FMO3基因型和胆碱对鸡蛋三甲胺含量影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对含黄素单氧化酶3(flavin-containing monooxygenase 3, FMO3)基因T239S位点,以海兰褐产蛋鸡为对象,日粮添加氯化胆碱作为前体物质,从遗传和营养两方面系统研究了蛋鸡鱼腥味综合征的影响,旨在探讨FM03基因型和胆碱及其互作对蛋黄三甲胺含量的影响及其作用机制。
     试验一:海兰褐蛋鸡鱼腥味综合征易感基因型的测定。采用PCR-RFLP法测定了FM03T329S突变位点在商品代海兰褐壳蛋鸡群体(731只)中的分布规律,分离筛选出鱼腥味综合征易感基因型的产蛋鸡,用于进一步试验。测序检验表明,试验所采用的方法能针对T329S位点,准确地分离筛选FM03基因型。结果表明:所选海兰褐蛋鸡(n=731)中,AA(野生型)、AT(杂合型)和TT(突变型)基因型频率分别为3.4%、76.6%和20.0%,T等位基因频率高于A等位基因。利用Hardy-Weinberg定律检验基因平衡状态,发现该位点在商品代海兰褐蛋鸡群体中极显著地偏离了平衡(P<0.001)。
     试验二:FM03基因型对蛋黄三甲胺(TMA)沉积的影响。采用单因素设计,选用已知FM03基因型海兰褐壳产蛋鸡132只,按基因型分为4个处理组,每组6个重复。其中AT、TT两种基因型各54只,每重复9只,饲喂试验日粮(添加2 960 mg/kg胆碱);AA基因型24只,分为两个处理,每2只作为一个重复,分别饲喂对照日粮(添加370mg/kg胆碱)和试验日粮。预饲期7天,各组饲喂对照日粮。正试期42天。分别于预饲第3天和第6天,正式试验的第1、2、3、4、5、6、7、10、14、21、28、35和42天,每重复取3枚(AA基因型1-2枚)鸡蛋,分离蛋黄,混匀,比色法测定TMA。结果表明:(1)蛋黄TMA含量随时间呈间歇性变化。AT和TT基因型TMA含量从试验第3天起表现出间歇性上升趋势,分别于第35天和第21天时达到整个试验期最大值(5.02和10.53μg/g);AA基因型蛋黄TMA含量(1-2μg/g)无显著变化;从试验第3天起(35天除外),TT基因型TMA含量显著高于对照组和其他处理组(P<0.01);(2)试验1-21天,TT基因型TMA含量快速增加,呈间歇性上升。将鸡蛋TMA沉积量(Y,μg/g)与时间(X,1-21天)进行曲线拟合,得到方程为:Y=0.0036X3-0.1349X2+1.7706X-0.6578(R2=0.9646);(3)2 960 mg/kg胆碱处理下突变基因型蛋鸡鱼腥味鸡蛋通过感官检出时间为3-5天。
     试验三:基因型和胆碱对产蛋鸡生产性能、蛋品质的影响。试验按基因型和胆碱水平,采用3×2因子重复设计,每个基因型设2个胆碱添加水平(370和2 960 mg/kg),共6个处理组,每组6个重复,AT、TT两种基因型各108只,每个重复9只,AA基因型24只,每2只作为一个重复。预饲期1周,试验期6周。以重复为单位记录每天产蛋数、蛋重、死亡鸡数,每周记录鸡的耗料量一次。最后计算出1-3周,4-6周和1-6周的产蛋率、日采食量、平均蛋重、料蛋比和日产蛋重。试验第40-42天,每重复收集6枚鸡蛋(AA基因型收集4枚),4℃保存,其中3枚(AA基因型2枚)用于测定蛋品质(保证样品采集到测定间隔相同时间):另外3枚用于制备冻干蛋黄粉,测定蛋黄营养成分。试验结果表明:(1)产蛋率受基因型显著影响(P<0.05),AA基因型高于TT和AT基因型;添加2 960 mg/kg胆碱显著降低了蛋鸡日采食量(P<0.01)、1-3周料蛋比(P=0.016),基因型与日粮胆碱添加量对产蛋性能无交互作用;(2)基因型对蛋品质无显著影响;日粮添加2 960 mg/kg胆碱极显著降低了蛋黄颜色(P<0.001),与370 mg/kg胆碱添加量相比,蛋壳厚度、蛋白高度和哈夫单位有所降低,但无显著性差异;基因型及其与胆碱的交互作用不影响鸡蛋品质。
     试验四:基因型和胆碱对产蛋鸡三甲胺代谢的影响。试验设计、试验条件同试验三。试验第7、21和42天,每个重复取3枚蛋(AA基因型2枚),分离蛋黄,混匀,-20℃保存,记录蛋重和蛋黄重,用于测定蛋黄中TMA。于试验第42天,各重复取一只接近平均体重的试鸡,颈静脉放血致死。采集血样,3 000 r/min离心10 min,分离血清,并加入0.01 M HCI固定TMA,-80℃保存。解剖试鸡,无菌棉线结扎盲肠后取出,4℃保存,当天测定TMA。蛋黄TMA和盲肠食糜TMA采用比色法测定,血清TMA采用顶空气相色谱法测定。结果表明:(1)FM03基因型显著影响蛋黄TMA含量,表现为2 960 mg/kg胆碱添加量下,TT基因型TMA含量极显著高于AA和AT基因型(P<0.001),但370 mg/kg胆碱处理下,各基因型产蛋鸡蛋黄TMA含量无显著差异;日粮胆碱添加水平对蛋黄TMA有显著作用(P<0.05),2 960 mg/kg胆碱处理下,各基因型组蛋黄TMA含量较370 mg/kg胆碱处理下同基因型组均有不同程度升高;FM03基因型和胆碱对蛋黄TMA有显著交互作用(P<0.05);(2)基因型对盲肠食糜和血清TMA含量无显著影响,日粮胆碱水平极显著提高了产蛋鸡盲肠食糜和血清TMA含量(P=0.001),二者无交互作用;(3)盲肠食糜TMA含量与血清TMA含量正相关(P=0.061),与蛋黄TMA含量呈显著正相关(P=0.048);蛋黄TMA含量与血清TMA含量无显著相关性(P=0.572),与蛋黄脂肪含量间呈显著正相关(P=0.013)。
     试验五:基因型与胆碱对FM03基因表达水平和FM03酶活的影响。试验设计、试验条件同试验三。于试验第42天清晨喂料前,各重复取一只接近平均体重的试鸡,颈静脉放血致死。解剖试鸡,立即取出肝脏、肾脏用冷冻的生理盐水洗去血汁,滤纸擦干称重,剪去结缔组织,液氮冷冻,置-80℃冰柜中保存,提取RNA和肝脏微粒体,分别以底物TMA和甲巯咪唑代谢产物的产率(nmol per mg microsomal protein per min)作为酶活性指标。结果表明:(1)基因型间肝脏FM03基因表达水平无显著性差异(P=0.079);高剂量胆碱极显著降低了肝脏FM03 mRNA表达水平,AA、AT和TT基因型分别下降了19.48%(P>0.05)、38.10% (P<0.05)和54.29% (P<0.01),二者无交互作用。(2)基因型、胆碱水平及二者交互作用对肾脏FM03 mRNA表达量无显著影响。(3)FM03活性受基因型显著影响(P=0.003),AA基因型活性最高,其次AT基因型,TT基因型最低;与370mg/kg胆碱添加水平相比,2960 mg/kg添加量极显著降低了FM03对TMA和甲巯咪唑的代谢活性(P<0.01)。
     试验六:基因型和胆碱对产蛋鸡脂质代谢和血清激素水平的影响。于试验第42天,每重复随机选取1只鸡,空腹翅静脉采血,离心分离血清,-20℃保存,测定血清和肝脏脂质,血清激素水平,血清一氧化氮水平和丙二醛含量。通过相关分析对血液生理生化指标筛选,探讨基因型、胆碱可能的作用方式。结果表明:(1)血清甘油三酯(P=0.038)、游离脂肪酸水平受基因型显著影响(P=0.001);日粮中添加2 960 mg/kg胆碱改善了机体脂质代谢,表现为降低了血清TG(P=0.038)、NEFA(P=0.001)水平,增加了HDL-C水平(P=0.06),降低了产蛋鸡肝脏中总脂肪(P=0.015)、甘油三酯含量(P=0.006),二者无交互作用。(2)产蛋鸡血糖、血清一氧化氮含量受胆碱水平影响,随胆碱水平增加分别下降27.49%(P<0.001)和20.60%(p=0.15),T4水平增加26.05%(P=0.008),T4/T3提高。(3)FM03 mRNA表达水平与血清胰岛素(P=0.004)、T4(P=0.041)、血糖(P=0.017)含量显著相关。
