单反数码相机精密位移测量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,单反数码相机已用于变形测量,但是,在一般情况下,数码相机的量测精度不如常规的测量仪器,数码相机在变形测量中的应用受到一定的限制。在单反数码相机的成像过程中,许多因素会引起量测误差,其中的一些误差可以采取一定的方式消除。数码相机感光像元的整齐排列,会产生莫尔效应,利用莫尔条纹可以精密测量位移量。
     为产生彩色,大部分单反数码相机图像传感器的表面都覆盖着一层bayer虑镜,该虑镜使感应红(蓝)色的像元隔行(列)存在,当红(蓝)色标志影像边缘落在非感红(蓝)像元上时,会产生标志位置的感应误差,感应误差在0-0.71个像元,由于每行(列)都有感绿像元,若不考虑噪声,绿色标志基本没有感应误差,白色标志的影像含有红、绿、蓝色,每个像元都能感应,所以没有位置感应误差。彩色标志的位置感应误差不仅与标志影像中红绿蓝色含量之比有关,还与RAW图像转换成黑白图像的算法有关,绿色成份多或红、蓝色含量相当的彩色标志位置感应误差小,由基色相关自适应彩色插值算法和简单平均彩色转黑白算法得到黑白图像定位精度最高。需要注意的是,常用的加权平均彩色转黑白算法不仅丢失了图像中的大量蓝色信息,有时还会影响白色标志的定位精度。图像传感器前面的低通虑镜会使标志的边缘向左和向上扩张一个像元,对于绿色和白色标志而言,它们的影像中心向左上方偏移了0.71个像元,对于红色和蓝色标志,由于存在bayer虑镜,它们的影像中心视不同的情况偏移0-1.41个像元。像元间存在缝隙,当标志边缘落在缝隙处也会产生位置感应误差。图像的gamma变换往往是非线性的,会使图像中的一些灰度层次丢失,影响标志的定位精度。相机的快门引起的震动频率较高,高速快门无法消除高频震动的影响。像元的感光性能与定位精度密切相关,当标志影像的边线位置发生很小的变化都能引起像元感应值较大的波动时,定位精度就高,以此原理可以推导出像元的物理特性与定位误差的关系式,该关系式显示:一般情况下,白色正方形标志定位精度比绿色标志定位精度高;标志的形状与精度密切相关,标志面积越大定位精度越高,正方形标志比圆形标志的定位精度高,圆形比椭圆的定位精度高;标志位置发生微小变化时,定位精度也会发生变化。
     对单反数码相机误差源的研究不仅使我们更深刻的认识单反相机的测量误差,而且还可以采取如下的方式提高单反数码相机量测的精度:①尽量使用RAW格式图像,在转换成黑白图像时应该使用基色相关自适应彩色插值算法和简单平均彩色转黑白算法,并且不要进行非线性的gamma变换。②选定像控点时必须优先选择白色标志,像控点标志的形状应该是正方形或圆形,避免长条形。③大量的像控点,可以减小上述误差的影响。
     数码相机在拍摄密集条纹时会产生莫尔条纹。长期以来,人们一直将数码相机的莫尔条纹当作有害条纹。在相机的设计上,尽量消除莫尔条纹。现代的数码相机,由于加装了低通虑镜,莫尔条纹已几乎看不见了。但是,数码相机的莫尔效应仍然存在,在条纹的影像上叠加一定的CCD光栅,可以将莫尔条纹从图像中提取并显现出来。实际上,并不是只有拍摄细条纹才能产生莫尔条纹,拍摄任何宽度的条纹都将产生莫尔条纹。如果拍摄的目标是长光栅形式的标志,将会产生计量莫尔条纹,计量莫尔条纹的灰度变化近似于正弦曲线,当被摄光栅标志移动一个栅距时,莫尔条纹移动一个纹距,相应的正弦曲线移动一个周期。若以莫尔条纹图像像元的原始感应值做为观测值,用正弦曲线函数进行拟合,计算出莫尔条纹移动前后的相位以及相位差,用相位差可求位移量。由于一个周期的正弦曲线长度在影像上要远远大于一个栅距,所以,莫尔条纹有位移放大的特性,当莫尔条纹用于位移测量时,精度将超过常规的方法。莫尔条纹影像中,每行像元都能拟合出两条相位相差180°的正弦曲线,正弦曲线总数一般都在二十个以上。每条正弦曲线都对应一个位移量,位移量的平均值可以大大减弱噪声对位移量测精度的影响。还可以用常规莫尔条纹图像处理法求位移量,但是,拍摄莫尔条纹图案得到的莫尔条纹图像与拍摄光栅标志产生的莫尔条纹图像在频域上有很大的不同,前者主要是低频莫尔条纹信号,后者低频莫尔条纹信号叠加在强烈的高频信号上,用常规滤波方法对后者进行低通滤波将会极大的减弱莫尔条纹正弦曲线的强度,所以,基于前者的莫尔条纹图像处理法不能直接用于后者,必须将后者的莫尔纹提取出来,产生新的没有高频成分的莫尔纹图像,才能用常规的方法处理。
     实际量测时,光栅标志与图像传感器(CCD光栅)的相对位置是无法达到常规计量莫尔条纹的要求。根据标志光栅和CCD光栅的光强分布函数以及它们的相对位置,可以推导出标志光栅与CCD光栅存在空间夹角时的莫尔条纹方程,若两张图片上的莫尔条纹发生变化,可以根据莫尔条纹方程反演标志光栅与图像传感器相对位置的变化量,当相机的位置固定时,变化量就是光栅标志的空间位移量。用莫尔条纹方程可以证明,当φ<7°时(ω、κ不限),使用正弦曲线拟合的模型误差可以忽略不计,所以,测量时对两光栅空间夹角的要求并不严格。正弦曲线的拟合一般都采用最小二乘平差计算,相位是平差计算时的一个未知数,所以,从协因数阵中可以得到相位的协因数,协因数乘以单位权方差就是相位的中误差。相位的协因数是正弦曲线的角频率ω、初始相位Φ、振幅A以及观测值的函数,通过函数关系可以分析ω、Φ、A、观测值数量对相位精度的影响,以确定最佳观测方案。镜头畸变会使正弦曲线变形,在小范围内,变形量是一定的,所以,在计算两条正弦曲线的相位差时,可以消除镜头畸变的影响。标志的光照不均匀也会使莫尔条纹的正弦曲线产生变形,并严重影响相位差的精度,解决的方法是重新设计拟合函数,在正弦曲线拟合函数中加入二次多项式,用新的拟合函数可以较好的修正低频不均匀光照产生的误差。相机快门引起的高频震动会使图像中各像点产生不均匀位移,影响标志位移测量的精度,所以,拍照时应该使用重型脚架并启动反光镜预升功能。电子快门没有震动,因此,最好采用电子快门的相机。
     由于莫尔条纹对标志的位移非常敏感,并且在计算时直接使用RAW格式图像,分别在三个基色中求位移量,不需要成像算法,不受bayer虑镜和低通虑镜的影响,也基本不受像元的缝隙的影响。数据处理中的平差计算、平均计算、差分计算既消除了大部分偶然误差(噪声)又消除了部分系统误差,所以,莫尔效应摄影测量法精度很高。多次试验表明,摄影距离在100m(最远试验距离),即使用廉价的低档单反数码相机,在一般的室外环境下,一个像对的位移测量精度也达到了1/50万(位移误差比物距),并且抗干扰能力强,对环境的要求不高,操作过程也不复杂。如果用多个像对计算位移量,精度超过1/100万。
SLR Digital Cameras are use to deformation observation now, and in a currently instance the measurement accuracy of SLR Digital Camera is not as good as some routine measuring instruments, thereby there are some restrictions on applications received in deformation measurment field for it. In the imaging process of SLR Digital Cameras, many factors will being caused by measurement errors, some errors are taken to eliminate a certain way, Moore Effect is caused by neatly arranged of its photosensitive pixels, and using Moore Stripes can acquire precision displacement measurement.
