压缩感知关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压缩感知(CS)理论指出,对于稀疏或可压缩信号,采样速率不决定于信号的带宽,而决定于信息在信号中的结构和内容。目前压缩感知的理论和应用研究已经取得了一些成果,但是仍然有大量开放问题尚待研究。针对目前存在的问题,本文研究了方向变换,特征字典,视频分析,压缩成像等关键技术,选题具有重要的理论意义和较高的实用价值。本文主要创新点如下:
     (1)研究了在图像的CS重构中使用方向变换。采用分块随机图像采样与基于投影的重构相结合的一般框架,不仅提高了稀疏性,也提高了光滑性。这个框架便于在CS重构过程中加入基于方向变换的Contourlets和双树复小波。得到的算法具有基于投影的CS重构的快速运算速度,而平滑步骤与增强的方向性相结合,有助于获得更好的图像质量,尤其是在低采样率时。
     (2)利用Hough变换域的稀疏性,建立起形状的稀疏表示字典,用CS方法寻找图像中的参数化形状。进行了用CS方法从含有噪声的图像的少量测量中检测直线和圆等图形的实验。实验表明CS方法能够得到比Hough变换更干净的检测结果。分析了检测率与信噪比,检测率与测量数的关系。
     (3)提出一个适合隐私保护的视频监控应用的编码方案,能够跟踪视频目标而不需要重构视频序列。该方案利用每帧有限数量的伪随机投影编码一个视频序列,解码器利用背景消除图像所具有的稀疏性并重构前景目标的位置。该方案采用粒子滤波器预测目标位置,再用估计的位置作为先验知识改进前景目标位置的重构。隐私保护体现在只采用编码的随机投影不可能重构原始视频内容,安全性体现在如果没有用来产生随机投影的种子,就无法解码。
     (4)压缩感知共焦显微镜(CCM)用数字微镜阵列(DMD)高效扫描2D或3D标本,其测量的数据来自针孔照亮的标本像素的随机集合,线性组合(投影)之后用单个光电检测器和测量。与传统CM或PAM相比,CCM能够简化共焦成像的硬件和光学系统的复杂性,将处理从数据采集步骤转移到软件图像重构,降低了成像系统的成本。CCM还以降低的采样速率提供了共焦成像的独特光学切片性质。3D联合重构方法充分利用3D图像图层之间的相关性,进一步提高了系统性能。与2D逐层方法相比,这种3D方法显著增加了重构图像的PSNR,而计算复杂度保持不变。
The compressive sensing(CS) theroy pointed out that for sparse or compressiblesignals, sampling rate is determined by the structure and content of information insignal rather than by the bandwidth of signal. Currently, much achievement has beenyielded in the research on CS theory and applications, while there are still many openproblems to be studied further. For the existing proplems,this disseration studied somekey issues as directional transform, feature dictionary, video analysis, compressiveimaging which are theoretically important and practically valuable. The maincontributions and innovations are as the following:
     Firstly, the practice of directional-transforms method in CS construction of imagewas studied which using a general frame of projected-based reconstruction withblocked random sampling of images to improve sparsity and smoothness as well. Thisframework facilitated introducing of directional transforms based on contourlets anddual-tree complex wavelets into the CS reconstruction and finally led to the fastfunction speed of the projection-based CS reconstruction. Simultaneouly, thecombination of a smoothing step and boosted directionality naturally improved imagequality, particularly for the cases at low sampling rates.
     Secondly, taking advantage of the sparsity of Hough transform, a sparsifyrepresentation dictionary of shapes was built which using CS method to search forparameterized shapes in images. An experiement on detecting lines and circles in annoisy image from a few CS measurements was implemented indicating that there’spossibility to get cleaner results than Hough transform. Furthermore, the analysis ofdetect rate v.s. SNR and detect rate v.s. number of measurements was conducted.
     Thirdly, a privacy-protection video-monitoring encoding scheme was designedwhich was able to track an object without the need to reconstruct each original frame.Subsequently, this scheme ensures to encoding a video sequence by using a fewpesudo-random projections of each frame, while the decoder reconstructs the positionof foreground targets by exploiting the sparsity of background-subtracted images. Itworks with a particle filter in order to estimate the position of targets, then theestimated position in turn serves as a prior to promote the recovering of foreground.Privacy protection roots in that it is impossible to reconstruct the original content only with a coded random projection, meanwhile, security roots in that if there is no seedwhich creates random projection, it would never decode.