     综上所述,FM03基因型对生产性能和蛋品质无明显作用,蛋黄TMA含量受基因型、胆碱添加水平及其交互作用影响。其中,T329S突变导致酶活性的下降是造成基因型间TMA代谢差异的主要原因;添加高剂量胆碱增加了TMA的产生和吸收,同时抑制了肝脏FM03mRNA表达水平和酶活性,加剧了TMA代谢的负担。
To evaluate the interaction between FM03 genotype and diet supplementation of choline (TMA precursor), genotypic and allelic frequencies of FMO3 for commercial Hyline (brown-shelled strain) were tested firstly. Then the effects of FM03 genotype and diet supplementation of choline on production performance, egg quality, deposition of TMA in egg yolk, and TMA metabolism were studied. Further, FMO3 mRNA levels and FM03 activity were investigated to explain the effect of genotype on TMA and lipid metabolism. Hormone levels were also examined to discuss the mechanism of choline on FM03 mRNA levels.
     In Trial 1, genotyping of fishy-egg tainting hens in HyLine strains were studied. A total of 731 HyLine Brown hens were genotyped for a A/T polymorphism at position nt 1034 of the chicken FMO3 cDNA sequence (T329S for amino acid sequence). A PCR-RFLP method was developed to analysis the distribution of the mutation in Hyline Brown hens. Genotype of AA (wild type), AT (heterozygous type) and TT (mutant type) were found with percentage of 3.4%,76.6% and 20.0%, respectively. The allelic frequencies of T was higher than that of A, and the allelic frequencies were not in Hardy-Weinberg equilibrium (P<0.001) in the Hyline Brown laying hens strain.
     The purpose of Trial 2 was to examine the effect of FMO3 genotype on TMA deposition in egg yolks from hens fed with high levels of choline. A total of 132 hens were allotted four treatments by genotype. A total of 54 hens per genotype (AT and TT) were fed diet supplemented with 2 960 mg/kg choline, and each treatment consisted of 6 replicates with 9 hens. A total of 24 hens with AA genotype (only 24 hens of this genotype were present in the population) were fed either a control diet supplemented with 370 mg choline /kg or a diet supplemented with 2 960 mg choline /kg, and each treatment consisted of 6 replicates with 2 hens. Hens were fed control diet for a one-week of adapting period followed by a six-week of trial period. Two or three eggs per replicate (1-2 eggs for AA) were collected at d 3,6 in adapting period, and d 1,2,3,4,5,6,7,10, 14,21,28,35 and 42 in trial period. The yolk was separated for TMA analysis. (1) The changes of TMA concentrations in egg yolk were intermittent. TMA concentration in Yolk of AA and TT hens increased intermittently as deposition time increased from d 3, and reached the peak at d 35(5.03μg/g) and d 21(10.53μg/g),respectively;while TMA concentration of AA hens were relatively stable in trial period. From d 3(except d 35), yolk TMA concentration of TT hens were significantly higher than that of AA hens. (2) The fitting curve showed that TMA concentrations of egg yolk from TT genotype hens, fed with 2960 mg choline /kg diet, intermittently increased as deposition time increased. The relationship between concentration of TMA in the egg yolks (μg/g, Y) and desposition time (1~21 day, X)is Y=0.0036X3-0.1349X2+1.7706X-0.6578 (R2=0.9646). (3) The fishy eggs were detected at 3~5 day of supplementing 2 960mg/kg choline in the diet.
