编队卫星SAR波形设计及成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
编队卫星SAR因为在实现高分辨率成像、宽测绘带成像、三维成像和地面慢速运动目标检测等方面具有广阔的前景,因而受到广泛的关注并成为当今雷达技术研究的热点领域。然而,编队卫星SAR各卫星照射区域相互重叠,波束间将相互干扰,因此,各卫星发射波形必须正交;且编队卫星SAR系统受卫星偏航、传输路径和基线变化等因素的影响,导致编队卫星SAR的成像质量急剧下降,要实现编队卫星SAR的无模糊高分辨率图像,必须对上述运动误差进行补偿;此外,由于回波信号的增加,卫星与地面的传输负荷也随之增大,从而加重了卫星的负担,因此本论文还从减轻卫星数据传输负荷的角度出发,研究了编队卫星SAR的回波信号稀疏方法和低传输负荷下的编队卫星SAR成像方法。论文的主要研究内容如下:
     1.对线性调频信号的斜率进行分段调制,提出了Hybrid-LFM正交波形,分析了调频斜率差对其正交性和多普勒容忍性的影响,推导了该波形各参数之间的关系,并提出了基于双调频子斜率和M+K调频子斜率的波形参数设计方法,设计出了兼备正交性和多普勒容忍性的Hybrid-LFM信号波形。
     2.利用正交相位编码信号对LFM信号的相位进行调制,提出了OCD-LFM正交波形,分析了调制信号码长对其正交性和多普勒容忍性的影响,推导出该波形参数之间的关系式,并提出了OCD-LFM信号波形的参数设计方法以及基于遗传算法的波形优化方法。
     3.提出了场景中心偏移的偏航导引方法,修正了多发多收编队卫星SAR回波信号的中心多普勒偏移,降低了成像算法的复杂度;建立了场景中心偏移的编队卫星SAR回波信号模型和方位向非均匀采样模型,并基于该模型提出了一种方位周期性非均匀采样频谱重构方法,有效解决了因非均匀采样导致的频谱畸变和图像模糊问题;基于对不同传输路径的误差补偿和对方位向非均匀采样的频谱重构,提出了编队卫星SAR的成像处理方法,并基于OCD-LFM发射波形实现了编队卫星SAR的无模糊成像。
     4.针对编队卫星SAR伴飞和主从两种工作模式的数据传输特点,结合编队卫星SAR回波信号的特点,构建了两种工作模式下的稀疏基、测量矩阵和压缩传感矩阵,并分别提出了伴飞模式下的编队卫星SAR压缩感知成像方法和主从模式下的编队卫星SAR压缩感知成像方法。仿真结果表明,针对稀疏目标场景,本文提出的两种压缩感知成像方法利用较少的回波数据便能重构出原始目标场景,实现了低负荷下的编队卫星SAR成像。
Formation-flying satellites SAR has drawn extensive attention in recent years andis becoming the hot research field in radar technologies, due to their properties ofhigh-resolution, wide-swath, three-dimensional imaging and GMTI(Ground MovingTarget Indication). In order to realize high-resolution imaging, there are lots of keyissues for formation-flying satellite SAR. First, the orthogonal waveforms must beguaranteed,because there is serouse interference between the transmitting beams due tothe overlap of the irradiation areas for the formation-flying satellites. Secondly, thequality of SAR image decgrades dramatically caused by the movements of the satellite.Thus, the movement compensation is required for formation-flying satellites SARsystem.. Besides, with the inhencement echoes, the transmitting payloads of thesatellites are increasing grealty, they aggravate the burden of the satellites transmission.In order to solve the problem, the sparse method of formation-flying satellites SARechoes and the imaging method of formation-flying satellites SAR are studied. Themain works of this derstation are summarized as follows:
     1. The Hybrid-LFM waveform is proposed by modulating the slope of LFMsignal. The influences of orthogonal performance and doppler tolerance for thedifference of frequency modulation slope are analyzed, and the relationship between theparameters of the waveform can be deduced. Two kind of waveform parameter designmethods are proposed, and the Hybrid-LFM waveform with good orthogonalperformance and good doppler tolerance are designed.
