Cross flow. Adv. Heat Transfer, 1972,8:93~161
    [52] ESDU. Convective Heat Transfer during Cross flow of Fluids over Plain Tube Bank. Engineering Sciences Data Unit.Lon2don.1973
    [53] Chen J C. Correlation for boiling heat transfer to saturated fluids in convective flow. Process design and development.1966,5(3):322-329
    [54] Leong L S , Cornwell K . Heat transfer coefficients in a reboiler tube bundle[J].The Chemical Engineering,1979,34(3):219—243
    [55] Cornwell K,Duffin N W,Sehuller R B.An experimental study of the effects of fluid flow on boiling within a kettle reboiler tube bundle[A].19th Nat.Heat Transfer Conf[C],New York(USA):ASME.Orlando,1980.80—90
    [56] Cornwe11 K.Einarsson J G,Andrews P R.Studies on boiling in tube bundles[A], 8th Int. Heat Transfer Conf.San Francisco(USA):Int.Heat Transfer Conf,1989.2137-2143
    [57] Cornwell K,Houston S D.Nucleate pool boiling on horizontal tubes:A convection-based correlation l[J].Int.J.Heat Mass Transfer,1994,37(4):303—309
    [58]任泽霈,蔡睿贤,热工手册,机械工业出版社。
    [59]李卉,朱鸿,满液式蒸发器换热管布置的优化设计,科学与技术,2008(2):7-10。
    [60] Thome,Engineer_Data_Book_III,9-30~9-32
    [61]于勇,FLUENT入门与进阶教程,北京理工大学出版社。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700