     For producing color, most of the SLR Digital Cameras's image sensor are covered with a layer of bayer filter, this filter makes red or blue pixels existence of de-interlacing. When red or blue image edge falls on signs of non-sense of red or blue will produce the error sensor location of signs, Sensor error 0~1 pixel, because each row (column) has a sense of the green pixel, if does not considering the noise, there are little green signs sensor error, panchromatic mode images marked with red, green, blue, each pixel can be induced, there is no position sensor error. Color mark sensor position error is not only relative with the content ratio of red and green and blue in logo images, but also with the algorithm for converting RAW images to black and white images, color mark sensor error is small when Multi-ingredient green or red and blue color content is considerable, by color-related adaptive color interpolation algorithm and a simple algorithm for the average black and white color to be black and white images, the highest positioning accuracy. It should be noted that commonly used in the weighted average algorithm for color to black and white not only lost a large number of blue image information, sometimes affect the positioning accuracy of the full color logo. Image sensor in front of a mirror will consider low-pass mark to the left and up the edge of a pixel expansion, the square green signs and panchromatic, their image centers offset to the upper left corner 0.71 pixel, to the red and blue logo, as a result of taking into account the existence of mirror bayer, their image centers depending on the situation of migration 0~1.41 pixel. Pixel gap existed, When the mark falls on the edge of the gap may also have a position sensor error. Gamma images are often non-linear transform, making some of the image gray-level lost, marked impact on positioning accuracy. Camera shutter caused high frequency vibration, high-speed shutter can not eliminate the impact of high-frequency vibration. The photosensitive pixel performance is closely related to positioning accuracy, when images of the line marks the location of the changes occurred in small and pixel sensor can cause a greater fluctuation in value and high positioning accuracy, this principle can be derived from the physical characteristics and the relationship of pixel positioning errors, the relationship between the display:under normal circumstances, square full color logo positioning accuracy higher than the Green Label positioning accuracy; The shape is closely related with the accuracy, marked the higher the positioning accuracy of the greater area, square than circular logo sign high positioning accuracy, elliptical than circular high positioning accuracy; Small changes in location of signs occur, the positioning accuracy will also change.
