任意方向选择性滤波器组及其对图像表示的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,图像的边缘轮廓和纹理细节在图像处理应用中占有十分重要的地位。由于自然图像的边缘轮廓和纹理细节复杂多变,如何对这些复杂多变的方向性信息进行有效分析和稀疏表示已成为国内外专家学者共同追求的目标之一。近年来,具有楔形频谱划分的二维方向滤波器组与棋盘状频谱划分的双树变换因能提取图像的方向性信息而被广泛关注,其中前者能够有效提取图像中具有空域局部化特性的边缘轮廓,而后者更适合处理图像中频域局部化的纹理细节。这两类滤波器组的理论、构造与设计正在不断发展与完善之中,并在计算机视觉、模式识别、遥感数据分析和地震预测等许多应用领域暂露头角。本论文围绕如何对图像复杂多变的边缘轮廓和纹理细节进行有效分析和稀疏表示这一问题,对二维楔形方向滤波器组和双树变换进行了深入分析和研究,所取得的主要研究成果为:
     1.对一维多通道非均匀滤波器组进行了研究。由于本论文所研究的二维楔形方向滤波器组和双树变换都是基于一维滤波器组提出来的,因此我们首先从一维滤波器组出发,剖析了一维有理采样非均匀滤波器组中分析滤波器的频谱支撑域选择问题,推导出的充分必要条件能够为非均匀滤波器组的设计提供有力的指导作用;基于此分析,提出了设计任意整数采样线性相位非均匀滤波器组的有效方法。这些对一维滤波器组的探讨是后续研究楔形频谱划分方向滤波器组和棋盘状频谱划分双树变换的有力依据和重要基础。
     2.提出了一种具有任意子带数目二维楔形方向滤波器组的设计结构与设计方法。现有的二维楔形方向滤波器组由树型结构多级级联而成,方向子带数目限制为2n并且频谱划分方案固定,因此它们不能有效提取图像中复杂多变的边缘轮廓信息。针对此问题,我们利用伪极傅里叶变换的仿射特性,将一维滤波器组沿着斜率变化的方向应用于图像的伪极傅里叶变换,构成二维楔形方向滤波器组的设计结构。由于一维滤波器组具有任意的通道数,相应地,所得到的二维楔形方向滤波器组也具有任意的方向子带数目,它打破了传统树型结构对方向子带个数的限制,能够把图像分解为任意数目的楔形方向子带。此外,所提出的二维楔形方向滤波器组不涉及二维方向滤波器的直接设计,具有较低的设计复杂度。
     3.在工作2的研究基础上,继续研究了基于一维滤波器组和伪极傅里叶变换的二维楔形方向滤波器组,提出了具有任意楔形频谱划分的二维非均匀方向滤波器组。首先,对伪极傅里叶变换的伪极栅格进行了调整;然后,将具有任意频谱划分的一维非均匀滤波器组应用于调整后的伪极傅里叶变换,实现所期望的非均匀不规则楔形频谱划分。因此,所提出的二维非均匀方向滤波器组能够根据图像的方向特征分布主动捕获图像的方向性信息,提取图像中任意方向导向的边缘轮廓信息,这是现有的方向变换所不能完成的。仿真实验也验证了其非常适合处理边缘轮廓丰富且分布不规则的图像。
     4.提出了具有时移不变性和灵活方向选择性的双树余弦调制滤波器组。二维楔形方向滤波器组通常涉及二维不可分离操作,为了能在解决小波变换缺乏方向选择性和时移不变性问题的同时,保留其简单的一维操作特性,我们对具有时移不变性和棋盘状方向频谱划分的双树变换进行了研究。基于正弦函数和余弦函数是一对希尔伯特变换对这一事实,将余弦调制技术引入到双树变换的设计中,提出了双树余弦调制滤波器组。此双树变换通过余弦调制一个线性相位原型滤波器而来,避免了传统双树变换不得不面临的分数延时问题;同时,推导出的调制技术保证了每个分析和综合滤波器都具有线性相位特性;更重要的是,将此双树余弦调制滤波器组从一维扩展至二维,它能够提供比传统双树变换更灵活的方向选择性和更精细的棋盘状频谱划分。不同于楔形频谱划分的二维方向滤波器组,棋盘状频谱划分的二维双树余弦调制滤波器组更适合处理图像中具有频谱局部化特性的纹理细节。
     5.进一步研究了基于余弦调制的双树变换,提出了具有任意整数采样因子的双树非均匀滤波器组。其两个并行的整数采样非均匀滤波器组分别通过任意合并余弦和正弦调制滤波器组的连续通道获得,因此能够对信号进行灵活的分解。由于余弦和正弦滤波器组通过调制一个原型滤波器而来,因此其设计不但不涉及分数延时,还被简化为一个原型滤波器的设计。通过可分离操作,所得到的二维双树非均匀滤波器组具有非均匀的棋盘状频谱划分和任意的方向选择性,这些特性对于表达具有丰富不规则纹理细节的图像是非常期望的,仿真实验也验证了该点。
     6.构造了无冗余棋盘状多尺度方向滤波器组。以上所研究的二维楔形方向滤波器组和双树滤波器组都是有冗余的变换。对于图像压缩等需要经济表示的图像处理领域,无冗余特性是非常需要的。为了能在解决小波变换缺乏方向选择性问题的同时,保留其无冗余和简单的一维操作特性,构造了无冗余棋盘状多尺度方向滤波器组,它由无冗余的一维M通道滤波器组和二维象限滤波器组级联而成。首先,一维M通道滤波器组通过张量积把输入图像分解为一个低通子带和M21个带通子带;接着,二维象限滤波器组将每个带通子带分解为两个具有棋盘状频谱支撑域的方向子带。由于M是任意整数,因此所提出的滤波器组具有任意的方向选择性,它能够有效表示含有丰富纹理细节的图像。将这一过程对低通子带进行迭代,可以实现图像的多尺度任意方向分解。实验结果表明,它具有比传统小波和轮廓波更佳的非线性逼近性能,尤其是对于含有丰富纹理细节的图像。
It is well known that the contours and textures of images play an important role inmany image processing applications. Since natural images typically contain abundantcontours and textures, how to analyze and represent the complicated directionalinformation efficiently has become one target of the researchers at home and abroad.Recently, the two-dimensional (2-D) directional filter banks (DFBs) with wedge-shapedfrequency partition and dual-tree transforms with checkerboard-shaped frequencypartition have received much attention, for their ability to extract the directionalinformation of images. The former can extract the locally spatial edges and contoursefficiently, while the latter is more tailored for the process of locally spectral texturesand details. The theory, construction and design of the two type filter banks arecurrently being developed and perfected, and cut a figure in many fields of applications,such as computer vision, pattern recognition, remote sensing data analysis andearthquake prediction. Centering on the problem of how to represent the abundantcontours and textures of images, this dissertation makes deep analysis and research onthe2-D DFBs and dual-tree transforms. The main research results of this dissertationare summarized as follows:
     1. Studying the one-dimensional (1-D) multi-channel nonuniform filter banks(NUFBs). The2-D wedge-shaped DFBs and dual-tree transforms considered in thisdissertation are proposed based on1-D filter banks. Therefore, starting from the1-Dfilter banks, we analyze the problem of frequency support selection of analysis filters in1-D rationally-sampled NUFBs. The derived necessary and sufficient condition canprovide a guideline for the design of NUFBs. Based on the analysis, an efficient methodfor the design of linear-phase NUFBs with arbitrary integer decimation factors isproposed. These studies on1-D filter banks are the important foundation for the furtherresearch of2-D wedge-shaped DFBs and checkerboard-shaped dual-tree transforms.
     2. Proposing a new structure and method for the design of2-D wedge-shapedDFBs with arbitrary number of subbands. Since the existing2-D wedge-shaped DFBsare constructed based on tree-structure, their number of subbands is limited to2nandtheir frequency partition schemes are also fixed. Therefore, they cannot extract thecomplicated edges and contours of images efficiently. To solve this problem, we utilizethe affine characteristic of pseudo-polar Fourier transform (PPFT), and apply a1-Dfilter bank to the PPFT of image along the slope direction, constructing the new structure for the design of2-D wedge-shaped DFBs. Since the number of subbands of1-D filter banks is arbitrary, the obtained wedge-shaped DFB can accordingly havearbitrary number of directional subbands. It overcomes the limitation imposed on thenumber of subbands by traditional tree-structure, and can decompose images intoarbitrary number of directional subbands. Besides, the design of the proposed DFB doesnot involve the direct design of2-D directional filters, leadig to low design complexity.
     3. Based on Research2, we further study the2-D wedge-shaped DFB which isbased on1-D filter banks and PPFT, and propose the2-D nonuniform DFBs which hasarbitrary wedge-shaped frequency partition. Firstly, we adjust the pseudo-polar grid ofPPFT; and then we apply a1-D NUFB with arbitrary frequency partition to the adjustedPPFT, performing the desired wedge-shaped nonuniform frequency partition. As a result,the proposed nonuniform DFBs can capture the image directional information accordingto its characteristic of directional distribution, and has the ability to extract thearbitrarily-orientated edges and contours of images. These cannot be performed by theexisting directional transforms. Several simulation results demonstrate that the proposednonuniform DFB is tailored to process the images with complicated and nonuniformedges and contours.
     4. Proposing the shift-invariant and flexibly directional-selective dual-treecosine-modulated filter bank (DTCMFB).2-D wedge-shaped DFBs generally involvenonseparable operations. To solve the problems of poor directional-selectivity andshift-variance of wavelet transform while preserving its simple1-D operations, wefurther study the dual-tree transforms, which have the properties of shift-invariance andcheckerboard-shaped directional frequency partition. Based on the fact that the cosineand sine functions are a pair of Hilbert transform, the cosine-modulation technique isintroduced into the design of dual-tree transforms, developing the DTCMFB. It isobtained by cosine-modulating a linear-phase prototype filter, and thus avoids thefractional-delay constraints that have to be faced in traditional dual-tree transforms.Meanwhile, the derived modulation technique ensures each analysis/synthesis filterhaving linear-phase property. More importantly, the DTCMFB can be extended totwo-dimensions via separable operations. The resulting2-D DTCMFB can providemore flexible directional-selectivity and finer checkerboard-shaped frequency partitionthan traditional dual-tree transforms. Unlike the2-D wedge-shaped DFBs, thecheckerboard-shaped directional frequency partition makes the2-D DTCMFB moresuitable to process locally spectral textures and details of images.