     2. The OCD-LFM waveform is proposed by modulating the orthogonal phasecode to the phase of LFM signal. The influences of orthogonal performance and dopplertolerance with different length of phase code are analyzed, the relationship between theparameters that minimize the cross-correlation peaks and minimize the effect of dopplerfrequency shift of the proposed signals is derived. The waveform optimization methodbased on genetic algorithm is proposed.
     3. The yaw steering method of formation-flying satellites SAR based on the scenecenter offset is proposed, and the doppler centroid frequency of target center is compensated. The echoes model and azimuth non-uniform sampling modelforformation-flying satellites SAR is established. A novel spectral reconstructionalgorithm based on azimuth periodically non-uniform sampling is presented. We alsosolve the problems of spectrum distortion and image blurring. Based on compensatingthe error caused by different transmitting paths and reconstructing the azimuth spectral,the imaging method for formation-flying satellites SAR is proposed. We alos realize theimage withthe OCD-LFM waveforms.
     4. According to the data transmission characteristics of formation flight mode andmaster-slave mode of formation-flying satellites SAR, sparse matrixes, measurementmatrixes and compressive sensing matrixes of the two kinds of modes are establishedwith the properities of formation-flying satellites SAR echoes. The compressivesensing imaging methods for these two kinds of modes are proposed. The simulationresults show that the two kinds of compressive sensing methods can reconstruct theoriginal sparse target scene with less echoes data. Thus,the formation-flying satellitesSAR imaging based on low data transmission payload can be realized.
引文
[1] Elaehi C. Spaceborne radar remote sensing: applications and teehniques[M]. New York: IEEEPress,1987,72-109
    [2] K. Tomiyasu. Tutorial review of synthetic-aperture radar(SAR) with applications to imaging ofthe oeean surfaee[J]. Proceedings of the IEEE,1978,66(5):563-583
    [3] J. C. Curlander, R. N. McDonough. Synthetic aperture radar systems and signal proeessing[M].New York: Wiley Interscience,1991,15-68
    [4]张澄波.综合孔径雷达一原理、系统分析与应用[M].北京:科学出版社,1989,169-204
    [5]赖涛.星载多通道SAR高分辨宽测绘带成像方法研究[D].长沙:国防科学技术大学,2010
    [6] A. Moreira, G. Krieger. Spaceborne synthetic aperture radar(SAR) systems: state of art andfture developments[C].33rd European Microwave Confrence, Munich, Germany,2003,101-104
    [7] M. Luding, C. H. Buck, C. Mangenot, et al. Impact of new technologies on future spaceborneradar design[C]. IEEE International Geoscience and remote Sensing Symposium(IGARSS),2003,3:2137-2139
    [8] A. Freeman, W. T. K. Johnson, B. Huneycutt, et al. The “Myth” of the minimum SAR antennaarea constraint[J]. IEEE Trans. On Geoscience Remote Sensing.2000,38(1):320-324
    [9] D. Massonnet. The interferometric cartwheel: a constellation of passive satellites to produceradar images to be coherently combined[J]. International Journal of Remote Sensing,2001,22(12):2413-2430