     SLR digital camera to study the source of errors allows us not only to a better understanding of the measurement error SLR, but also can take the following ways to improve the accuracy of measurement of single-lens reflex digital cameras:1 To make full use of RAW format images, in black and white into color images should be related to the use of adaptive color interpolation algorithm and a simple algorithm for the average color to black and white, and not to non-linear transform of the gamma.2 Control points selected as the preferred choice to be full color signs, control points as the shape of signs should be square or round,but avoid to strip; 3 As a large number of control points can reduce the impact of the above-mentioned error.
     There will be moire fringes when taking photos of intensive pinstripes using digital cameras. The moire fringes have been always considerated harmful for a long time and people are trying to clear them up through the design of cameras.For the modern digital camera,the moire fringes almost can not be seen as a result of low-pass filter.However,they still exist and they can be extracted from images through the superposition of some kind of CCD grating.As a matter of fact, it is found that there will be moire fringes no matter how width the stripes are. When taking photos of a mark in the form of long grating,the metrologic moire fringes will be generated,whose changes in gray are similar to a sinusoid.When the mark moves by a grid distance,the moire fringes move by a groove spacing and the corresponding sinusoid will move by a period.Based on this,if the original gray values are taken as observations,then the sinusoid function can be used to fit to these values to calculate both the former and the latter phase for the further calculation of displacement using phase difference.Furthermore,because the length of a sinusoid in one period is much more larger than a grid distance,the moire fringes have the characteristics of displacement amplification.That is exactly why higher accuracy will be gotten when the moire fringes are used in the displacement measurement.In the images of moire fringes,two sinusoids with phase difference of 180 degrees can be fit to the pixels in each line.Considering the total number of sinusoid is generally more than 20,the average of the corresponding displacement could be used to reduced greatly the noise impact on the accuracy of displacement measurement.Besides,the displacement could also be gotten using the normal processing methods of images of moire fringes.However,there is a big difference in the frequency domain between the images by taking photos of moire fringe mark and the images from the raster mark. And the main signals in the former images are low-frequency,while for the latter ones they are formed by the low-frequency signals superimposed on the strong high-frequency signals.When low-pass filter is used to the latter signals through normal filtering methods,the strength of the moire signals will be greatly reduces.So,based on the point that the processing ways used for the former moire fringes can not be used directly to the latter ones, the new moire fringes deprived of high-frequency signal must be extracted before they could be processed using the normal methods.
     When the actual measurement, grating mark with the image sensor (CCD grating) the relative positions can not be achieved by conventional measurement requirements Moire fringe. Grating and the CCD in accordance with signs of the light intensity grating distribution function, as well as their relative position, signs can be derived from the existence of grating and CCD grating angle when space equation Moire fringe, if the two pictures on the Moire fringe changes, and based on the changing value of Moire fringe under the sign inversion grating equation and the relative position of image sensor, when the location of fixed cameras, change is the grating space marked displacement. Moire fringe equation can be used to prove, whenφ<7°(ω、Kopen), sine curve fitting using the model error can be ignored, so, when measuring the angle between the two grating space requirements do not strictly. Sine curve fitting using least square adjustment is generally calculated, phase is unknown in an adjustment calculation, so, factor from the HS phase array can be co-factor, Association factor multiplied by the unit weight variance is Phase error. Co-factor is the function of the phase sinusoid, including angular frequencyω, the initial phase f,amplitude A, and observations, function can be analyzed throughω、f、A、A、, and the number of observations on the effects of phase-precision, to determine the best film program. Lens distortion will result in sinusoid deformation, in a small area is a certain degree of deformation, so, two sinusoids in the calculation of the phase, can eliminate the effects of lens distortion. Signs of uneven illumination of the Moire pattern will also have a deformed sinusoid, and seriously affect the accuracy of phase difference, the solution is to redesign the fitting function, adding quadratic polynomial in the sine curve fitting function, fitting function with new amendments can be good low-frequency error resulting from uneven illumination. Camera shutter high-frequency vibration caused non-uniform pixel displacement in images, affect the accuracy of displacement measurement marks, so, it Should be the use of heavy camera tripod and mirror pre-start up function. Electronic shutter does not shock, so, using the the camera with electronic shutter is the best choice.