     5. We further study the cosine-modulation based dual-tree transform, and proposethe dual-tree nonuniform filter bank (DTNUFB) with arbitrary integer decimationfactors. Its two parallel NUFBs are respectively obtained by arbitrarily combining theconsecutive channels of the cosine-and sine-modulated filter banks, and thus canperform the flexible decomposition of signals. Since the cosine-and sine-modulatedfilter banks are obtained by modulating only one prototype filter, the design ofDTNUFB not only avoids the fractional-delay constraints, but also reduced to that ofone prototype filter, leading to low design complexity. By using separable operations,the resulting2-D DTNUFB has checkerboard-shaped nonuniform frequency partitionand arbitrary directional-selectivity. These are highly expected in directionalrepresentation of images with abundant and nonuniform textures and details. Severalsimulation results demonstrate its potential.
     6. Constructing the non-redundant checkerboard-shaped multiresolution DFB.The above2-D wedge-shaped DFBs and dual-tree transforms are redundant. For theimage processing applications that require economical representations, such as imagecompression, the non-redundancy is required. In order to slove the problem of poordirectional-selectivity of wavelet while preserving its properties of non-redundancy andseparable operations, we construct the non-redundant checkerboard-shapedmultiresolution DFB. It is achieved by combining a non-redundant1-D M-channel filterbank and a non-redundant2-D quadrant filter bank. Firstly, the1-D M-channel filterbank decomposes image into one lowpass subband andM21bandpass subbands viaseparable operations. Then, the2-D quadrant filter bank is applied to each bandpasssubband and decomposes it into two directional subbands with checkerboard-shapedfrequency supports. Since M is an arbitrary integer, the proposed DFB can providearbitrary directional-selectivity and can sparsely represent the images full of directionalinformation. Iterating this procedure on the lowpass subband can perform themultiresolution arbitrarily-directional image decomposition. Experimental resultsillustrate that, this DFB has better nonlinear approximation performance than waveletand contourlet, especially for the images with abundant textures and details.
引文
[1] Vaidyanathan P P. Multirate systems and filter banks. Englewood Cliffs, NJ:Prentice Hall,1993.545-596.
    [2] Do M N. Directional multiresolution image representations. Ph.D. Thesis, SwissFederal Institute of Technology Lausanne,2001.
    [3]候彪.脊波和方向信息检测方法及应用.西安电子科技大学博士学位论文,2003.
    [4] Hong P S. Octave-band directional decompositions. Ph.D. Thesis, Georgia Instituteof Technology,2005.
    [5] He Z H. Texture-and structure-based image representation with applications toimage retrieval and compression. Ph.D. Thesis, Boston University,2007.
    [6] Lu Y. Multidimensional geometrical signal representation: constructions andapplications. Ph.D. Thesis, Graduate College of the University of Illinois,2007.
    [7]焦李成,侯彪,王爽, et al.图像多尺度几何分析理论与应用—后小波分析理论和应用.西安:西安电子科技大学出版社,2008.9-24.
    [8] Starck J L, Murtagh F, Candes E J, et al. Gray and color image contrastenhancement by the curvelet transform. IEEE Trans. on Image Processing. Jun.2003,12(6).706-717.
    [9] Vetterli M, Kovacevic J. Wavelets and subband coding. Englewood Cliffs, NJ:Prentice Hall,1993.415-438.
    [10]Mallat S. A wavelet tour of signal processing—the sparse way,3rd. Burlington:Academic Press,2009.230-241.
    [11] Karlsson G, Vetterli M. Theory of two-dimensional multirate filter banks. IEEETrans. on Acoustics, Speech and Signal Processing. Jun.1990,38(6).925-937.
    [12] Lin Y P, Vaidyanathan P P. Theory and design of two-dimensional filter banks: areview. Multidimensional Systems and Signal Processing.1996,7(3-4).263-330.
    [13]Lin Y P, Vaidyanathan P P. On the study of four-parallelogram filter banks. IEEETrans. on Signal Processing. Nov.1996,44(11).2707-2717.
    [14]Zhang L, Makur A. Multidimensional perfect reconstruction filter banks: anapproach of algebraic geometry. Multidimensional Systems and Signal Processing.2009,20(1).3-24.
    [15]Nguyen T T. The multiresolution directional filter banks. Ph.D. Thesis, TheUniversity of Texas at Arlington,2006.
    [16]Shui P L, Jiang J Z. Two-dimensional2x oversampled DFT modulated filter banksand critically sampled modified DFT modulated filter banks. IEEE Trans. on SignalProcessing. Nov.2010,58(11).5597-5611.
    [17]Bamberger R H. The directional filter banks: a multirate filter bank for thedirectional decomposition of images. Ph.D. Thesis, Georgia Institute of Technology,1990.
    [18]Bamberger R H, Smith M J T. A filter bank for the directional decomposition ofimages: theory and design. IEEE Trans. on Signal Processing. Apr.1992,40(4).882-893.
    [19]Bamberger R H. New results on two and three dimensional directional filter banks.Proc. of the27thAsilomar Conference on Signals, Systems and Computers. Nov.1993.1286-1290.