     Last but not the least, CCM used DMD to efficiently scan2D or3D specimenand all the resulting data coming from a random collect of pin-hole illuminatedspecimen pixels, measured by a single photon detector after linear combination(projection). Compare this with the traditional methods of CM or PAM, CCM speaksfor itself for its capacity of simplifying the complexity of confocol imaging hardwareand optics by off load processing from data aqusition stage to software image recoverand getting more cost-effective. Besides, CCM also provides special opticalsectioning property of confocol imaging at reduced sampling rate.3D jointlyreconstruct approach fully utilized the correlation among3D slices to promote systemperformace. In a word,3D method significantly increased the PSNR of imageconstruction while kept the same computational complexity.
引文
[1]Candès E, Compressive sampling [C]. Procedings of the International Congress ofMathematicians, Madrid, Spain,2006,3:1433-1452
    [2]Candès E, Romberg J, Tao T, Robust uncertainty principles: Exact signalreconstruction from highly incomplete frequency information[J], IEEE Trans. Inform.Theory,2006,52(2):489~509
    [3]Candès E, Romberg J, Quantitative robust uncertainty principles and optimallysparse decompositions[J], Foundations of Comput Math,2006,6(2):227~254
    [4]Donoho D, Compressed sensing[J], IEEE Trans. Inform. Theory,2006,52(4):1289~1306
    [5]Candès E, Romberg J, Practical signal recovery from random projections [OL],http://www.acm.caltech.edu/~emmanuel/papers/PracticallyRecovery.Pdf.
    [6]Donoho D, Tsaig Y, Extensions of compressed sensing[J], Signal Processing,2006,86(3):533~548
    [7]石光明,刘丹华,高大化等,压缩感知理论及其研究进展[J],电子学报,2009,37(5):1070~1080
    [8]Kashin B, The widths of certain finite dimensional sets and classes of smoothfunctions[J], Izv Akad Nauk SSSR,1977,41(2):334~351
    [9]Candès E, Tao T, Near optimal signal recovery from random projections: Universalencoding strategies?[J], IEEE Trans. Inform. Theory,2006,52(12),5406~5425
    [10]焦李成,谭山,图像的多尺度几何分析:回顾和展望[J],电子学报,2003,31(12A):1975~1981
    [11]Mallat S G, Zhang Z, Matching Pursuits with Time-Frequency Dictionaries[J],IEEE Transactions on Signal Processing,1993:3397~3415
    [12]Tropp J,Gilbert A, Signal recovery from random measurements via orthogonalmatching pursuit[J]. Transactions on Information Theory,2007,53(12):4655~4666
    [13]Chinh L, Minh N D, Tree-Based Orthogonal Matching Pursuit Algorithm forSignal Reconstruction[C], International Conference on Image Processing-ICIP,2006:1277~1280
    [14]Donoho D L, Tsaig Y, Drori I, Sparse solution of underdetermined linearequations by stagewise orthogonal matching pursuit(StOMP)[R],2006
    [15]Needell D, Vershynin R. Uniform uncertainty principle and signal recovery viaregularized orthogonal matching pursuit [J], Found Comput. Math.2009,9:317~334
    [16]Thong T Do, Lu Gan, Nam Nguyen, Tran. Sparsity adaptive matching pursuitalgorithm for practical compressed sensing[C], Asilomar Conference on Signals,Systems, and Computers, Pacific Grove, California,2008
    [17]杨成,冯巍,冯辉,杨涛,胡波,一种压缩采样中的稀疏度自适应子空间追踪算法[J],电子学报,2010,38(8):1914~1917
    [18]Chen S S, Donoho D L, Saunders M A, Atomic decomposition by basis pursuit[J],SIAM J. Sci. Comput.,1998,20(1):33~61
    [19]Figueiredo M T, Nowak R D, Wright S J, Gradient projection for sparsereconstruction: Application to compressed sensing and other inverse problems[J],IEEE Journal on Selected Areas in Communications,2007,1(4):586~597
    [20]Kim S, Koh K, Lustig M, An interior-point method for large-scale regularizedleast squares[J], IEEE Journal of Selected Topics in Signal Processing,2007,1(4):606~617