     Moire pattern of signs as a result of the displacement is very sensitive, directly in the calculation and the use of RAW format images, each of the three primary colors in order to displacement, imaging algorithm does not require, Bayer not consider low-pass mirror and consider the effects of mirror, also basically pixel not be impacted by the the gap, adjustment or average or Difference calculation of data processing computing, the elimination of the majority of accidental error (noise), and the elimination of some systematic errors, so, Moore photographic effect of the high precision measurement. Many experiments show that the Photo from the 100m (the longest distance test), that is, the use of cheap low-end single-lens reflex digital camera, in the general outdoor environment, as the displacement of a measurement accuracy has reached the 1/0.5 million (from the displacement of error than the material), and anti-interference ability is robust, less demanding on the environment, operating process is not complicated. If using more than a piece of images to calculate the displacement, accuracy will surpass 1/1000000.
引文
[1]李宏男,李东升.土木工程结构安全性评估、健康监测及诊断述评[J].地震工程与工程振动,2002,22(3):82-90.
    [2]JGJ 8—2007.建筑变形测量规范[S].中国建筑工业出版社
    [3]Wiggenhagen M. Close Range Photogrammetry Applications in the Automotive Industry [J]. PHOTOGRAMMETRIE FERNERKUNDUNG GEOINFORMATION,2008,(5):385-393.
    [4]李宏男,伊廷华,王国新.GPS在结构健康监测中的研究与应用进展[J].自然灾害学报,2004,13(6):122-130.
    [5]黄桂平.数字近景工业摄影测量关键技术研究与应用[D].天津:天津大学,2005:2-6.
    [6]刘战存.几种莫尔条纹的移动和变化[J].首都师范大学学报(自然科学版),1997,18(9):90-93.
    [7]Jiang RN, Jauregui DV, White KR. Close-range photogrammetry applications in bridge measurement[J]. MEASUREMEN,2008,41(8):823-834.
    [8]Gruen A. Development of Digital Methodology and Systems, in:Close Range Photogrammetry and Machine Vision[M], Whittles Publishing, Roseleigh House, Latheronwheel, Caithness, KW5 6DW, Scotland, UK,2000:78-104.
    [9]E.M. Mikhail, J. Bethel, and J.C. McGlone. Introduction to Modern Photogrammetry[M]. John Wiley & Sons, Inc., New York (2001).
    [10]J.G. Fryer. Close Range Photogrammetry and Machine Vision[M]. Whittles Publishing, Roseleigh House, Latheronwheel, Caithness, KW5 6DW, Scotland, UK,2000:1-7.
    [11]Burtch R. History of Photogrammetry[A]. Center for Photogrammetric Training, Ferris State University, Big Rapids, Michigan (2004).
    [12]Fraser, Clive S. Photogrammetric Measurement to One Part in a Million[J], Photogrammetric Engineering and Remote Sensing,1992,58:305-310.
    [13]GSI. V-STARS/S System Accuracy Results[EB/OL]. www.geodetic.com/v-stars,2008
    [14]AICON. DPA-Pro Automated Industrial Close Range Photogrammetry[EB/OL]. http://www.accurexmeasure.com/close_range_industrial_photogrammetry.htm,2009
    [15]大形结构件大变形摄影测量[DB/OL].西安交通大学.http://www.xjtuom.com/main/ home.2009.
    [16]Albert J, H. Maas, A. Schade, W. Schwarz.. Pilot Studies on Photogrammetric Bridge Deformation measurement[J]. http://www.tu-dresden.de/fghgipf/forschung/material/pub12002/ IAG_Berlin-2002.pdf.(Accessed July 2005).
    [17]K.R. Leitch. Close-range Photogrammetric Measurement of Bridge Deformations[J]. Ph.D. Dissertation, Civil and Geological Engineering Department, New Mexico State University, Las Cruces, New Mexico,2002.
    [18]罗洪斌.数字图像处理技术在结构检测中的应用[D].武汉:华中科技大学.2006.