    [20]Park S I. New directional filter banks and their applications in image processing.Ph.D. Thesis, Georgia Institute of Technology,1999.
    [21]Park S I, Smith M J T, Mersereau R M. Improved structures of maximallydecimated directional filter banks for spatial image analysis. IEEE Trans. on ImageProcessing. Nov.2004,13(11).1424-1431.
    [22]Burt P, Adelson E. The Laplacian pyramid as a compact image code. IEEE Trans.on Communications. Apr.1983,31(4).532-540.
    [23]Do M N, Vetterli M. Framing pyramids. IEEE Trans. on Signal Processing. Sep.2003,51(9).2329-2342.
    [24]Do M N, Vetterli M. Pyramidal directional filter banks and curvelets. Proc. ofInternational Conference on Image Processing. Oct.2001.158-161.
    [25]Do M N, Vetterli M. Contourlets. Beyond Wavelets.2003,10.83-105.
    [26]Do M N, Vetterli M. The contourlet transform: an efficient directionalmultiresolution image representation. IEEE Trans. on Signal Processing. Dec.2005,14(12).2091-2106.
    [27]Cunha A L, Zhou J, Do M N. The nonsubsampled contourlet transform: theory,design and applications. IEEE Trans. on Image Processing. Oct.2006,15(10).3089-3101.
    [28]Eslami R, Radha H. Regular hybrid wavelets and directional filter banks:extensions and applications. Proc. of IEEE International Conference on ImageProcessing. Oct.2006.1609-1612.
    [29]Eslami R, Radha H. A new family of nonredundant transforms using hybridwavelets and directional filter banks. IEEE Trans. on Image Processing. Apr.2007,16(4).1152-1167.
    [30]Nguyen T T, Oraintara S. A class of directional filter banks. Proc. of IEEEInternational Symposium on Circuits and Systems. May2005.1110-1113.
    [31]Nguyen T T, Oraintara S. Multiresolution direction filter banks: theory, design, andapplications. IEEE Trans. on Signal Processing. Oct.2005,53(10).3895-3905.
    [32]Nguyen T T, Oraintara S. A class of multiresolution directional filter banks. IEEETrans. on Signal Processing. Mar.2007,55(3).949-961.
    [33]Ding W P, Wu F, Wu X L, et al. Adaptive directional lifting-based wavelettransform for image coding. IEEE Trans. on Image Processing. Feb.2007,16(2).416-427.
    [34]Chang C L, Girod B. Direction-adaptive discrete wavelet transform for imagecompression. IEEE Trans. on Image Processing. May2007,16(5).1289-1302.
    [35]Tanaka Y, Ikehara M, Nguyen T Q. A new combination of1D and2D filter banksfor efficient multiresolution image representation. Proc. of IEEE InternationalConference on Image Processing. Oct.2008.2820-2823.
    [36]Tanaka Y, Ikehara M, Nguyen T Q. Multiresolution image representation usingcombined2-D and1-D directional filter banks. IEEE Trans. on Image Processing.Feb.2009,18(2).269-280.
    [37]Kingsbury N G. The dual-tree complex wavelet transform: a new efficient tool forimage restoration and enhancement. Proc. of European Signal ProcessingConference. Sep.1998.319-322.
    [38]Kingsbury N G. Shift invariant properties of the dual-tree complex wavelettransform. Proc. of IEEE International Conference on Acoustics, Speech, andSignal Processing. Mar.1999.1221-1224.
    [39]Kingsbury N G. A dual-tree complex wavelet transform with improvedorthogonality and symmetry properties. Proc. of International Conference on ImageProcessing. Sep.2000.375-378.
    [40]Kingsbury N G. Complex wavelets for shift invariant analysis and filtering ofsignals. Journal of Applied and Computational Harmonic Analysis. May2001,10(3).234-253.
    [41]Selesnick I W. The design of approximate Hilbert transform pairs of wavelet bases.IEEE Trans. on Signal Processing. May2002,50(5).1144-1152.
    [42]Kingsbury N G. Design of Q-shift complex wavelets for image processing usingfrequency domain energy minimization. Proc. of International Conference on ImageProcessing. Set.2003.1013-1016.
    [43]Selesnick I W, Baraniuk R G, Kingsbury N G. The dual-tree complex wavelettransform—a coherent framework for multiscale signal and image processing. IEEESignal Processing Magazine. Nov.2005,22(6).123-151.
    [44]Tay B H, Kingsbury N G, Palaniswami M. Orthonormal Hilbert-pair of waveletswith (almost) maximum vanishing moments. IEEE Signal Processing Letters. Sept.2006,13(9).533-536.
    [45]Chaudhury K N, Unser M. Construction of Hilbert transform pairs of wavelet basesand Gabor-like transforms. IEEE Trans. on Signal Processing. Sept.2009,57(9).3411-3425.
    [46]Chaudhury K N, Unser M. On the shiftability of dual-tree complex wavelettransforms. IEEE Trans. on Signal Processing. Jan.2010,58(1).221-232.
    [47]Wang J, Zhang J Q. A globally optimal bilinear programming approach to thedesign of approximate Hilbert pairs of orthonormal wavelet bases. IEEE Trans. onSignal Processing. Jan.2010,58(1).233-241.