    [10] D. Massonnet. Capabilities and limitations of the interferometric cartwheel[J]. IEEETransactions on Geoscience and Remote Sensing,2001,39(3):506-520
    [11] H. Nies, O. Loffeld, S. Knedlik, et al. A data fusion approach for distributed orbitestimation[C]. IEEE International Geoscience and Remote Sensing Symposium, Anchorage,AK,.2004,6:3736-3739
    [12] J. E. Winter, N.C. Anderson. Distributed aperture implementation on the techsat21satellites[C]. IEEE Aerospace Conference,2003,2:815-823
    [13] H. Nies, O. Loffeld, U. Gebhardt, et al. Orbit estimation of the interferometric cartwheel usingan extended linearized Kalman filter[C]. IEEE International Geoscience and Remote SensingSymposium,2003,6:1512-1515
    [14] U. Gebhardt. Orbit modeling related to cartwheel geometry[C]. IEEE International Geoscienceand Remote Sensing Symposium,2003,6:3604-3606
    [15] A. Moccia, G. Rufino, M. D’Errico, et al. BISSAT: a bistatic SAR for Earth observation[C[.IEEE International Geoscience and Remote Sensing Symposium,2002,5:2628-2630
    [16]刘颖.分布式SAR运动目标检测雷达阵列误差估计方法研究[D].西安:西安电子科技大学,2007
    [17] S. Chi. A comparison of displaced phase centre antenna and along-track interferometrytechniques for RADARSAT-2ground moving target indication[J]. Canadian Journal ofRemote Sensing,2005,31(1):37-51
    [18]左艳军.分布式小卫星合成孔径雷达高分辨率成像算法研究[D].北京:中国科学院研究生院(电子学研究所),2007
    [19]黄顺吉.分布式卫星SAR系统总体技术研究[M].863航天领域技术文集,2001
    [20] D. W. Bliss, K. W. Forsythe. Multiple-input multiple-output (MIMO) radar and imaging:degree of freedom and resolution[C]. Conference Record of the Thirty-Seventh AsilomarConference on Signal, Systems and Computers,2003,1:54-59
    [21] K. W. Forsythe, D. W. Bliss, G. S. Fawcett. Multiple-input multiple-output (MIMO) radar:performance issues[C]. Conference Record of the Thirty-Eighth Asilomar Conference onSignal, Systems and Computers,2004,1:310-315
    [22] N. H. Lehmann, A. M. Haimovich, R. S. Blum, et al. High resolution capabilities of MIMOradar[C]. Fortieth Asilomar Conference on Signals, Systems and Computers,2006,25–30
    [23] C. Y. Chen,, P. P. Vaidyanathan. MIMO radar space–time adaptive processing using prolatespheroidal wave functions[J]. IEEE Transactions on Signal Processing,2008,56(2):623-635
    [24] C. Y. Chen, P.P. Vaidyanathan. A subspace method for MIMO radar space-time adaptiveprocessing[C]. IEEE International Conference on Acoustics, Speech and Signal, Honolulu, HI,2007,2:925-928
    [25] A. Sheikhi, A. Zamani. Coherent detection for MIMO radars[C]. IEEE Radar Conference,Boston, MA,2007,320-307
    [26] X. Z. Dai, J. Xu, Y. N. Peng, X. G. Xia. A new method of improving the weak target detectionperformance based on the MIMO radar[C]. International Conference on Radar, Shanghai,2006,1-4
    [27] J. Y. Qu, J. Y. Zhang, C. Q. Liu. The ambiguity function of MIMO radar[C]. InternationalSymposium on Microwave, Antenna, Propagation and EMC Technologies for WirelessCommunications, Hangzhou,2007,265-268
    [28] B. Liu, Z. S. He, J. K. Zeng. Receiving signal processing of wideband MIMO radar based ontransmitting diversity[C]. International Conference on Radar, Shanghai,2006,1224-1227