    [19]_CLIVE S. FRASER, ALEX WOODS and DANNY BRIZZI. Hyper Redundancy for Accuracy Enhancement in Automated Close Range Photogrammetry[J]. The Photogrammetric Record,2005, 20(111):205-217.
    [20]Daniel Post. Moire interferometry:Advances and Applieations[J]. Experimental Meehanies, 1991,31(3):276-280.
    [21]Walker C A. A historieal review of moire interferometry [A]. Experimental Mechanies,1994, 34(4):281-299.
    [22]苏绍憬.大量程纳米级光栅位移测量理论及关键技术研究[D].长沙:国防科学技术大学.2001:2-2.
    [23]李向荣.基于莫尔条纹法的扭转测量技术研究[D].北京:中国科学院研究生院,2006,55-73.
    [24]仲思东郑琳余模智.CCD像感器莫尔效应研究[J].武汉测绘科技大学学报1996,21(1):77-80.
    [26]Oh Y H,Co C S,Lee J C, et al. Filtering Characteristics and Grating Images of Multiphase Grating Optical Low-pass Filters[J].Optical Fngineering,2003,42 (4):994-999.
    [27]张霞.图像传感器的应用测量技术[J].国内外机电一体化技术,2008,(8):37-41.
    [28]黄美玲 张伯珩 边川平 李露瑶 达选福.CCD和CMOS图像传感器性能比较.科学技术与工程,2007,7(2):249-251.
    [29]谢晴.富士‘"Super CCD EXR"传感器新电脑.2008,(10):179-180.
    [30]刘晖.图像传感器新一轮技术变革.微电脑世界,2006,(6):20-21.
    [31]Mark E. Greiner, Mike Davis, John G. Sanders. Resolution Performance Improvements in Staring Imaging Systems Using Micro-Scanning and a Reticulated, Selectable Fill Factor InSb FPA [R]. Princeton:Cincinnati Electronics Corpoartion,1999.
    [32]Chen. Sihai, Yi Xinjian, Li. Y, He. Miao. Design of diffractive microlens arrays integration with focal plane arrays [J].Proceedings ofSPIE-The International Society for Optical Engineering, 2000,4224, p 170-173.
    [33]B.E.Bayer. Color Image Array[P]. U.S. Patent,No.3917065,1976.
    [34]佚名.索尼与富士CCD技术发展历程[EB/OL]. http://ce.sysu.edu.cn/hope/Education/Sh-owArticle.asp?ArticleID=448,2006-12-4.
    [35]Darren Murph. Kodak color-filter technology could redefine low-light shooting[EB/OL]. http://www.engadget.com/2007/06/13/kodak-color-filter-technology-could-redefine-low-light-sho oting.2007-06-13.
    [36]雷均明.关于数码相机的RAW文件格式[EB/OL]. http://blog.voc.com.cn/blog.ph-p?do=showne&uoid=12482&type=blog&itemid=376379,2007-09-15.
    [37]I.E.Adams. Interaction between Color Plane Interpolation and Other Image Processing Functions in Electronic Photography[J]. Proceeding of SPIE,1995,2416:144-151.
    [38]陈春宁,王延杰.基于TMS320DM642 BAYER格式图像色彩复原的实现[J].微计算机 信息2007,23(7-2):114-146.
    [39]刘方.基于Bayer彩色滤波阵列插值算法的研究[D].成都,电子科技大学,2006:2-25.
    [40]陈春宁,王延杰.利用信号相关对BAYER格式图像色彩复原[J].电子器件,2007,30(4):1417-1419.
    [41]J.Trussell, Robert E.Hartwig. Mathematics for demosaicling[J]. IEEE Transactions on Image Processing.2002, Vol.11,No.4:485-492.
    [42]Xiaolin Wu, N. Zhang. Primary-Consistent Soft-decision Color Demosaicing for Digital Cameras[J].IEEE Transactions on Image processing.2004,13(9):1263-1270.
    [43]R. Ramanath, W.E. Snyder. Adaptive demosaicing[J]. Journal of Electronic Imaging.2003 ,12(4):633-642.
    [44]Ramanath R, W.E. Snyder. Demosaiching Methods for Bayer Color Arrays[J]. Electronic Imaging,2003,11 (3):306-315.
    [45]P. Longere, Xuemei Zhang, P.B.Deiahunt. Perceptual Assessment of Demosaicing Algorithm Performance[J]. Proceedings of The IEEE.2002,90(1):123-132.
    [46]R. Lukac, K.N. Plataniotis, D. Hatzinakos,etc. A Novel Cost Effective Demosaicing Approach[J]. IEEE Transactions on Consumer Electronics.2004,50(1):256-261.