    [48]Chaudhury K N, Unser M. On the Hilbert transform of wavelets. IEEE Trans. onSignal Processing. Apr.2011,59(4).1890-1894.
    [49]Bayram I, Selesnick I W. On the dual-tree complex wavelet packet and M-bandtransforms. IEEE Trans. on Signal Processing. Jun.2008,56(6).2298-2310.
    [50]Weickert T, Benjaminsen C, Kiencke U. Analytic wavelet packets—combining thedual-tree approach with wavelet packets for signal analysis and filtering. IEEETrans. on Signal Processing. Feb.2009,57(2).493-502.
    [51]Toda H, Zhang Z, Imamura T. The design of complex wavelet packet transformsbased on perfect translation invariance theorems. International Journal of Wavelets,Multiresolution and Information Processing.2010,8(4).537-558.
    [52]Chaux C, Duval L, and Pesquet J C. Image analysis using a dual-tree M-bandwavelet transform. IEEE Trans. on Image Processing. May2006,15(8).2397-2412.
    [53]Bayram I, Selesnick W. A simple construction for the M-band dual-tree complexwavelet transform. Proc. of the12thDigital Signal Processing Workshop. Sep.2006.596-601.
    [54]Gopinath R A. The phaselet transform—an integral redundancy nearlyshift-invariant wavelet transform. IEEE Trans. on Signal Processing. Jul.2003,51(7).1792-1805.
    [55]Selesnick I W. The double-density dual-tree DWT. IEEE Trans. on SignalProcessing. May2004,52(5).1304-1314.
    [56]Do M N, Vetterli M. Orthonormal finite ridgelet transform for image compression.Proc. of International Conference on Image Processing. Sep.2000.367-370.
    [57]Do M N, Vetterli M. The finite ridgelet transform for image representation. IEEETrans. on Image Processing. Jan.2003,12(1).16-28.
    [58]Starck J L, Candes E J, Donoho D L. The curvelet transform for image denoising.IEEE Trans. on Image Processing. Jun.2002,11(6).670-684.
    [59]Ma J W, Plonka G. The curvelet transform. IEEE Signal Processing Magazine. Mar.2010,27(2).118-133.
    [60]Kittipoom P, Kutyniok G, Lim W Q. Irregular shearlet frames: geometry andapproximation properties. Journal of Fourier Analysis and Applications.2010,17(4).604-639.
    [61]Kutyniok G, Lim W Q. Compactly supported shearlets are optimally sparse. Journalof Approximation Theory. Nov.2011,163(11).1564-1589.
    [62]Cox R V. The design of uniformly and nonuniformly spaced pseudo quadraturemirror filters. IEEE Trans. on Acoustics, Speech and Signal Processing. Oct.1986,34(5).1090-1096.
    [63]石光明.子带滤波器组的设计方法和应用.西安电子科技大学博士学位论文,2001.
    [64]Nayebi K, Barnwell T P, Smith M J H. Nonuniform filter banks: a reconstructionand design theory. IEEE Trans. on Signal Processing. Mar.1993,41(3).1114-1127.
    [65]Kovacevic J, Vetterli M. Perfect reconstruction filter banks with rational samplingfactors. IEEE Trans. on Signal Processing. Jun.1993,42(6).2047-2066.
    [66]Princen J. The design of nonuniform modulated filter banks. IEEE Trans. on SignalProcessing. Nov.1995,43(11).2550-2560.
    [67]Li J L, Nguyen T Q, Tantaratana S. A simple design method fornear-perfect-reconstruction nonuniform filter banks. IEEE Trans. on SignalProcessing. Aug.1997,45(8).2105-2109.
    [68]Argenti F, Brogelli B, Re E D. Design of pseudo-QMF banks with rationalsampling factors using several prototype filters. IEEE Trans. on Signal Processing.Jun.1998,46(6).1709-1715.
    [69]Akkarakaran S, Vaidyanathan P P. New results and open problems on nonuniformfilter banks. Proc. of IEEE International Conference on Acoustics, Speech, andSignal Processing. Mar.1999.15-19.
    [70]Niamut O A, Heusdens R. Subband merging in cosine-modulated filter banks. IEEESignal Processing Letters. Apr.2003,10(4).111-114.
    [71]Xie X M, Chan S C, Yuk T I. Design of perfect-reconstruction nonuniformrecombination filter banks with flexible rational sampling factors. IEEE Trans. onCircuits and Systems—I: Regular Papers. Sep.2005,52(9).1965-1981.
    [72]Xie X M. New design and realization methods for perfect reconstructionnonuniform filter banks. Ph.D. Thesis, The University of Hong Kong,2004.
    [73]Xie X M, Chan S C, Yuk T I. Design of linear-phase recombination nonuniformfilter banks. IEEE Trans. on Signal Processing. Jul.2006,54(7).2809-2814.
    [74]Zhong W, Shi G M, Xie X M, et al. Design of linear-phase nonuniform filter bankswith partial cosine modulation. IEEE Trans. on Signal Processing. Jun.2010,58(6).3390-3395.