    [29] J. Mittermayer. Interferometric performance estimation for the interferometric cartwheel incombination with a transmitting SAR-satellite[C], IEEE International Geoscience and RemoteSensing Symposium, Sydney, NSW,2001,7:2955-2957
    [1] H. Fiedler, G. Krieger, F. Jochim, et al. Analysis of bistatic configurations for spaceborne SARinterferometry[C]. European Conference on Synthetic Aperture Radar, Cologne, Germany,2002,29-33
    [30] G. Krieger, H. Fiedler, J. Mittermayer, et al. Analysis of multistatic configurations forspaceborne SAR interferometry. IEE Proceedings-Radar Sonar and Navigation,2003,150(3):87-96
    [31] C. Heer, F. Soualle, R. Zahn, et al. Investigation on a new high resolution wide swath SARconcept[C]. International Geoscience and Remote Sensing Symposium,2003,1:521-523
    [32] J. Mittermayer, H. Runge. Conceptual studies for exploiting the TerraSAR-X dual receivingantenna[C]. International Geoscience and Remote Sensing Symposium,2003,3:2140-2142
    [33] J. P. Aguttes. The SAR train concept: Required antenna area distributed over N smallersatellites, increase of performance by N[C]. International Geoscience and Remote SensingSymposium,2003,1:542-544
    [34]李世强,杨汝良.单相位中心多波束合成孔径雷达方位信号处理研究[J].电子与信息学报,2005,27(7):1073-1076
    [35]王鹏波,周荫清,陈杰,等.高分辨率多通道天线星载SAR的MCCS成像算法[J].北京航空航天大学学报,2006,32(4):440-444
    [36] C. Prati, F. Rocca. Improving slant-range resolution with multiple SAR surveys[J]. IEEE Trans.On Aerospace and Electronic Systems,1993,29(1):135-143
    [37]徐华平,周荫清,等.基于频谱偏移估计的分布式星载SAR提高距离向分辨率的数据处理方法[J].电子学报,2003,31(12):1790-1794
    [38]闰鸿惠,王岩飞.利用频谱合成实现分布式卫星SAR高距离分辨力成像[J].电子与信息学报,2005,27(6):932-936
    [39]刘波, MIMO雷达正交波形设计及信号处理研究:[D].成都:电子科技大学,2007
    [40] Z. F. Li, Z. Bao, H. Wang, et al. Performance improvement for constellation SAR using signalprocessing techniques[J]. IEEE Trans. on AES,2006,42(2):436-452
    [41] G. Krieger, I. Hajnsek, K. P. Papathanassiou, et al. Interferometric synthetic aperture radar(SAR) missions employing formation flying. Proceedings of the IEEE,2010,98(5):816-843
    [42] K. P. Papathanassiou, L. Hajnsek, A. Moreira, S. R. Cloude. Interferometric SAR polarimetryusing a passive polarimetric microsatellite concept[C]. IEEE International Geoscience andRemote Sensing Symposium,2002,2:826-828
    [43] D. A. Barnhart, R. C. Hunter, A. R. Weston. XSS-10Micro-satellite demonstration[M].American: American Insititute of Aeronautics and Astronautics,1998,339-346
    [44] K. Lau, M. Colavita. The new millennium formation flying optical interferometer[M].American: American Insititute of Aeronautics and Astronautics,1997,3820-3824
    [45] C. D. Jilla, D. W. Miller. A reliability model for the design and optimization of separatedspacecraft Interferometer array[M], American: American Insititute of Aeronautics andAstronautics,1997,2475-2478
    [46] K. Luu, M. Martin. University nanosatellite distributed satellite capabilities to supportTechsat-21[M]. American: American Insititute of Aeronautics and Astronautics,,1999,23-26
    [47] A. Das, R. Cobb. Techsat21-Space missions using collaborating constellations of satellites[M].American: American Insititute of Aeronautics and Astronautics,1998,1-4