     Trial 3 was used to study the effect of FMO3 genotype and choline supplementation on performance of laying hens and egg quality. A 3×2 two-factorial design was applied in this study. The 3 genotypes of AA, AT and TT and 2 levels of 370 and 2 960mg choline addition/kg were included. At 43 wk of age, a total of 240 hens were fed experimental diets for 6 weeks.108 hens of per genotype (AT and TT) were randomly fed either a control diet supplemented with 370 mg choline/kg or a diet supplemented with 2 960 mg choline/kg, and each dietary treatment consisted of 6 replicates with 9 hens. A total of 24 hens with AA genotype were allotted to one of two treatments consisted of 6 replicates with 2 hens. Hens were fed control diet for a one-week adapting period followed by a six-week trial period. The results showed that:(1) Hens fed the diet supplemented with 2 960mg/kg choline had a decreased feed intake (P< 0.01) and feed efficiency (1-3w, P=0.016). Laying performance was not affected by the genotype excepting that egg production was higher in AA hens (P<0.05). No interaction between genotype and dietary choline concentration was found. (2) Interaction between genotype and dietary choline concentration had no effect on egg quality. Decreased tendency in yolk colour (P<0.001) was observed at the dietary supplemental choline with 2 960 mg/kg. Eggshell thickness, albumen height and haugh unit were also decreased by higher dietary choline addition, while no significant effects were found.
     Trial 4 was aimed to investigate the effect of genotype, choline and their interaction on TMA metabolism. A same experimental design was used as in trial 3. (1) The significant effects of genotype (P<0.05), choline (P<0.005), and their interaction (P<0.05) on yolk TMA concentration were observed at d21 and d 42. Based on the main effect of the genotype, the TMA contents in egg yolks of TT hens were higher than those of other hens (P<0.05). When dietary choline level was increased up to 2 960 mg/kg, significant differences among the TMA content of the three FMO3 genotypes were found. No significant differences (P>0.05) were detected on TMA contents in egg yolks from AA, AT and TT hens fed with 370mg choline /kg feed. The concentrations of TMA in yolk from TT hens were affected by choline levels (P<0.001). There was a slight increase in yolk TMA concentrations from AA and AT hens fed with higher levels of choline. (2) Supplementing 2 960mg/kg choline to diets resulted in an increased TMA concentration of caecal chime (P<0.001) and serum (P=0.017), whereas both genotype and their interaction was without an effect. (3)TMA contents of caecal chime (P=0.048) and serum (P=0.051) were positivly related to yolk TMA concentration, but no significant relation existed between TMA contents of caecal chime and serum.
     Trial 5 was conducted to investigate the effects of genotype, choline and their interaction on FMO3 mRNA levels and FMO3 activity. A same experimental design was used as in trial 3. (1) The genotype did not significantly influence the relative expression of FMO3 mRNA in the liver (P=0.079). The FMO3 mRNAs in liver was significantly down-regulated by the addition of 2 960mg/kg choline to diet (P< 0.001). Hepatic FMO3 mRNA level of TT hens was dramatically suppressed by 54.29%(P<0.001), while decreased modestly by to 19.48% and 38.10%(P<0.05) for AA and AT hens, respectively. No interactions on hepatic FMO3 mRNA between genotype and choline were observed. (2) Genotype, choline and their interaction did not affect FMO3 mRNA in kidney. (3) Activity of liver microsomal FMO3 towards TMA and MMI were significantly affected by genotype (P<0.01) and dietary choline (P<0.01). No interactions on hepatic FMO3 mRNA between genotype and choline were observed. The FMO3 activity was listed from high to low as follows:AA> AT>TT; 370mg/kg>2 960mg/kg.
     Trial 6 was carried out to assess the effects of genotype, choline and their interaction on lipid metabolism and endocrine. Supplementing 2 960mg/kg choline to the diets resulted in improvement on lipid metabolism. (1) Decreased tendency in serum TG (P=0.038) and NEFA (P =0.001) levels, total fat (P=0.015) and TG (P=0.006) in liver were observed with increasing the HDL-C levels (P=0.06). (2) The contens of blood glucose and serum NO were significantly decreased by 27.49%(P<0.001) and 20.60%(P= 0.15),while the levels of serum T4 increased by 26.05%(P=0.008). The data of T4/T3 was also increased by choline of 2 960mg/kg. (3) The levels of serum IRS (P=0.004), T4 (P=0.041) and glucose (P=0.017) were related to FM03 mRNA levels.
     In summary, no significantly effects of FMO3 genotype on egg performance and egg quality were found, while the significant effects of genotype, choline and their interaction on yolk TMA concentration were observed. On the one hand, T329S mutation in the FMO3 gene causes a reduction of enzyme activity;on the other hand, high amounts of choline increased TMA production, but decreased FMO3 mRNA levels and activity.
引文
艾应伟,范志金,毛达如,张福锁.2001.畜禽粪含氮臭气成分的排放及其影响因素.农业环境与发展.(1):40-42.
    常元助,江泉观.1991.内源性甲胺类和亚硝基二甲胺的生成及其毒理学的意义.国外医学卫生学分册.5:274-276.
    陈豪,谭志荣,周宏灏.2008.含黄素单氧化酶3(FM03)结构、功能及其基因多态性的研究进展.中国药理学通报.24(10):1261-1264.
    陈杰.2003.家畜生理学.第四版.中国农业出版社:460.
    程忠刚,林映才,郑黎.2001.肉鸡皮肤和蛋鸡蛋黄的着色.饲料广角(5):23-26.
    福森功.1992.家畜粪尿处理施设脱臭技术.鸡の研究.5:52-55.
    张海军.2005.共轭亚油酸对肉仔鸡免疫反应的调节作用及机理.博士学位论文.北京:中国农业大学
    关新富,郭大智,端木道,杨凤,刘显义.1989.菜籽粕对肉用仔鸡血清中甲状腺激素浓度和生产性能的影响核农学报.3(4):244-250.
    胡望钧.1988.恶臭及其监测方法.环境污染与防治.10(1):38-39.