    [47]张燕,程永强.贝尔图像上插值算法比较[J/OL].中国科技论文在线,< http://www.pape-r.edu.cn/paper.php?serial_number=200812-849>,2008.
    [48]Suat U.AY, MiChael LesseR, Eric R.Fossmu. CMOS Aetive Pixel Sensor(APS) Imager for Scientific Applications[J]. Proceedings of SPIE,2002,4836:271-278.
    [49]郑金鹏.CMOS图像传感器的研究[D].天津:天津大学,2005:16-20.
    [50]Hsiu-Yu Chengand Ya-Chin King, A CMOS Image Sensor With Dark CurrentCancellation and Dynamie Sensitivity Operations[J]. IEEE TARNSACTIONS ON ELECTRON DEVICES,2003, 50(1):91-95.
    [51]Toshifumi Ozaki, Hajime Kinugasa,Takashi Nishida. A low-noise line-amplified MOS imaging deviees[J]. IEEE transactions on Electron Devices,1991,138(5):969-975.
    [52]Kazuya Yonemoto. Hirofumi Sumi. A numerical analysis of a CMOS image sensor with a simple fixed-pattern-noise-reduction technology[J]. IEEE Transaetionson on Elecctron, Devices 2002,49(5):746-753.
    [53]程开富.CMOS图像传感器的最新进展和应用[A].电子与封装,无锡:中电科集团公司58所,2003-5.
    [54]董博彦.CMOS图像传感器的测试与分析学[D].天津:天津大学,2005:pp19-32.
    [55]许秀贞,李自川,薛利军.CCD噪声分析及处理技术[J].红外与激光工程,2004,33(4):pp343-344.
    [56]Jim Janesick,Tom Ellion. Sandbox CCDs[A]. Proceedings of SPIE,1995,2415:2-41.
    [57]陈俊文.数码相机的图像传感器尺寸[A].实用影音技术,2006,(1):92-96.
    [58]师春祥,王晶.数码单反(DSLR)相机快门探析[A].科技创新导报,2008,(10):204-205.
    [59]乐进和,古城.浅谈照相机快门[A].相机世界,2006,(3):70-70.
    [60]赵建华.电磁控制式纵走单幕焦平面快门技术研究[D].南京: 南京理工大学,2006,5-20.
    [61]向卫东.照相机的快门及其发展[A].照相机,1999,(10):11-12.
    [62]王海涌,申功勋.基于电子快门实现CCD曝光量无级调节技术[J].光电工程,2006,33(8): 136-139.
    [63]Tetsuya Kuno,Hiroaki Sugiura. A new automatic exposure system for digital still cameras[J]. IEEE Transactions on Consumer Electronics,1998,44(1):192-199.
    [64]林家明.面阵CCD摄像机光学镜头参数及其相互关系[A].光学技术,2000,26(2):183-185.
    [65]杨明,白烨,王秋良,余运佳.面阵CCD摄像机光学镜头参数及选用[A].光电子技术与信息,2005,18(3):27-29.
    [66]欧文·派兹洪欣.徕卡镜头的设计标准和参考因素[A].照相机2001,(9):42-44.
    [67]何芸.镜头的像差[A].甘肃科技,200420(8):116-116.
    [68]包学诚,吴启海.现代照相镜头[M].北京:中国摄影出版社,2002.
    [69]张前平,邓冈锋,曾阳素.照相镜头设计中非球面的应用[J].邵阳学院学报(自然科学版),2008,5(1):70-74.
    [70]叶永奎.找出镜头最佳光圈[J].照相机,2005,(12):54-55.
    [71]于琪林.锐头的实用性能测试对比分析—关于镜头的最佳光圈和最佳分辨率[J].摄影与摄像,2001,(10):32-33.
    [72]刘远航.刘文开.数码相机原理简论[A].照相机,2002,(7):25-27.
    [73]侯雨石,陈永飞,何玉青,张忠廉.数码相机原理与系统设计研究[J].光学技术2002,28(5):452-453.
    [74]finekl.RAW格式优势全知道[J].电子世界,2008,(5):48-50.
    [75]唐凤碧.数码照片常用的存储格式[A].科学之友,2007,(07A):73-73.
    [76]石上清泉,易茗.解读RAW格式[A].摄影与摄像,2006,(6):30-33.
    [77]THOM. Nikon D70 & D70s Specifications[EB/OL]. http://www.bythom.com/D70.htm, 2004-5-28.
    [78]鲍连科.各大厂家数码相机的图像处理引擎简述[N].电子报,2008-4-27/第019版.