    [48] W. M. Moon, G. Staples, D. J. Kim, et al. RADARSAT-2and coastal applications: surfacewind, waterline, and intertidal flat roughness[J]. Proceedings of the IEEE,2010,98(5):800-815
    [49] J. P. Aguttes. The SAR train concept: required antenna area distributed over N smallersatellites, increase of performance by N[C]. IEEE International Geoscience and RemoteSensing Symposium,2003,1:542-544
    [50] A. L. Moreira, G. Krieger. Spaceborn synthetic aperture radar system: state of the futuredevelopment[C].11th GAAS Symosium,2003,385-388
    [51] S. Marco, H. David, B. Benjamin, et al. TerraSAR-X: calibration concept of a multiple modehigh resolution SAR[C]. International Geoscience and Remote Sensing Symposium,2005,4874-4877
    [52] M. Alberto, K. Gerhard, H. Irena, et al. TanDEM-X: a TerraSAR-X add-on satellite forsingle-pass SAR interferometry[C]. International Geoscience and Remote Sensing Symposium,2004,1000-1003
    [53]黄海风,梁甸农,何峰.主星带辅星编队单基线InSAR定位、测高两种方法[J].电子学报,2005,33(6):1084-1087
    [54]陈杰,周荫清,李春升.分布式SAR小卫星编队轨道设计方法研究[J].中国科学: E辑,2004,34(6):654-662
    [55]刘建平,梁甸农,何峰.主星带小卫星分布式SAR干涉的相对测高精度分析[J].电子与信息学报,2006,28(12):2236-2239
    [56]李真芳,保铮,王彤.分布式小卫星SAR系统地面运动目标检测方法[J].电子学报,2005,33(9):1664-1666
    [57]周宝亮,临近空间宽域高分辨SAR成像技术研究:[D].成都:电子科技大学,2011
    [58]王彤,保铮,廖桂生.天基分布式雷达GMTI方法[J].电子学报,2006,34(3):399-403
    [59]张振华,保铮,邢孟道,等.小卫星分布式SAR系统的信噪比研究[J].电子与信息学报,2007,29(1):15-18
    [60]杨凤凤,梁甸农.分布式星载合成孔径雷达顺轨干涉动目标检测[J].系统工程与电子技术,2005,27(11):1852-1854,1882
    [61]张振华.双/多基SAR成像算法研究:[D].西安:西安电子科技大学,2007
    [62]刘建平,梁甸农.主星带伴随分布式小卫星SAR系统效能分析[J].电子与信息学报,2006,27(9):1345-1348
    [63]孙造宇,梁甸农,董臻.星载分布式InSAR系统仿真研究[J].系统仿真学报,2006,18(6):1538-1541
    [64]徐华平,周荫清,李春升.分布式小卫星SAR回波信号的相关性[J].电子学报,2005,33(6):965-969
    [65]刘波,韩春林,苗江宏. MIMO雷达正交频分LFM信号设计及性能分析[J].电子科技大学学报,2009(1):28-31
    [66]杨科锋.移变双基地SAR特性与成像方法研究[D].长沙:国防科学技术大学,2007
    [67] H. Deng. Discrete frequency coding waveform design for netted radar system[J]. IEEE SignalProcessing Letters,2004,11(2):179-182
    [68] H. Deng. Polyphase code design for orthogonal netted radar system[J]. IEEE Transactions onSignal Processing,2004,52(11):3126-3135
    [69] J. X. Zhang, Y. Y. Wang. OFDM-coded signals design for MIMO radar[C].9th InternationalConference on Signal Processing, Beijing,2008,2442-2445
    [70] H. A. Khan, D. J. Edward. Dopp1er prob1ems in orthogona1MIMO radars[C]. IEEEIntemational Radar Conference, Shanghai,2006,24-27
    [71] J. J. Zhang, S. A. Papandreou. MIMO radar with frequency diversity[C].2009InternationalWaveform Diversity and Design Conference, Kissimmee, FL,2009,208-212
    [72] M. L. Yang, S. H. Zhang, B. X. Chen, et al. A novel signal processing approach for themulti-carrier MIMO radar[J], Journal of Electronics&Information Technology,2009,31:147-151
    [73] L. X. Ru, Z. Zhang, W. X. Mao, et al. A study of frequency diversity MIMO radarbeamforming[C]. IEEE10th International Conference on Signal Processing. Beijing,2010,352-356
    [74] A. Hassanien,, S. A. Vorobyov. Transmit/receive beamforming for MIMO radar with colocatedantennas[C]. Acoustics, Speech and Signal Processing, Taipei,2009,2089-2092