    金晶.2008.淡水鱼鱼糜制品脱腥技术及凝胶特性改良的研究.硕士学位论文.武汉:武汉工学院.
    亢守亭.2005.半胧胺和酵母铬对产蛋鸡生产性能、蛋品质及内分泌激素的影响.硕士学位论文.太原:山西农业大学.
    李丰.2010.水产品中氧化三甲胺、三甲胺、二甲胺检测方法及鱿鱼丝中甲醛控制研究.河北农业大学硕士学位论文
    李瑜.2010.不同水平脱脂DDGS对蛋鸡生产性能、蛋品质和血清生化指标的影响.中国农业科学.43(16):3433-3439.
    刘茜,沙滢涛,周兰,卓荦,刘良.2009.中国法医学杂志.24(4):265-248.
    刘焕良.2009.高温条件下日粮不同代谢能和蛋白质水平对蛋鸡生产性能和蛋品质的影响.硕士学位论文.武汉:华中农业大学.
    刘会君等.1989N-79LaSota系统苗对雏鸡的免疫试验.中国兽医杂志.15(7):22-29.
    刘显曾,李金生,成坚,于艳琴.1992.三甲胺(TMA)的毒性研究.天津轻工业学院学报.1:39-44.
    骆洪浚,江明生,王根虎.]996.氯化胆碱对肉鸡生长和血浆甲状腺激素水平的影响.广‘西农业科学.(2):99-101.
    马成林,陈琦昌,李力权,赵君,高晓伟.1992.应用三甲胺评价淡水鱼新鲜度的研究.兽医大学学报,12(4):353-399.
    秦辉.2008.中华绒螯蟹冻藏品质的研究.硕士论文.无锡:江南大学.
    孙长春.2010.鸡蛋中卵磷脂含量调控的研究.硕士学位论文.北京:中国农业科学院.
    孙长春,武书庚,张海军,岳洪源,齐广海.2010.饲粮添加大豆磷脂对产蛋鸡生产性能和 鸡蛋磷脂含量的影响.动物营养学报.22(4):1046-1053.
    唐胜球,盆小英,邹晓庭.2003.氧化三甲胺在动物营养上的研究进展.饲料研究.(8):19-21.
    王丽,宋敏,杭太俊,张正行,沈文斌,宋喆,陈坚.2009.NMR代谢组学法研究大蒜辣素对大鼠的作用机制.药学学报,44(9):1019-1024.
    王海峰.2006.我国饲料级氯化胆碱质量现状及三甲胺超标的危害.农业推广硕士学位论文.南京:南京农业大学
    王晶,武书庚,许丽,齐广海.2011.鱼腥味鸡蛋的研究进展.动物营养学报.23(3):370-375
    王晓亮.2009.遗传与环境因素对鸡蛋品质性状参数的影响及相关候选基因的研究.博士学位论文.北京:中国农业大学.
    王子云,王伟.2002.胺的碱性强弱及其影响因素.周口师范学院学报.19(5):31-34.
    吴常信.2009.动物遗传学.北京:高等教育出版社.266-272
    谢明,侯水生,黄苇.2005.胆碱降低动物脂肪沉积的营养作用机理.中国饲料,17:19-23
    许龙福,俞飞兰,胡振友,喻开瑞,金秀文.2005.火腿中三甲胺氮测定方法的修订及验证.预防医学论坛.11(6):641-643.
    于英杰.2006.牛肉新鲜度检验指标的研究.硕士学位论文.长春:吉林大学.
    张龙超.2007.鸡蛋品质性状遗传参数及相关候选基因研究.博士学位论文.北京:中国农业大学
    赵剑宇,颜贤忠,彭双清.2007.利用代谢组学技术研究中药关木通的肾毒性作用.世界科学技术:中医药现代化.9(5):54-59.
    赵丽娜.2007.不同原料中的n-3多不饱和脂肪酸在鸡蛋中富集规律及对蛋鸡生产性能和鸡蛋品质的影响.硕士学位论文.武汉:华中农业大学
    周素梅,郑河新,杜立华.2002.一起罕见的三甲胺中毒事故.中国工业医学杂志.15(4):255-256.
    Acara M, Camiolo S, Rennick B.1977. Renal N-oxidation of trimethylamine in the chicken during tubular excretion. Drug Metabolism and Disposition.5(1):82.
    Adithan C, Danda D, Shashindran C H, Bapna J S, Swaminathan R P, Chandrasekar S.1989. Differential effect of type I and type II diabetes mellitus on antipyrine elimination. Methods Find Exp Clin Pharmacol.11(12):755-758.
    Ambrosi C, Leoni L, Putignani L, Orsi N, Visca P.2000. Pseudobactin biogenesis in the plant growth-promoting rhizobacterium Pseudomonas strain B10:identification and functional analysis of the L-ornithine N5-oxygenase (psbA) gene. Journal of Bacteriology.182(21):6233.
    Anthonisen N, Connett J, Friedman B, Glass M, Kilday D P, Mingo T S, Rudolphus A, Williams G W.1991. Design of a clinical trial to test a treatment of the underlying cause of emphysema. Annals of the New York Academy of Sciences.624 Suppl:31-34.
    Atta-Asafo-Adjei E, Lawton M P, Philpot R.1993. Cloning, sequencing, distribution, and expression in Escherichia coli of flavin-containing monooxygenase 1C1. Evidence for a third gene subfamily in rabbits. Journal of Biological Chemistry.268(13):9681.
    Bin X, Yi-Min Z.2008.Changes of metabonomic profiles of rat urine after oral administration of Radix Gentianae decoction. Chinese Journal of Pharmacology and Toxicology.3.
    Blair R, Robblee A R, Dewar W A, Bolton W, Overfield N D.1975. Influence of dietary rapeseed meals and selenium on egg production and egg tainting in laying hens. Journal of the Science of Food and Agriculture.26(3):311-318.
    Bolton W, Carter T, Jones R M.1976. The hen's egg:Genetics of taints in eggs from hens fed on rapeseed meal. British Poultry Science.17(3):313-320.
    Borbas T.2006. Insulin as a regulator of flavin-containing monooxygenase enzyme in streptozotocin-induced diabetic rats. Ph.D. Thesis. Budapest:Semmelweis University.