    [75]Chen X Y, Xie X M, Shi G M. Design of near perfect reconstruction linear phasenonuniform filter banks with rational sampling factors. Proc. of IEEE InternationalConference on Acoustics, Speech and Signal Processing. May2006.253-256.
    [76]Xie X M, Chan S C, Yuk T I. M-band perfect-reconstruction linear-phase filterbanks. Proc. of the11thIEEE Signal Processing Workshop on Statistical SignalProcessing.2001.583-586.
    [77]Yoon B J, Malvar H S. A practical approach for the design of nonuniform lappedtransforms. IEEE Signal Processing Letters. Aug.2006,13(8).469-472.
    [78]Lee J H, Tang D C. Optimal design of two-channel nonuniform-division FIR filterbanks with-1,0,1coefficients. IEEE Trans. on Signal Processing. Feb.1999,47(4).422-432.
    [79]Wada S. Design of nonuiform division multirate FIR filter banks. IEEE Trans. onCircuits and Systems II: Analog and Digital Signal Processing. Feb.1995,42(2).115-121.
    [80]Liu B, Bruton L T. The design of N-band nonuniform-band maximally decimatedfilter banks. Proc. of the27thAsilomar Conference on Signals, Systems andComputers. Nov.1993.1281-1285.
    [81]Buf J M H, Kardan M, Spann M. Texture feature performance for imagesegmentation. Parttern Recognition.1990,23(3/4).291-309.
    [82]Randen T, Husoy J H. Filtering for texture classification: a comparative study. IEEETrans. on Pattern analysis and Machine Intelligence. Apr.1999,21(4).291-310.
    [83]Eslami R, Radha H. Translation-invariant contourlet transform and its application toimage denoising. IEEE Trans. on Image Processing. Nov.2006,15(11).3362-3374.
    [84]Khan M A U, Khan M K, Khan M A. Fingerprint image enhancement usingdecimation-free directional filter bank. Information Technology Journal.2005,4(1).16-20.
    [85]Truc P T H, Khan M A U, Lee Y K, et al. Vessel enhancement filter usingdirectional filter bank. Computer Vision and Image Understanding.2009,113(1).101-112.
    [86]Kha H H, Tuan H D, Nguyen T Q. Optimal design of FIR Triplet halfband filterbank and application in image coding. IEEE Trans. on Image Processing. Feb.2011,20(2).586-591.
    [87]Vetterli M. Wavelets, approximation, and compression. IEEE Signal ProcessingMagazine. May2001,18(5).59-71.
    [88]Viscito E, Allebach J P. The analysis and design of multidimensional FIR perfectreconstruction filter banks for arbitrary sampling lattices. IEEE Trans. on Circuitsand Systems. Jun.1991,38(1).29-41.
    [89]Kovacevic J, Vetterli M. Nonseparable multidimensional perfect reconstructionfilter banks and wavelet bases for Rn. IEEE Trans. on Information Theory. Mar.1992,38(2).533-555.
    [90]Tay D B H, Kingsbury N G. Flexible design of multidimensional perfectreconstruction FIR2-band filters using transformations of variables. IEEE Trans. onImage Processing. Oct.1993,2(4).466-480.
    [91]Kovacevic J, Vetterli M. Nonseparable two-and three-dimensional wavelets. IEEETrans. on Signal Processing. May1995,43(5).1269-1273.
    [92]Chen T, Vaidyanathan P P. Considerations in multidimensional filter bank design.Proc. of IEEE International Symposium on Circuits and Systems. May1993.643-646.
    [93]Basu S. Multidimensional causal, stable, perfect reconstruction filter banks. IEEETrans. on Circuits and systems I: Fundamental Theory and Applications. Jun.2002,49(6).832-842.
    [94]Evans B L, Teich J, Kalker T A. Families of Smith form decompositions to simplifymultidimensional filter bank design. Proc. of the28thAsilomar Conference onSignals, Systems and Computers. Nov.1994.363-367.
    [95]Freeman W T, Adelson E H. The design and use of steerable filter. IEEE Trans. onPattern Analysis and Machine Intelligence. Sep.1991,13(9).891-906.
    [96]Candes E J, Donoho D L. Curvelets and Curvilinear Integrals. Journal ofApproximation Theory. Nov.2001,113(1).59-90.
    [97]Averbuch A, Coifman R R, Elad M, et al. Fast and accurate polar Fourier transform.Applied and Computational Harmonic Analysis. Sep.2006,21(2).145-167.
    [98]Averbuch A, Coifman R, Donoho D L, et al. A framework for discrete integraltransformations I—the pseudopolar Fourier transform. SIAM Journal on ScientificComputing.2009,30(2).764-784.
    [99] Strang G, Nguyen T. Wavelets and filter banks. Wellesley, MA:Wellesley-Cambridge Press,1997.263-298.
    [100]Cohen A, Daubechies I, Feauveau J C. Biorthogonal bases of compactly supportedwavelets. Communications on Pure and Applied Mathematics. Jun.1992,45(5).485-560.
    [101]Chan S C, Nallanathan A, Nq T S, et al. A class of M-channel linear-phasebiorthogonal filter banks and their applications to subband coding. IEEE Trans. onSignal Processing. Feb.1999,47(2).564-571.