    [21]Takhar D, Laska J, Wakin M, A new compressive imaging camera architectureusing optical domain compression[C]. Proceedings of SPIE. Bellingham WA:International Society for Optical Engineering.2006,6065
    [22]Candès E, Tao T, Decoding by linear Programmin[J], IEEE Transactions onInformation Theory,2005,51(12):4203~4215
    [23]Gan L, Block compressed sensing of natural images[C], Proceedings of theInternational Conference on Digital Signal Processing, Cardiff, UK,2007,403~406
    [24] Hough P V C, A Method and Means for Recognizing Complex Patterns[P]. USPatent3069654,1962-12-18
    [25]Toft P A, Using the generalized Radon transform for detection of curves in noisyimages[C], ICASSP-96,1996,2219~2222
    [26]Aggarwal N, Karl W C, Line detection in images through Regularized HoughTransform[J], IEEE Trans. on Image Processing,2000,15(3):582~591
    [27]Chen S S, Donoho D L, Saunders M A, Atomic decomposition by basis pursuit[J].SIAM J. Sci. Comput.,1999,20(1):33~61
    [28]Donoho D L, Compressive sensing[J], IEEE Trans. on Information Theory,2006,52(4):1289~1306
    [29]Candès E, Romberg J, Tao T, Robust uncertanity principles: Exact signalreconstruction from highly incomplete frequency information[J], IEEE Trans. onInformation Theory,2006,52(2):489~509
    [30]Moore M T, Cities opening more video surveillance eyes[N], USA Today,2005
    [31]Chan A, Liang Z, Vasconcelos N, Privacy preserving crowd monitoring: Countingpeople without people models or tracking[C]. IEEE Conference on Computer Visionand Pattern Recognition, Anchorage, Alaska,2008
    [32]Dufaux F, Ouaret M, Abdeljaoued Y, Privacy enabling technology for videosurveillance[C], Proceedings of SPIE,2006:205~216
    [33]Baraniuk R, Compressive Sensing[J], Signal Processing Magazine, IEEE,2007,24(4):118~121
    [34]Donoho D, Compressed Sensing[J]. IEEE Transactions on Information Theory,2006,52(4):1289~1306
    [35]Yilmaz A, Javed O, Shah M, Object tracking: A survey[J], ACM Comput. Surv.,2006,38(4):13
    [36]Rachlin Y, Baron D, The secrecy of compressed sensing measurements[C], InProc. Allerton Conference on Communication, Control, and Computing, Monticello,IL, USA,2008
    [37]Jacques L, Vandergheynst P, Bibet A, CMOS Compressed Imaging by RandomConvolution[R], Technical report, Swiss Federal Institute of Technology (EPFL),Lausanne, Switzerland,2008
    [38]Wakin M, Laska J, Duarte M F, An architecture for compressive imaging[J], IEEEInternational Conference on Image Processing,2006,2(4):1273~1276
    [39]Cevher V, Sankaranarayanan A, Duarte M, Compressive sensing for backgroundsubtraction[C], Proc. European Conf. on Computer Vision, Marseille, France,2008
    [40]Do T T, Tran T D, Gan L, Fast compressive sampling with structually randommatrices[C], Proc. ICASSP,2007
    [41]Neifeld M, Ke J, Optical architectures for compressive imaging[J], Appl. Opt.,2007,46(22):5293~5303
    [42]Duarte M F, Single pixel imaging via compressive sampling[J], IEEE Sig. Proc.Mag.,2008,25(2):83~91
    [43]Gehm M, Single-shot compressive spectral imaging with a dual disperserarchitecture, Opt. Express,2007,15(21):14013~14027
    [44]Maggioni M, Hyperspectral microscopic analysis of normal, benign andcarcinoma microarray tissue sections[C], Proc. of SPIE, Optical Biopsy VI,2006,6091
    [45]Marcia R F, Willett R M, Compressive coded aperture superresolution imagereconstruction[C], Proc. of IEEE Int. Conf. Acoust., Speech, Signal Processing,2008
    [46]Stern A, Avidi B, Random projections imaging with extended space bandwidthproduct[J], IEEE/OSA J. Disp. Technol,2007,3(3):315~320
    [51]Taubman D S, Marcellin M W, JPEG2000[S]: Image Compression Fundamentals,Standards and Practice. Norwell, MA: Kluwer,2001