    Braun E J, Sweazea K L.2008. Glucose regulation in birds. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology.151(1):1-9.
    Brunelle A, Bi Y A, Lin J, Russell B, Luy L, Berkrnan C, Cashman J.1997. Characterization of two human flavin-containing monooxygenase (form 3) enzymes expressed in Escherichia coli as maltose binding protein fusions. Drug Metabolism and Disposition.25(8):1001.
    Butler E J, Fenwick G.1984b. Trimethylamine and fishy taint in eggs. World's Poultry Science Journal.40(01):38-51.
    Butler E J, Pearson A W, Greenwood N M.1984a. Trimethylamine taint in eggs:the occurrence of the causative metabolic defect in commercial hybrids and pure breeds in relation to shell colour. Journal of the Science of Food and Agriculture.35(3):272-278.
    Cashman J R, Akerman B R, Forrest S M, Treacy E P.2000. Population-Specific Polymorphisms of the HumanFMO3 Gene:Significance for Detoxication. Drug Metabolism and Disposition.28(2):169.
    Cashman J R, Lattard V, Lin J.2004. Effect of total parenteral nutrition and choline on hepatic flavin-containing and cytochrome P-450 monooxygenase activity in rats. Drug Metabolism and Disposition.32(2):222.
    Cashman J R, Zhang J, Leushner J, Braun A.2001. Population distribution of human flavin-containing monooxygenase form 3:gene polymorphisms. Drug Metabolism and Disposition, 29(12):1629.
    Cashman J R, Zhang J.2002a. Interindividual differences of human flavin-containing monooxygenase 3:genetic polymorphisms and functional variation. Drug Metabolism and Disposition.30(10):1043.
    Cashman J R, Zhang J.2006. Human flavin-containing monooxygenases. Annual Review of Pharmacology and Toxicology.46:65-100.
    Cashman J R.1995. Structural and catalytic properties of the mammalian flavin-containing monooxygenase. Chem Research Toxicol.8(2):166-181. Chemical
    Cashman J R.1999. In vitro metabolism:FMO and related oxygenations. Handbook of drug metabolism.477-506.
    Cashman J R.2002b. Human flavin-containing monooxygenase (form 3):polymorphisms and variations in chemical metabolism. Pharmacogenomics.3(3):325-339.
    Cashman J, Camp K, Fakharzadeh S, Fennessey P, Hines R, Mamer O, Mitchell S, Preti G, Schlenk D, Smith R.2003. Biochemical and clinical aspects of the human flavin-containing monooxygenase form 3 (FMO3) related to trimethylaminuria. Current Drug Metabolism.4(2): 151-170.
    Catherine J H, Mockers O, Richard O, Roche-Poggi P, Guyot L, Olivi P, Chossegros C.2007. Revue de Stomatologie et de Chirurgie Maxillo-Faciale.108(1):46-50.
    Celius T, Pansoy A, Matthews J, Okey A B, Henderson M C, Krueger S K, Williams D E. 2010. Flavin-containing monooxygenase-3:Induction by 3-methylcholanthrene and complex regulation by xenobiotic chemicals in hepatoma cells and mouse liver. Toxicology and Applied Pharmacology.247(1):60-69.
    Celius T, Roblin S, Harper P A, Matthews J, Boutros P C, Pohjanvirta R, Okey A B.2008. Aryl hydrocarbon receptor-dependent induction of flavin-containing monooxygenase mRNAs in mouse liver. Drug Metabolism and Disposition.36(12):2499.
    Chalmers R, Bain M, Michelakakis H, Zschocke J, Iles R.2006. Diagnosis and management of trimethylaminuria (FMO3 deficiency) in children. Journal of Inherited Metabolic Disease.29(1): 162-172.
    Clandinin D, Bayly L, Caballero A.1966. Effects of (plus or minus)-5-vinyl-2-oxazolidinethione, a goitrogen in rapeseed meal, on the rate of growth and thyroid function of chicks. Poultry Science.45(4):833.
    Cosentino F, Hishikawa K, Katusic Z S, Luscher T F.1997. High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation.96(1):25.
    Danicke S, Ueberschar K H, Reese K, Weigend S.2006. Investigations on the effects of rape oil quality, choline and methionine concentration in diets for laying hens on the trimethylamine content of the eggs, on trimethylamine metabolism and on laying performance. Archives of Animal Nutrition.60(1):57-79.
    Defekt H.1999. Einsatz von behandelter Rapssaat bei braunen Legehennen. Die Bodenkultur. 45(50):1.
    Deniz F B.2007. Characterization and modulation by drugs and other effectors of bovine liver microsomal flavin monooxygenase (FMO). Master thesis. The Middle East Technical University.
    Derilo Y L, Balnave D.1980. The choline and sulphur amino acid requirements of broiler chickens fed on semi-purified diets. British Poultry Science.21(6):479-487.
    Dixit A, Roche T E.1984. Spectrophotometric assay of the flavin-containing monooxygenase and changes in its activity in female mouse liver with nutritional and diurnal conditions. Archives Of Biochemistry And Biophysics.233(1):50-63.
    Dolphin C T, Cullingford T E, Shephard E A, Smith R L, Phillips I R.1996. Differential developmental and tissue-specific regulation of expression of the genes encoding three members of the flavin-containing monooxygenase family of man, FMO1, FMO3 and FM04. Eur J Biochem. 235(3):683-689.
    Dolphin C T, Janmohamed A, Smith R L, Shephard E A.1997. Missense mutation in flavin-containing mono-oxygenase 3 gene, FMO3, underlies fish-odour syndrome. Nature Genetics. 17(4):491-494.
    Doree C, Golla F.1911. Trimethylamine as a normal constituent of human blood, urine and cerebrospinal fluid. Biochemical Journal.5(6-7):306.
    Dyer W.1945. Amines in fish muscle:1. Colorimetric determination of trimethylamine as the picrate salt. Journal of the Fisheries Research Board of Canada.6:351.
    Eddy B P.1953. Bacterial degradation of choline. Nature.171(4352):573-574.