    [75]陈伯孝,张守宏.基于相位编码的稀布阵综合脉冲孔径雷达的脉冲压缩性能分析[J].电子科学学刊.1998,20(1):50-55
    [76]刘韵佛,刘峥,刘俊.基于高分辨距离像的MIMO雷达波形设计[J].系统工程与电子技术,2011,33(4):755-758
    [77]徐庆,徐继麟,周先敏,等.线性调频-二相编码雷达信号分析[J].系统工程与电子技术.2000,22(12):7-8,87
    [78]胡亮兵,刘宏伟,杨晓超,等.集中式MIMO雷达发射方向图快速设计方法[J].电子与信息学报.2010,36(2):451-484
    [79]胡亮兵,刘宏伟,刘保昌,等. MIMO雷达发射方向图匹配和波形优化方法[J].西安电子科技大学学报.2009,36(6):1021-102
    [80]陶海红,黎薇萍,洪伟,等.分布式卫星多发射波形-地面运动目标检测系统研究[J].电子学报,2009.12,37(12),2803-2809
    [81] Y. G. Zhang, W. S. Zhai. A new method for Doppler centroid estimation for spaceborne SARbased on chirp scaling algorithm[C]. International Geoscience and Remote SensingSymposium, Barcelona,2007,23-28
    [82] I. V. Dukhopelnikova. New difference doppler centroid estimation method with high spaceresolution[C]. Microwaves, Radar and Remote Sensing Symposium, Kiev,2008,236-239
    [83]陈筠力,徐敏,朱杰.分布式SAR卫星偏航控制及精度要求[J].航天器工程,2008,17(1):43-47
    [84] J. Rodden, X. Price, J. Stoen. Flight experience of dynamic momentum bias for spacecraft yawsteering[M]. American: American Institute of Aeronautics and Astronautics,2007
    [85] H. Fiedler, E. Boerner. Total zero doppler steering-a new method for minimizing the Dopplercentroid.[J] Geoscience and Sensing Letters,2005,2(2):141-145
    [86] H. Fiedler, T. Fritz, R. Kahle. Verification of the total zero doppler steering[C]. InternationalConference Radar Conference, Adelaide, SA,2008,2-5
    [87]张永俊,张永胜,黄海风,等.一种适用于椭圆轨道的新型偏航导引规律[J].宇航学报,2011,32(1):46-52
    [88] G. D. Callaghan, I. D. Longstaff. Wide swath spaceborne SAR using a quad element array[J].IEE Proceedings Radar Sonar and Navigation,1999,146(3):159-165
    [89] N. A. Goodman, S. C. Lin, D. Rajakrishna, et al. Processing of multiple receiver spacebornearrays for wide-area SAR[J]. IEEE Transactions on Geoscience Remote Sensing,2000,40(4):841-852
    [90] Z. F. Li, H. Y. Wang, T. Su, et al. Generation of wide-swath and high-resolution SAR imagesfrom multichannel small spaceborne SAR systems[J]. IEEE Geoscience Remote SensingLetters,2005,2(1):82-86
    [91]邢孟道,李真芳,保铮,等.分布式小卫星雷达空时频成像方法研究[J].宇航学报,2005,26(21):70-82
    [92] J. P. Aguttes. New designs or modes for flexible space borne SAR. IEEE InternationalGeoscience and Remote Sensing Symposium, Toronto, Cannda,2002,1:674-676
    [93] N. A. Goodman, J. M.Stiles. Resolution and synthetic aperture characterization of sparse radararrays[J]. IEEE Transactions on Aerospace and Electronic Systems,39(3):921-935
    [94] N. A.Goodman, S. C. Lin, et al. Processing of multiple-receiver spaceborne arrays forwide-area SAR[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(4):941–849
    [95] N. A. Goodman. SAR and MTI processing of sparse satellite clusters[D]. Kansas: Universityof Kansas,2002
    [96]李真芳,邢孟道,王彤,等.分布式小卫星SAR实现全孔径分辨率的信号处理[J].电子学报,2003,31(12):1800-1803
    [97]张云华,张祥坤,姜景山.空间虚拟探测技术及发展趋势[J].系统工程与电子技术,2005,27(12):2006-2009
    [98] X. K. Zhang, Y. H. Zhang, J. S. Jiang. High-resolution SAR imaging by general syntheticaperture processing of two observations[C]. IASTED ARP,2005,150-154
    [99] A. Currie, M. A. Brown. Wider-Swath SAR[J], IEE Proceedings, Part F: Radar and SignalProcessing,1992,139(2):122-135