    [79]灰鹿.彩色图片变黑白[EB/OL]. http://hi.baidu.com/graydeer/blog/item/d890ba7e79010-c380dd7da61.html,2006-12-07.
    [80]刘强,赵忠涛.遥感图像识别中目标特征点提取方法研究[J].微电子学与计算机,2002,(12):31-33.
    [81]YADID pecht orly,PAIN bedabrata,STALLER craig, et al. CMOS Active Pixel Sensor Star Tracker with Regional Electronic Shutter [J]. IEEE Trans Solid-State Circuits,1997,32(3): 285-288.
    [82]LIEBE carl christain. Accuracy Performance of Star Trackers-A Tutorial [J]. IEEE Trans on Aerospace and Electronic systems,2002,38 (2):587-589.
    [83]于起峰,陆宏伟,刘肖琳.基于图像的精密测量与运动测量[M].北京:科学出版社,2002: 256-263.
    [84]王庆有.图像传感器应用技术[M].北京,电子工业出版社,2003:84-86.
    [85]彭国福,林正浩.图像处理中Gamma校正的研究和实现[J].电子工程师,2006,32(2):30-32.
    [86]HARRY G,Walton. LCD Gamma Correction by Non-linear Digital-to-analogue Converter[J]. SPIE.2003,5004:170-178.
    [87]Jung, Tae-Young; Pyo, Se-Jin, Jang, Soo-Wook, Kim, Eun-Su; Sohng, Kyu-Ik.Quantitation of gamma-correction segments for CMOS image sensor[J]. Proceedings of the International Conference on Imaging Science, Systems and Technology,2004 (4):3-6.
    [88]史立芳,马君显,董小春,杜春雷.微透镜填充因子快速检测方法[J].光电工程,2007,34(6):53-56.
    [89]Yuan, X.-C; Yu, W.X; Ngo, N.Q.; Cheong, W.C. Cost-effective Fabrication of microlenses on hybrid sol-gel glass with a high-energy beam-sensitive gray-scale mask[J]. Optics Express,2002, 10(7):303-308.
    [90]Oh Yong-Ho,Go Chun-Soo,Lee Jai-Cheol,et al. Comparison of a grating optical low pass filer with a birefringent filter[A].SPIE[C].2001,4594:408-416.
    [91]Oh Y H,Go C S,Lee J C,et al. Filtering characteristics and grating image s of multiphase grating optical low-pass filters [J]. Optical Engineering,2003,42(4):994-999.
    [92]Go C S,Lee J C,Oh Y H,et al. Grating image s of a multphase grating optical low-pass filter[A]. SPIE[C].2001,4594:417-422.
    [93]Lymex Nikon. F80 测试[EB/OL]. http://www.xitek.com/papers/lymex/lymex1.htm, 2001-2-10.
    [94]Aaron Linsdau. D200 vibration on a tripod, mirror lockup and its ilk[EB/OL]. http://aaronlin-sdau.com/gear/articles/d200_vibration.html,2007-2-1.
    [95]Alex编译.有关快门的声音与震动[J/OL]. http://www.xitek.com/papers/alex/alex2.htm,2000-7-4.
    [96]李邦宜,王文丽.相机快门震动测试[J].照相机,2001(5):17-18.
    [97]文宇庄,王见,尹爱军.摄影用三脚架震动特性的测试及分析[J].实验技术与管理,2008,25(5):84-88.
    [98]马嘉宝.减轻相机的震动试验[J].照像机,2001,(12):31-32.
    [98b]钱元凯.透视一个“越重越好”的神话——图说三脚架正确使用和选择.中国摄影,2006,(3):118-123
    [99]朱铮涛,黎绍发.镜头畸变及其校正技术[J].2005,31(1):136-139.
    [100]张新中.光栅的莫尔条纹及其应用物[J].理实验,1990,10(6):281-283.
    [101]姚景风.莫尔条纹的几何原理与特性[J].计量技术,1978,(1):1-6.
    [102]徐海英,缪长宗,陈慧琴.莫尔条纹应用初探[J].南京工程学院学报(自然科学版),20064(1):60-65.
    [103]AmlDRON I. The Theory of moire phenomenon[M]. Dordrecht:kluwermic blishers,2000.
    [104]AMIDRON I. A new print-based security strategy for the production for valuable documents and products using moire intensity profiles[J]. Optical Security and Counterfeit Deterrence Techniques[C]. Van Rudoltl:Renesse Editor Proceedings of SPIE.2002,4677:89-100.
    [105]Ching-Yu Yang, James; Tsai, Wen-Hsiang. Document image segmentation and quality improvement by moire pattern analysis[J]. Signal Processing:Image Communication,2000,15(9), 781-797.