    [47]Do M N, Vetterli M, The contourlet transform: An efficient directionalmultiresolution image representation[J], IEEE Transactions on Image Processing,2005,14(12):2091~2106
    [48]Kingsbury N G., Complex wavelets for shift invariant analysis and filtering ofsignals[J], Journal of Applied Computational Harmonic Analysis,2001,10(3):234~253
    [49]Endur L S, Selesnick I W, Bivariate shrinkage functions for wavelet-baseddenoising exploiting interscale dependency[J], IEEE Transactions on SignalProcessing,2002,50(11):2744~2756
    [50]Candès E, Romberg J, Tao T, Stable signal recovery from incomplete andinaccurate measurements[J], Communications on Pure and Applied Mathematics,2006,59(8):1207~1223
    [52]Coifman R, Geshwind F, Meyer Y, Noiselets[J], Appl. Comput. Harmon. Anal.,2001,10(1):27~44
    [53]Claerbout J F, Muir F, Robust modeling with erratic data[J], Geophys. Mag.,1973,38(5):826~844
    [54]Santosa F, Symes W W, Linear inversion of band-limited reflectionseismograms[J], SIAM J. Sci. Statist. Comput.,1986,7(4):1307~1330
    [55]Tropp J, Gilbert A C, Signal recovery from partial information via orthogonalmatching pursuit[J], IEEE Trans. Inform. Theory,2007,53(12):4655~4666
    [56]Candès E, Romberg J, Sparsity and incoherence in compressive sampling[J],Inverse Prob.,2007,23(3):969~985
    [57]Donoho D L, Stark P B, Uncertainty principles and signal recovery[J], SIAM J.Appl. Math.,1989,49(3):906~931
    [58]Feng P, Bresler Y, Spectrum-blind minimum-rate sampling and recon struction ofmultiband signals[J], in Proc. IEEE Int. Conf. Acoustics Speech Signal Processing,Atlanta, GA,1996,2:1689~1692
    [59]Vetterli M, Marziliano P, Blu T, Sampling signals with finite rate of innovation[J],IEEE Trans. Signal Processing,2002,50(6):1417~1428
    [60]Candès E, Tao T, Decoding by linear programming[J], IEEE Trans. Inform.Theory,2005,51(12):4203~4215
    [61]Candès E, Romberg J, Tao T, Stable signal recovery from incomplete andinaccurate measurements[C], Comm. Pure Appl. Math.,2006,59(8):1207~1223
    [62]Tibshirani R, Regression shrinkage and selection via the lasso[J], J. Roy. Stat. Soc.Ser. B,1996,58(1):267~288
    [63]Rudelson M, Vershynin R, On sparse reconstruction from Fourier and Gaussianmeasurements, Communications on pure and applied mathematics[J],2008,61(8):1025~1045
    [64]Baraniuk R, Davenport M, DeVore R, A simple proof of the restricted isometryproperty for random matrices, submitted for publication
    [65]Blahut R E, Algebraic Codes for Data Transmission[M], Cambridge, U.K.:Cambridge Univ. Press,2003
    [66]Baron D, Wakin M B, Duarte M F, Distributed compressed sensing[C], the43rdAllerton Conference on Communication2006
    [67]Lustig M, Donoho D L, Pauly J M, Rapid MR imaging with compressed sensingand randomly under-sampled3DFT trajectories[C], in Proc.14th Ann. MeetingISMRM, Seattle, WA,2006
    [68]Takhar D, Bansal V, Wakin M, A compressed sensing camera: New theory and animplementation using digital micromirrors[C], in Proc. Comp. Imaging IV SPIEElectronic Imaging, San Jose, CA,2006
    [69]Do T T, Gan L, Nguyen N, Sparsity adaptive matching pursuit algorithm forpractical compressed sensing[C], in Proceedings of the42th Asilomar Conference onSignals, Systems, and Computers, Pacific Grove, California,2008,581~587
    [70]Haupt J, Nowak R, Signal reconstruction from noisy random projections[J], IEEETransactions on Information Theory, Sept.2006,52(9):4036~4048
    [71]Gan L, Block compressed sensing of natural images[C], in Proceedings of theInternational onference on Digital Signal Processing, Cardiff, UK,2007,403~406
    [72]Candès E J, Wakin M B, An introduction to compressive sampling[J], IEEESignal Processing Magazine,2008,25(2):21~30
    [73]Chen S S, Donoho D L, Saunders M A, Atomic decomposition by basis pursuit[J],SIAM Journal on Scientific Computing,1998,20(1):33~61