    [100] D. Massonnet. Capabilities and Limitations of the Interferometric Cartwheel[J], IEEE Trans.On Geoscience and Remote Sensing,2001,39(3):506-520
    [101]常玉林,周红,黄晓涛,等.多通道SAR频率多普勒域宽带长CPI STAP方法[J].电子学报,2011,39(6):1245-1252
    [102]马晓岩,吴顺华,向家彬.速度与PRF失配对MPCSAR成像的影响及补偿方法研究[J].电子学报,2005,33(12):598-603
    [103]胡玉新,丁赤飚,吴一戎.利用相位中心偏移方位多波束来实现宽测绘带SAR成像[J].电子与信息学报,2008,30(5):1022-1026
    [104]杨凤凤,王敏,梁甸农.基于非均匀采样的小卫星多通道SAR无模糊成像[J].电子学报,2007,35(9):1754-1756
    [105] R. Baraniuk, P. Steeghs. Compressive Radar Imaging[C]. IEEE Radar Conference, Boston,MA,2007,128-133
    [106]屈乐乐,黄琼,方广有.基于压缩感知的频率步进探地雷达成像算法[J].系统工程与电子技术,2010,32(2):295-297
    [107] L. L. Qu, Q. Huang, G. Y. Fang. Stepped-frequency ground penetrating radar imagingalgorithm based on compressed sensing[J]. Systems Engineering and Electronic,2010,32(2):295-297
    [108]黄琼,屈乐乐,吴秉横,等.压缩感知在超宽带雷达成像中的应用[J].电波科学学报,2010,25(1):77-82
    [109] Q. Huang, L. L, Qu, B. H. Wu, et al. Compressive sensing for ultra-wideband radar imaging[J].Chinese Journal of Radio Science,2010,25(1):77-82
    [110] R. G. Raj, M. Farshchian. ISAR imaging in sea clutter via compressive sensing[C]. IEEEInternational Wave Diversity&Design Conference, Niagara Fails, ON,2010,200-205
    [111] F. Ye, D. Liang, J. Zhu. ISAR enhancement technology based on compressed sensing[J].Electronics Letters,2011,47(10):620-621
    [112] H. G. Joachim, Ender. On compressive sensing applied to radar[J]. Signal Processing,2010,15(90):1402-1414
    [113]刘记红,刘少坤,高勋章,等.压缩感知雷达成像技术综述[J].信号处理,2011,27(2):251-260
    [114] J. A. Tropp, M. B. Wakin, M. F. Duarte, et al. Random filters for compressive sampling andreconstruction[C]. IEEE International Conference on Acoutics Speech, and signal Process,Toulouse, France,2006,872-875
    [115] K. Sami, L. Jason, W. Michael, et al. Analog-to-information conversion via randomdemodulation[C]. IEEE Dallas Circuits and Systems Workshop on Design, Application,Integration and Software, Richardson, TX,2006,71-74
    [116]石光明,刘丹华,高大化,等.压缩感知理论及其研究进展[J].电子学报,2009.5,37(5):1070-1081
    [117] Y. Yao, A. P. Petropulu, H. V. Poor. Compressive sensing for MIMO radar[C]. IEEEInternational Conference on Acoustics, Speech and Signal Processing. Taipei,2009:3017-3020
    [118] I. Stojanovic, W. C. Karl, M. Cetin. Compressed sensing of mono-static and multi-staticSAR[C]. Proc. SPIE Algorithms for Synthetic Aperture Radar Imagery XVI,2009,1-12
    [119] H. Xu, X. Z. He, Z. P. Yin, et al. Compressive sensing MIMO radar imaging based on inversescattering model[C]. IEEE10th International Conference on Signal Processing, Beijing,2010,1999-2002
    [120] Y. Yao, A. P. Petropulu, H. V. Poor. Range estimation for MIMO step-frequency radar withcompressive sensing[C].4th International Symposium on Communications, Control andSignal Processing, Limassol,2010:1-5
    [121] K. Tan, Q. Wan, A. Huang, et al. A fast subspace pursuit for compressive sensing[C]. IETInternational Radar Conference, Guilin,2009,1-4
    [122]宗竹林,王健,胡剑浩,等.基于压缩转发的协作MIMO雷达成像算法[J].信号处理,2011,21(4):612-618
    [123] P. P. Athina, Y. Yao, H. V. Poor. Distributed MIMO radar using compressive sampling.Asilomar,2008,203-207