    [102]Kokare M, Biswas P K, Chatterji B N. Texture image retrieval using new rotatedcomplex wavelet filters. IEEE Trans. on Systems, Man, and Cybernetics-Part B:Cybernetics. Dec.2005,35(6).1168-1178.
    [103]Celik T, Tjahjadi T. Multiscale texture classification using dual-tree complexwavelet transform. Pattern Recognition Letters. Feb.2009,30(3).331-339.
    [104]Ma N N, Xiong H K, Song L.2D dual multiresolution decomposition throughNUDFB and its application. Proc. of IEEE Workshop on Multimedia SignalProcessing.2008.509-514.
    [105]Guo K, Labate D. Optimally sparse multidimensional representation using shearlets.SIAM Journal on Mathematical Analysis. May2007,39(1).298-318.
    [106]Shi G M, Liang L L, Xie X M. Design of directional filter banks with arbitrarynumber of subbands. IEEE Trans. on Signal Processing. Dec.2009,57(12).4936-4941.
    [107]Lim J S. Two-dimensional signal and image processing. Englewood Cliffs, NJ:Prentice Hall,1990.264-291.
    [108]Whalley R. Two-dimensional digital filters. Applied Mathematical Modelling. Jun.1990,14(6).304-311.
    [109]Ho C Y F, Ling B W K, Liu Y Q, et al. Optimal design of nonuniform FIRtransmultiplexer using semi-infinite programming. IEEE Trans. on SignalProcessing. Jul.2005,53(7).2598-2603.
    [110]Ho C Y F, Ling B W K, Liu Y Q, et al. Efficient algorithm for solving semi-infiniteprogramming problems and their applications to nonuniform filter bank designs.IEEE Trans. on Signal Processing. Nov.2006,54(11).4223-4232.
    [111]Chen T W, Qiu L, Bai E W. General multirate building structures with applicationto nonuniform filter banks. IEEE Trans. on Circuits and Systems-II: Analog andDigital Signal Processing. Aug.1998,45(8).948-958.
    [112]Ho C Y F, Ling B W K, Tam P K S. Representations of linear dual-rate system viasingle SISO LTI filter, conventional sampler and block sampler. IEEE Trans. onCircuits and Systems-II: Express Briefs. Feb.2008,55(2).168-172.
    [113]Xie X M, Liang L L, Shi G M. Analysis of realizable rational decimatednonuniform filter banks with direct structure. Process in Natural Science. Dec.2008,18(2).1501-1505.
    [114]Xie X M, Liang L L, Shi G M, et al. Direct design of linear-phase nonuniform filterbanks with arbitrary integer decimation factors. Proc. of the16thEuropean SignalProcessing Conference. Aug.2008.1-5.
    [115]Satish G A E, Chandrasekhar P, Stephen B. Design of nonuniform filterbanks-quadratic optimization with linear constraints. ARPN Journal of Engineeringand Applied Sciences. Jun.2007,2(3).24-27.
    [116]Fadili J M, Starck J L, Elad M, et al. MCALab: reproducible research in signal andimage decomposition and inpainting. Computing in Science and Engineering. Jan.2010,12(1).44-63.
    [117]Fadili J M, Starck J L, Bobin J, et al. Image decomposition and separation usingsparse representations: an overview. Proceedings of the IEEE. Jun.2010,98(6).983-994.
    [118]Donoho D L, Kutyniok G. Microlocal analysis of the geometric separation problem.Preprient: arXiv:1004.3006v1[math. FA], Feb.2010.
    [119]Kutyniok G, Lim W Q. Image separation using wavelets and shearlets. Preprient:arXiv:1004.3006v1[math. FA], Jun.2011.
    [120]Wright S J. Accelerated block-coordinate relaxation for regularized optimization.Technical report, University of Wisconsin-Madison,2010.
    [121]Miller M, Kingsbury N G. Image denoising using derotated complex waveletcoefficients. IEEE Trans. on Image Processing. Sep.2008,17(9).1500-1511.
    [122]Yang J Y, Wang Y, Xu W L, et al. Image and video denoising using adaptivedual-tree discrete wavelet packets. IEEE Trans. on Circuits and Systems for VideoTechnology. May2009,19(5).642-655.
    [123]Ranjani J J, Thiruvengadam S J. Dual-tree complex wavelet transform based SARdespeckling using interscale dependence. IEEE Trans. on Geoscience and RemoteSensing. Jun.2010,48(6).2723-2731.
    [124]Wang H Z. SAR image denoising based on dual-tree complex wavelet transform.Computer Science for Environmental Engineering and Ecoinformatics.2011,159(9).430-435.
    [125]Celik T, Ozkaramanali H, Demirel H. Facial feature extraction using complexdual-tree wavelet transform. Computer Vision and Image Understanding. Jan.2008,111(2).229-246.
    [126]Ozkaramanali H, Demirel H, Eleyan A. Complex wavelet transform-based facerecognition. EURASIP Journal on Advances in Signal Processing. Jan.2008,2008.1-13.
    [127]Liu C C, Dai D Q. Face Recognition using dual-tree complex wavelet transform.IEEE Trans. on Image Processing. Nov.2009,18(11).2593-2599.
    [128]Wang B B, Wang Y, Selesnick I, et al. Video coding using3D dual-tree wavelettransform. Journal on Image and Video Processing. Jan.2007,2007(1).1-15.