    [74]Bertero M, Boccacci P, Introduction to Inverse Problems in Imaging[M], Bristol,UK: Institute of Physics Publishing,1998
    [75]Trocan M, Pesquet-Popescu B, Fowler J E, Graphcut rate distortion algorithm forcontourlet-based image compression[C], Proceedings of the International Conferenceon Image Processing, San Antonio, TX,2007,3(9),169~172
    [76]Fowler J E, Boettcher J B, Pesquet-Popescu B, Image coding using a complexdual-tree wavelet transform[C], Proceedings of the European Signal ProcessingConference, Poznań, Poland,2007
    [77]Boettcher J B, Fowler J E, Video coding using a complex wavelet transform andset partitioning[J], IEEE Signal Processing Letters,2007,14(9):633~636
    [78]Bamberger R H, Smith M J T, A filter bank for the directional decomposition ofimages: Theory and design[J], IEEE Transactions on Signal Processing,1992,40(4):882~893
    [79]Do M N, Directional multiresolution image presentation [D], Ph.D. thesis, SwissFederal Institute,2001
    [80]Pei S C, Wang P H, Design of arbitrary cutoff2-D diamond-shaped FIR filtersusing the Bernstein polynomial [J], IEEE Signal Processing Letters, Nov.2000,7(11):310~313
    [81]Cooklev T, Yoshida T, Nishihara A, Maximally flat half-band diamond-shapedFIR filters using the Bernstein polynomial [J], IEEE Transactions on Circuits andSystems II: Analog and Digital Signal Processing,1993,40(11):749~751
    [82]Tay D B H, Directional SVD: A new technique for designing2-D diamondhalfband filters and filter banks [A], Proceedings of International Conference onDigital Signal Processing,1997,2:455~458
    [83]Song Y S, Lee Y H, Formulas for McClellan transform parameters in designing2-D zero-phase FIR fan filters [J], IEEE Signal Processing Letters,1996,3(11):291~293
    [84]Shpairo J M, Adaptive McClellan transformations for quincunx filter banks [J],IEEE Transactions on Signal Processing,1994,42(3):642~648
    [85]Lee J H, Yang Y H, Two-channel quincunx QMF banks using two-dimensionaldigital allpass filters [J], IEEE Transactions on Circuits and Systems I: Regular Papers,2009,56(12):2644~2654
    [86]Tay D B H, Kingsbury N G, Flexible design of multidimensional perfectreconstruction FIR2-band filters using transformations of variables [J], IEEETransactions on Image Processing,1993,2(4):466~480
    [87]侯正信,郭岩松,杨爱萍,刘建忠,何宇清,全相位双正交五株型滤波器组设计及其应用,天津大学学报,已录用
    [88]胡广书,现代信号处理教程[M],北京:清华大学出版社,2004
    [89]Lim J S, Two-Dimensional Signal and Image Processing[M], Englewood Cliffs,NJ: Prentice-Hall,1990
    [90]Ansari R, Guillemot C, Kaiser J F, Wavelet construction using Lagrange halfbandfilters [J], IEEE Transaction Circuits and Systems,1991,38(9):1116~1118
    [91]Zarowski C J, Comments on regular half-band filter design via Bernsteinpolynomial expansions [C], Proceedings of IEEE Pacific RIM Conference onCommunications, Computers, and Signal Processing,1997,1:477~480
    [92]徐妮妮,侯正信,全相位半带滤波器及其应用[J],天津大学学报,2005,38(3):206~211
    [93]侯正信,赵黎丽,基于IDCT域的加窗全相位数字滤波器[J],天津大学学报,2006,39(12):1499~1503
    [94]Contourlet Toolbox: http://www.ifp.uiuc.edu/~minhdo
    [95]Sendur L, Selesnick I W, Bivariate Shrinkage With Local Variance Estimation [J],IEEE Transportations on Signal Processing,2002,9(12):438~441
    [96]Takhar D, A new compressive imaging camera architecture using optical-domaincompression [C], Proc. Comp. Imaging IV at SPIE Electronic Imaging,2006,43~52
    [97]Candès E, Tao T, The Dantzig Selector: Statistical estimation when p is muchlarger than n [J], Annals of Statistics,2007,35(6):2313~2351
    [98]Candès E, Romberg J, Tao T, Stable signal recovery from incomplete andinaccurate measurements [J], Comm. on Pure and Applied Math.,2006,59(8):1207~1223.