    El-Alfy A T, Schlenk D.2002. Effect of 17a-estradiol and testosterone on the expression of flavin-containing monooxygenase and the toxicity of aldicarb to Japanese medaka, Oryzias latipes. Toxicological Sciences.68(2):381.
    Engler H, Taurog A, Nakashima T.1982. Mechanism of inactivation of thyroid peroxidase by thioureylene drugs. Biochemical Pharmacology.31(23):3801-3806.
    Eswaramoorthy S, Bonanno J B, Burley S K, Swaminathan S.2006. Mechanism of action of a flavin-containing monooxygenase. Proceedings of the National Academy of Sciences.103(26): 9832-9837.
    Fairbanks B, Krider J.1945. Significance of B vitamins in swine nutrition. Journal of the American Veterinary Medical Association.26:18-23.
    Falls J G, Cherrington N J, Clements K M, Philpot R M, Levi P E, Rose R L, Hodgson E.1997. Molecular cloning, sequencing, and expression in Escherichia coli of mouse flavin-containing monooxygenase 3 (FM03):comparison with the human isoform. Archives of Biochemistry and Biophysics.347(1):9-18.
    Fenwick G, Butler E, Brewster M.1983. Are brassica vegetables aggravating factors in trimethylaminuria (fish odour syndrome)? The Lancet.322(8355):916.
    Fenwick G, Curl C, Pearson A, Butler E.1981a. Production of egg taint by fish meal. The Veterinary Record.109(13):292.
    Fenwick G, Pearson A, Greenwood N, Butler E.1981b. Rapeseed meal tannins and egg taint. Animal Feed Science and Technology.6(4):421-431.
    Firstbrook J. Effect of choline chloride on development of atherosclerosis in the rabbit.1950, 74,741.
    Folch J, Lees M, Sloane G H.1956. A sample method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry.497-509.
    Fouts P J.1943. Vitamin B complex studies in dogs:Production of cirrhosis of liver. The Journal of Nutrition.25(3):217.
    Fujieda M, Yamazaki H, Togashi M, Saito T, Kamataki T.2003. Two novel single nucleotide polymorphisms (SNPs) of the FMO3 gene in Japanese. Drug Metabolism and Pharmacokinetics. 18(5):333-335.
    Fulton J.2008. Molecular genetics in a modern poultry breeding organization. World's Poultry Science Journal.64(02):171-176.
    Goh Y, Clandinin D, Robblee A, Darlington K.1979. The effect of level of sinapine in a laying ration on the incidence of fishy odor in eggs from brown-shelled egg layers. Canadian Journal of Animal Science.59:313-316.
    Goldstein L, Hartman S C, Forster R P.1967. On the origin of trimethylamine oxide in the spiny dogfish, Squalus acanthias. Comparative Biochemistry and Physiology 21:719-722.
    Griffiths N M, Land D, Hobson-Frohock A.1979. Trimethylamine and egg taint. British Poultry Science.20(6):555-558.
    Grollman A.1929. The urine of the goosefish (Lophius piscatorius):its nitrogenous constituents with special reference to the presence in it of trimethylamine oxide. Journal of Biological Chemistry.81(2):267.
    Guest I, Varma D R.1992. Teratogenic and macromolecular synthesis inhibitory effects of trimethylamine on mouse embryos in culture. Journal of Toxicology and Environmental Health Sciences.36(1):27-41.
    Guo L, Mei N, Liao W, Chan P C, Fu P P.2010. Ginkgo Biloba Extract Induces Gene Expression Changes in Xenobiotics Metabolism and the Myc-Centered Network. Journal of Integrative Biology.14(1):75-90.
    Gyorgy P, Goldblatt H.1942. Observations on the conditions of dietary hepatic injury (necrosis, cirrhosis) in rats. The Journal of Experimental Medicine.75(4):355.
    Hawrysh Z, Clandinin D, Robblee A, Hardin R, Darlington K.1975. Influence of rapeseed meal on the odor and flavor of eggs from different breeds of chickens. Canadian Institute of Food Science and Technology Journal.8(1):51-54.
    Hawrysh Z, Sam R, Robblee A, Hardin R.1982. Influence of low glucosinolate canola meals (cv. Regent and Candle) on the eating quality of broiler chickens. Poultry Science.61:2375-2384.
    Hawrysh Z, Steedman-Douglas C, Robblee A, Hardin R, Sam R.1980. Influence of low glucosinolate (cv. Tower) rapeseed meal on the eating quality of broiler chickens.1. Subjective evaluation by a trained test panel and objective measurements. Poultry Science.59(3):550-557.
    Heald P, Badman H.1963. Lipid metabolism and the laying hen:I. Plasma-free fatty acids and the onset of laying in the domestic fowl. Biochimica et Biophysica Acta (BBA)-Specialized Section on Lipids and Related Subjects.70:381-388.
    Hermann G.1947. Some experimental studies in hypercholesterolemic states. Experimental Medicine andSurgery.5(2-3):149.
    Higgins T, Chaykin Keith B.1972. Trimethylamine N-oxide synthesis:A human variant* 1. Biochemical Medicine.6(4):392-396.
    Hines R N, Hopp K A, Franco J, Saeian K, Begun F P.2002. Alternative processing of the human FMO6 gene renders transcripts incapable of encoding a functional flavin-containing monooxygenase. Molecuar and Cellular Pharmacology.62(2):320-325.
    Hines R N.2006. Developmental and tissue-specific expression of human flavin-containing monooxygenases 1 and 3. Expert Opinion on Drug Metabolism and Toxicology.2:41-49.
    Hisamuddin I M, Wehbi M A, Chao A, Wyre H W, Hylind L M, Giardiello F M, Yang V W. 2004. Genetic polymorphisms of human flavin monooxygenase 3 in sulindac-mediated primary chemoprevention of familial adenomatous polyposis. Clinical Cancer Research.10(24):8357-8362.
    Hobson-Frohock A, Fenwick R, Land D, Curtis R, Gulliver A.1975. Rapeseed meal and egg taint. British Poultry Science.16(2):219-222.