    [106]Hane, K.; Goto, T.; Hattori, S. Moire signals of circular gratings and its application to precise alignment[J]. Proceedings of SPIE-The International Society for Optical Engineerin-g.1990,1319:335-336.
    [107]姚景风.长光栅的莫尔条纹[J].广东印刷,1994(4):12-14.
    [108]姚景风.长光栅的莫尔条纹(续)[J].广东印刷,1995,(1):11-11.
    [109]屈梁生.计量光栅的几何、光学特性[J].精密制造与自动化,1980,(03):33-46.
    [110]李立本.莫尔条纹研究[J].信阳师范学院学报(自然科学版),1989,2(01):56-60.
    [111]姚风英,马全喜.对纵向莫尔条纹测微系统中几个问题的分析[J].河北大学学报(自然科学版),1996,16(1):85-87.
    [112]姚风英,马全喜.不等距光栅及其对位移的放大作用[J].河北大学学报(自然科学版),1995,15(01):85-88.
    [113]王莉,卢秉恒,崔东印,丁玉成,刘红忠.多层冷压印光刻中超高精度对正的研究[J].西安交通大学学报,2004,38(9):895-897.
    [114]李田泽,杨淑连.双光栅莫尔条纹的傅里叶分析[J].激光与光电子学进展,1997,(03):8-11.
    [115]Kreis T. Computer aided evaluation of fringe pattern[J]. optics and Lasers in Engineering, 1993,19(4),21-240.
    [116]冯文灏.工业测量[M].武汉大学出版社,2004:280-292.
    [117]张金龙,刘京南.莫尔条纹信号在精密检测与定位中的应用[J].测控技术,2003,22(6):8-10.
    [118]Uchida Y,Hattori S,Nomura T. An automatic mask alignement technique using moire interference[J]. Journal of Vacuum Science and Technology,1987,5(1):244-247.
    [119]曹国荣,董荣生,王正岭.莫尔条纹在微小振动测量中的应用[J].激光杂志,2004,25(2):64-65.
    [120]何春娟,刘绒霞,曹磊.莫尔条纹技术在微小位移测量中的应用[J].西安工业学院学报,2005,25(6):565-568.
    [121李丰丽,钟金刚.位移的莫尔条纹测量技术[J].实验技术与管理,2002,19(3):30-33.
    [122]杨进堂,杨庆辉.莫尔条纹动态细分误差的测量[J].计量技术,1998,(07).14-16.
    [123]胡汉辉,廖兆曙.倍频光栅的莫尔条纹研究[J].华中科技大学学报(自然科学版),2005,33(03).72-74.
    [124]曹国荣,景芳盛,任莹.CCD用于莫尔条纹细分的技术[J].计量学报,1995,16(02):116-120.
    [125]朱应时,杨进堂.圆光栅的高精度高质量莫尔条纹信号的研究[J].计量学报,1995,16(04):288-285.
    [126]朱应时.圆光栅的莫尔条纹[J].光学机械,1983,(2):12一18.
    [127]朱海军,苏显渝.双同心圆光栅二维平面位移测量术[J].四川大学学报(自然科学版)2008,45(2):301-305.
    [128]Park Y C, Kim S W. Determination of two-dimensional planar displacement by moire fringes of concentric-circle gratings[J]. Applied Optics,1994,33(22):5171-5176.
    [129]朱聪玲,丁海娟,陈振.工字型横梁的莫尔应力圆组合图形与应力分析[J].农机化研究,2004,(4):55-56.
    [130]Morim Y,丁永官.用莫尔法实时分析位移和应变分析[J].舰船力学情报,1992,(2):28-34.
    [131]Takasaki H. Generation of surface contours by Moire pattern[J]. Applied ptics,1970,9(6): 1467-1472.
    [132]仲思东,郑琳.CCD像感器莫尔效应研究[J].武汉测绘科技大学学报,199621(1):77-81.
    [133]余佳.数码相片莫尔条纹消除算法的研究[D].上海交通大学2007:35-37.
    [134]老顽童.摩尔纹的原理与产生条件[EB/OL]. http://forum.xitek.com/showarchives.php?t-hreadid=269515,2005-02-09.
    [135]柯纳.Nikon D70问题之我见[EB/OL]. http://www.xitek.com/info/showarticle.php?i-d=1627,2004-03-24.
    [136]李向荣.基于CCD的莫尔条纹图像频域处理研究[J].电子器件,2007,30(2):617-619.
    [137]詹总谦.基于纯平液晶显示器的相机标定方法与应用研究[D].武汉:武汉大学,2006:114-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700