    [99]Mallat S, Zhang Z, Matching pursuits with timefrequency dictionaries [J]. IEEETrans. on Signal Processing,1993,41(12):3397~3415
    [100]Boufounos P, Duarte M F, Baraniuk R, Sparse signal reconstruction from noisycompressive measurements using cross validation [C]. Proc. IEEE Workshop on SSP,2007,299~303
    [101]Kim Z W, Robust Lane Detection and Tracking in Challenging Scenarios [J],IEEE Trans. on Intelligent Transportation Systems,2008,9(1):16~26
    [102]侯正信,郭岩松,杨爱萍,何宇清,压缩感知形状检测[J],计算机工程与应用,2011,47(5):17~20
    [103]Boyd S, Vandenberghe L, Convex Optimization[M], Cambridge UniversityPress,2004
    [104]Berg E V, Friedlander M P, In pursuit of a root[R], Technical Report TR-2007-19,Department of Computer Science, University of British Columbia,2007, Preprintavailable at http://www.optimization-online.org/DB_HTML/2007/06/1708.html
    [105]Candès E, Wakin M B, Boyd S P, Enhancing sparsity by reweighted l1minimization[J], Journal of Fourier Analysis and Applications, special issue onsparsity,2008,14(5):877~905
    [106]Piccardi M, Background subtraction techniques: a review[C], IEEE InternationalConference on Systems, Man and Cybernetics,2004,3099~3104
    [107]Ristic B, Arulampalam S, Gordon N, Beyond the Kalman Filter: particle filtersfor tracking applications[M], Artech House,2004
    [108]Wilson T, Confocal Microscopy[M], Academic Press,1990
    [109]Petran M, Hadravsky M, Egger M D, Tandem-scanning reflected-lightmicroscope[J], J. Opt. Soc. Am.,1968,58(5):661~664
    [110]Liang M, Stehr R L, Krause A W, Confocal pattern period in multiple-apertureconfocal imaging systems with coherent illumination[J], Optics Letters,1997,22(11):751~753
    [111]Verveer P J, Hanley Q S, Verbeek P W, Theory of confocal fluorescence imagingin the programmable array microscope (PAM)[J], J. Opt. Soc. Am.1998,189(3):192~198
    [112]Wilson T, Juskaitis R, Neil M A A, Confocal microscopy by aperturecorrelation[J], Optics Letters,1996,21(23):1879~1981
    [113]Candès E, Tao T, Near-optimal signal recovery from random projections anduniversal encoding strategies?[J], IEEE Trans. Information Theory,2006,52(12):5406~5245
    [114]Kim S J, Koh K, Lustig M, An interior-point method for large-scaleregularized least squares[J], IEEE Journal of selected topics in Signal Processing1,2007,1(4):606~617
    [115]Gan L, Do T T, Tran T D, Fast compressive imaging using scrambled blockhadamard ensemble,2008, Preprint
    [116]Candès E, Romberg J, l1magic: Recovery of sparse signals via convexprogramming, Caltech,2005
    [117]Wakin M, Laska J, Duarte M, Compressive imaging for video representation andcoding[C], Picture Coding Symposium-PCS2006, Apr.2006
    [118]Candès E, Romberg J, Practical signal recovery from random projections[C],SPIE International Symposium on Electronic Imaging, Computational Imaging III,San Jose, California,2005
    [119]Wilhelm S, Grobler B, Gluch M, Confocal laser scanning microscopy[OL],http://www.zeiss.com/c1256d18002cc306/0/f99a7f3e8944eee3c1256e5c0045f68b/$file/45-0029e.pdf
    [120]Dougherty B, Difraction psf3d[OL],http://www.optinav.com/Difraction-PSF-3D.htm
    [121]Sandison D R, Webb W W, Background rejection and signal-to-noiseoptimization in confocal and alternative fluorescence microscopes[J], Applied Optics1994,33(4):603~615

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700