    Hobson-Frohock A, Land D, Griffiths N M, Curtis R.1973. Egg taints:association with trimethylamine. Nature.243:304-305.
    Honkatukia M, Reese K, Preisinger R, Tuiskula-Haavisto M, Weigend S, Roito J, Maki-Tanila A, Vilkki J.2005. Fishy taint in chicken eggs is associated with a substitution within a conserved motif of the FMO3 gene. Genomics.86(2):225-232.
    Horiguchi K, Shimizu K, Ishibashi T.1999. Studies on Transference of Fishy Odor Trimethylamine in Eggs. Bulletin of Animal Hygiene.7-14.
    Horiguchi K, Shimizu K, Totsuka K, Yamamoto A, Itoh T, Fujimura S, Ishibashi T.1998. White leghorn hens supplied excess choline, rapeseed meal or fish meal produce fishy odor free eggs. Animal Science and Technology (Japan).69:22-25.
    Humbert J, Hammond K B, Hathaway W E.1970. Trimethylaminuria:the fish-odour syndrome. Lancet.2(7676):770.
    Janmohamed A, Hernandez D, Phillips I R, Shephard E A.2004. Cell-, tissue-, sex-and developmental stage-specific expression of mouse flavin-containing monooxygenases (Fmos). Biochemical Pharmacology.68(1):73-83.
    Kaderlik R, Weser E, Ziegler D.1991. Selective loss of liver flavin-containing monooxygenases in rats on chemically defined diets. Prog. Pharmacol. Clin. Pharmacol.3:95-103.
    Katchamart S, Stresser D M, Dehal S S, Kupfer D, Williams D E.2000. Concurrent flavin-containing monooxygenase down-regulation and cytochrome P-450 induction by dietary indoles in rat:implications for drug-drug interaction. Drug Metabolism and Disposition.28(8):930.
    Kesten H, Silbowitz R.1942. Experimental atherosclerosis and soya lecithin. Proceedings of the Society for Experimental Biology and Medicine 49,71-73.
    Ketola H, Nesheim M C.1974. Influence of dietary protein and methionine levels on the requirement for choline by chickens. The Journal of Nutrition.104(11):1484.
    Kim Y M, Ziegler D M.2000. Size limits of thiocarbamides accepted as substrates by human flavin-containing monooxygenase 1. Drug Metabolism and Disposition.28(8):1003.
    Klick D E, Hines R N.2007. Mechanisms regulating human FMO3 transcription. Drug Metabolism Reviews.39(2-3):419-442.
    Klick D E, Shadley J D, Hines R N.2008. Differential regulation of human hepatic flavin containing monooxygenase 3 (FMO3) by CCAAT/enhancer-binding protein [beta](C/EBP [beta]) liver inhibitory and liver activating proteins. Biochemical Pharmacology.76(2):268-278.
    Kretzschmar K, D nicke S, Schmutz M, Preisinger R, Weigend S.2009. Interactions of flavin containing monooxygenase 3 (FMO3) genotype and feeding of choline and rapeseed cake on the trimethylamine (TMA) content in egg yolks of laying hens. Archives of Animal Nutrition.63(3): 173-187.
    Kretzschmar K, Reese K, Honkatukia M, Eding H, Preisinger R, Karl H, Danicke S, Weigend S.2007. Effect of flavin containing monooxygenase (FMO3) genotype on trimethylamine (TMA) content in the chicken egg yolk. Archiv fur Geflugelkunde.71(5):200-206.
    Krueger S K, Williams D E.2005. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacology & Therapeutics.106(3):357-387.
    Kubota M, Nakamoto Y, Nakayama K, Ujjin P, Satarug S, Mushiroda T, Yokoi T, Funayama M, Kamataki T.2002. A mutation in the flavin-containing monooxygenase 3 gene and its effects on catalytic activity for N-oxidation of trimethylamine in vitro. Drug Metabolism and Pharmacokinetics.17(3):207-213.
    Kwong E, Fiala G, Barnes R H, Kan D, Levenson S M.1968. Choline biosynthesis in germfree rats. The Journal of Nutrition.96(1):10.
    Lang D H, Yeung C K, Peter R M, Ibarra C, Gasser R, Itagaki K, Philpot R M, Rettie A E. 1998. Isoform specificity of trimethylamine N-oxygenation by human flavin-containing monooxygenase (FMO) and P450 enzymes:selective catalysis by FMO3. Biochemical Pharmacology.56(8):1005-1012.
    Large P J.1983. Methylotrophy and methanogenesis. Van Nostrand Reinhold Co. Ltd., Workingham, United Kingdom.
    Lattard V, Zhang J, Cashman J R.2004. Alternative processing events in human FMO genes. Molecular Pharmacology.65(6):1517.
    Lattard V, Zhang J, Tran Q, Furnes B, Schlenk D, Cashman J R.2003. Two new polymorphisms of the FMO3 gene in Caucasian and African-American populations:comparative genetic and functional studies. Drug Metabolism and Disposition.31(7):854-860.
    Lawton M P, Gasser R, Tynes R E, Hodgson E, Philpot R M.1990. The flavin-containing monooxygenase enzymes expressed in rabbit liver and lung are products of related but distinctly different genes. Journal of Biological Chemistry.265(10):5855-5861.
    Lee C, Yu J S, Turner B B, Murray K E.1976. Trimethylaminuria:fishy odors in children. The New England Journal of Medicine.295(17):937.
    Leeson S, Summers J.2001. Nutrition of the chicken.4th ed. Univ. Books. Guelph. Ontario. Canada.
    Livak K J, Schmittgen T D.2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods,25:402-408.
    Lombardi B.1971. Effects of choline deficiency on rat hepatocytes. Fed P.30:139.
    Lowis S, Eastwood M A, Brydon W G.1985.The influence of creatinine, lecithin and choline feeding on aliphatic amine production and excretion in the rat. British Journal of Nutrition.54(1): 43-51.
    Lunden A, Gustafsson V, Imhof M, Gauch R, Bosset J O.2002. High trimethylamine concentration in milk from cows on standard diets is expressed as fishy off-flavour. Journal of Dairy Research.69(03):383-390.