    [124] Y. Yao, P. P. Athina, H. V. Poor. MIMO radar using compressive sampling[J]. IEEE Joural ofSelected Topics in Signal Processing,2010,4(1):146-163
    [125] Z. L. Zong, J. H. Hu, L. D. Zhu. Estimation of Doppler Parameter for Formation-FlyingSatellite SAR System[J]. Applied Mechanics and Materials,2010,44(47):3473-3477
    [126]汪定伟,王俊伟,王洪峰,等.智能优化方法[M].北京:高等教育出版社,2007
    [127] G. Rudolph. Convergence Analysis of Canonical Genetic Algorithms[J]. IEEE Trans NeuralNetworks,1994,5(l):96-101
    [128] I. Ali. Doppler Characterization for LEO Satellites[J]. IEEE Transactions on communications,1998,46(3):309-313
    [129] R. K. Raney. Doppler Properties of Radars in Circular Orbits[J]. International Journal ofRemote Sensing,1986,7(9):1153-1162
    [130]王彤,保铮,廖桂生.天基分布式雷达GMTI方法[J].电子学报,2006,34(3):399-403
    [131]侯海平,曲长文,周强,等.机载下视阵列SAR等效相位中心分析方法研究[J],仪器仪表学报,2010,31(9):2154-2160
    [132] H. Fiedler, E. Boerner.Total zero doppler steering-a new method for minimizing the Dopplercentroid[J]. Geoscience and Sensing Letters,2005,2(2):141-145
    [133] E. Boerner, H. Fiedler. A new method for total zero doppler steering[C]. IEEE InternationalGeoscience and Remote Sensing Symposium, Anchorage Alaska, America,2004,2:1526-1529
    [134] H. Fiedler, T. Fritz, R. Kahle. Verification of the total zero doppler steering[C]. InternationalConference on Radar, Adelaide, SA,2008,340-342
    [135]郗晓宁,王威.近地航天器轨道基础[M].长沙:国防科技大学出版社,2003:86-151
    [136]李国春,俞一明,范强,张平.基于Spectral-Fit法的星域SAR方位多波束方位向非均匀采样的处理[J].现代雷达,2005,27(8):32-34
    [137] R. Tao, B. Zhao, Y. Wang. Spectral analysis and reconstruction for periodic nonuniformlysampled signals in fractional fourier domain[J]. IEEE Transactions on Signal Processing,2007,55(7):3541-3547
    [138] R. S. Prendergast, B. C. Levy, P. J. Hurst. Reconstruction of band-Limited periodicnonuniformly sampled signals through multirate filter banks[J]. IEEE Transactions on Circuitsand Systems,2004,51(8):1612-1622
    [139] H. Johansson, P. Lowenborg. Reconstruction of nonuniformly sampled bandlimited signals bymeans of digital fractional delay filters[J]. IEEE Transactions on Signal Processing,2002,50(11):2757-2767
    [140]齐维孔,禹卫东.基于滤波器组的星域SAR DPC-MAB技术方位向非均匀采样信号的重构[J].系统工程与电子技术,2008,30(7):1218-1222
    [141] R. Tao, B. Deng, Y. Wang. Research progress of the fractional fourier transform in signalprocessing[J]. Science in China,2006,49(1):1-25
    [142] L. Qi, R. Tao, S. Zhou, Y. Wang, Detection and parameter estimation of multicomponent LFMsignal based on the fractional fourier transform[J]. Science in China.2004,47(2):184-198
    [143] H. M. Ozaktas, Z. Zalevsky, M. A. Kutay. The fractional fourier transform with applications inoptics and signal processing[M]. New York: Wiley,2001
    [144] J. A. Tropp, A. C. Gilbert. Signal recovery from random measurements via orthogonalmatching pursuit[J]. IEEE Transactions on Information Theory,2007,53(12):4655-4666
    [145] R Baraniuk. A lecture on compressive sensing[J]. IEEE Signal Processing Magazine,2007,24(4):118-12
    [146]王鹤波,周荫清,陈杰,等.方位向非均匀采样对SAR成像性能的影响[J].仪器表学报,2006,27(6):2189-2192

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700