    [129]Yang J Y, Wang Y, Xu W L, et al. Image coding using dual-tree discrete wavelettransform. IEEE Trans. on Image Processing. Sep.2008,17(9).1555-1569.
    [130]Tran T D, Queiroz R L, Nguyen T Q. Linear-phase perfect reconstruction filterbank: lattice structure, design, and application in image coding. IEEE Trans. onSignal Processing. Jan.2000,48(1).133-147.
    [131]Kyochi S, Uto T, Ikehara M. Dual-tree complex wavelet transform arising fromcosine-sine modulated filter banks. Proc. of IEEE International Symposium onCircuits and Systems. May2009.2189-2192.
    [132]Kyochi S, Ikehara M. A class of near shift-invariant and orientation-selectivetransform bases on delay-less oversampled even-stacked cosine-modulated filterbanks. IEICE Trans. on Fundamentals of Electronics, Communications andComputer. Apr.2010, E93-A(4).724-733.
    [133]Lin Y P, Vaidyanathan P P. Linear phase cosine modulated maximally decimatedfilter banks with perfect reconstruction. IEEE Trans. on Signal Processing. Nov.1995,42(11).2525-2539.
    [134]Bolskei H, Hlawatsch F. Oversampled cosine modulated filter banks with perfectreconstruction. IEEE Trans. on Circuits and Systems II: Analog and Digital SignalProcessing. Aug.1998,45(8).1057-1071.
    [135]Fong Y T, Kok C W. Iterative least squares design of DC-leakage free paraunitarycosine modulated filter banks. IEEE Trans. on Circuits and Systems-II: Analog andDigital Signal Processing. May2003,50(5).238-243.
    [136]Lu W S, Saramaki T, Bregovic R. Design of practically perfect-reconstructioncosine-modulated filter banks: a second-order cone programming approach. IEEETrans. on Circuits and Systems-I: Regular Papers. Mar.2004,51(3).552-563.
    [137]Torrence C, Compo G P. A practical guide to wavelet analysis. Bulletin of theAmerican Meteorological Society. Jan.1998,79(1).61-78.
    [138]Nguyen T T, Oraintara S. The shiftable complex directional pyramid-Part I:theoretical aspects. IEEE Trans. on Signal Processing. Oct.2008,56(10).4651-4660.
    [139]Nguyen T T, Oraintara S. The shiftable complex directional pyramid―Part II:implementation and applications. IEEE Trans. on Signal Processing. Oct.2008,56(10).4661-4672.
    [140]Jalobeanu A, Blanc F L, Zerubia J. Satellite image deblurring using complexwavelet packets. International Journal of Computer Vision.2003,51(3).205-217.
    [141]Nguyen T Q. Near-perfect-reconstruction pseudo-QMF banks. IEEE Trans. onSignal Processing. Jan.1994,42(1).65-76.
    [142]Viholainen A, Stitz T H, Alhava J, et al. Complex modulated critically sampledfilter banks based on cosine and sine modulation. Proc. of IEEE InternationalSymposium on Circuits and Systems. May2002.833-863.
    [143]Lin Y P, Vaidyanathan P P. A Kaiser window approach for the design of prototypefilters of cosine modulated filter banks. IEEE Signal Processing Letters. Jun.1998,5(6).132-134.
    [144]Kha H H, Tuan H D, Nguyen T Q. Efficient design of cosine-modulated filter banksvia convex optimization. IEEE Trans. on Signal Processing. Mar.2009,57(3).966-976.
    [145]Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage.Biometrika.1994,81(3).425-455.
    [146]Liang L L, Shi G M, Xie X M. Nonuniform directional filter banks with arbitraryfrequency partitioning. IEEE Trans. on Image Processing. Jan.2011,20(1).283-288.
    [147]Lu Y, Do M N. The finer directional wavelet transform. Proc. of IEEE InternationalConference on Acoustics, Speech, and Signal Processing. Mar.2005.573-576.
    [148]Mallat S, Falzon F. Analysis of low bit rate image transform coding. IEEE Trans. onSignal Processing. Apr.1998,46(4).1027-1042.
    [149]Tanaka Y, Ikehara M, Nguyen T Q. A lattice structure of biorthogonal linear-phasefilter banks with higher order feasible building blocks. IEEE Trans. on Circuits andSystems I: Regular Papers. Sep.2008,55(8).2322-2331.
    [150]Xu Z M, Makur A. On the arbitrary-length M-channel linear phase perfectreconstruction filter banks. IEEE Trans. on Signal Processing. Oct.2009,57(10).4118-4123.
    [151]Xie X M, Peng B, Ma X J, et al. The design of M-channel linear phase wavelet-likefilter banks. Proc. of International Conference on Audio, Language and ImageProcessing. Jul.2008.436-442.
    [152]Zhong W, Shi G M, Xie X M, et al. Design of M-channel uniform linear-phase filterbanks with partial cosine modulation. Chinese Journal of Electronics. Jul.2009,18(3).477-480.
    [153]Phoong S M, Kim C W, Vaidyanathan P P, et al. A new class of two-channelbiorthogonal filter banks and wavelet bases. IEEE Trans. Signal Processing. Mar.1995,43(3).649-665.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700