    Mackay R J, McEntyre C J, Henderson C, Lever M. George P M.2011. Trimethylaminuria: causes and diagnosis of a socially distressing condition. Clinical Biochemistry Reviews.32(1): 33-43.
    Maker J R, Struempler A, Chaykin S.1963. A comparative study of trimethylamine-N-oxide biosynthesis. Biochimica et Biophysica Acta.71:58-64.
    March B, MacMillan C.1979. Trimethylamine production in the caeca and small intestine as a cause of fishy taints in eggs. Poultry Science.58:93-98.
    Martin F P, Wang Y, Sprenger N, Yap I K, Lundstedt T, Lek P, Rezzi S, Ramadan Z, van Bladeren P, Fay L B, Kochhar S, Lindon J C, Holmes E, Nicholson J K.2008. Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model. Molecular Systems Biology.4:157.
    Marza V, Marza E.1935. The formation of the hen's egg. The Quarterly Journal of Microscopical Science.78:134-189.
    Matzke G R, Frye R F, Early J J, Straka R J, Carson S W.2000. Evaluation of the influence of diabetes mellitus on antipyrine metabolism and CYP1A2 and CYP2D6 activity. Pharmacotherapy. 20(2):182-190.
    Mitchell S, Smith R.2001. Trimethylaminuria:the fish malodor syndrome. Drug Metabolism and Disposition.29(4):517.
    Moller B, Hippe H, Gottschalk G.1986. Degradation of various amine compounds by mesophilic clostridia. Archives of Microbiology.145(1):85-90.
    Mueller W, Amezcua A A.1959. The relationship between certain thyroid characteristics of pullets and their egg production, body weight and environment. Poultry Science.38(3):620.
    Murphy H C, Dolphin C T, Janmohamed A, Holmes H C, Michelakakis H, Shephard E A, Chalmers R A, Phillips I R, Iles R A.2000. A novel mutation in the flavin-containing monooxygenase 3 gene, FMO3, that causes fish-odour syndrome:activity of the mutant enzyme assessed by proton NMR spectroscopy. Pharmacogenetics and Genomics.10(5):439.
    Mushiroda T, Yokoi T, Takahara E, Nagata O, Kato H, Kamataki T.1999. Sensitive assay of trimethylamine N-oxide in liver microsomes by headspace gas chromatography with flame thermionic detection. Journal of Chromatography. B, Biomedical Sciences and Applications.734(2): 319-323.
    Olson R E, Jablonski J R, Taylor E.1958a. The effect of dietary protein, fat, and choline upon the serum lipids and lipoproteins of the rat. The American Journal of Clinical Nutrition.6(2):111.
    Olson R E, Vester J W, Gursey D, Davis N, Longman D.1958b. The effect of low-protein diets upon serum cholesterol in man. The American Journal of Clinical Nutrition.6(3):310.
    Overfield N, Elson H.1975. Dietary rapeseed meal and the incidence of tainted eggs. British Poultry Science.16(2):213-217.
    Patel R D, Hollingshead B D, Omiecinski C J, Perdew G H.2007. Arylhydrocarbon receptor activation regulates constitutive androstane receptor levels in murine and human liver. Hepatology. 46(1):209-218.
    Pearson A W, Butler E J, Curtis R F, Fenwick G R, Hobson-Frohock A, Land D G.1979a. Rapeseed meal and egg taint:Demonstration of the metabolic defect in male and female chicks. The Veterinary Record.104(14):318-319.
    Pearson A W, Butler E J, Curtis R F, Fenwick G R, Hobson-Frohock A, Land D G.1979b. Eff-ect of rapeseed meal on trimethylamine metabolism in the domestic fowl in relation to egg taint. Journal of Science of Food and Agriculture,30:799-804.
    Pearson A W, Butler E J, Fenwick G R.1980. Rapeseed meal and egg taint:The role of sinapine. Journal of the Science of Food and Agricullure,31:898.
    Pearson A W, Greenwood N M, Butler E J, Curl C L, Fenwick G R.1983a. Fish meal and egg taint. Journal of the Science of Food and Agriculture.34(3):277-285.
    Pearson A W, Greenwood N M, Butler E J, Curl C L, Fenwick G R.1983b. The involvement of trimethylamine oxide in fish meal in the production of egg taint. Animal Feed Science and Technology,8:119.
    Pearson A W, Greenwood N M, Butler E J, Fenwick G R.1982. The effect of thionamides and related compounds on trimethylamine oxidase activity in hepatic microsomes isolated from chickens (Gallus domesticus). Comparative Biochemistry and Physiology Part C:Comparative Pharmacology.73(2):389-393.
    Pearson A, Greenwood N, Butler E, Fenwick G.1981. The inhibition of trimethylamine oxidation in the domestic fowl (Gallus domesticus) by antithyroid compounds. Comparative Biochemistry and Physiology Part C:Comparative Pharmacology.69(2):307-312.
    Phil C C J C P D D.1953. Amine Oxidcs. Reviews Of pure and applied chemistry.3:83.
    Phillips I R, Francois A A, Shephard E A.2007. The flavin-containing monoooxygenases (FMOs):genetic variation and its consequences for the metabolism of therapeutic drugs. Current Pharmacogenomics.5(4):292-313.
    Podadera P, Areas J A G, Lanfer-Marquez U M.2005. Diagnosis of suspected trimethylaminuria by NMR spectroscopy. Clinica Chimica Acta.351(1-2):149-154.
    Poulsen L L, Ziegler D M.1979. The liver microsomal FAD-containing monooxygenase: spectral characterization and kinetic studies. The Journal of Biological Chemistry.254(14): 6449-6455.
    Poulsen L L.1981. Organic sulfur substrates for the microsomal flavin-containing monooxygenase. Rev. Journal of Biochemistry andToxicology.3:33-49.
    Qiao H, Classen H L.2003. Nutritional and physiological effects of rapeseed meal sinapine in broiler chickens and its metabolism in the digestive tract. Journal of the Science of Food and Agriculture.83(14):1430-1438.
    Rasooly R, Kelley D S, Greg J, Mackey B E.2007. Dietary trans 10, cis 12-conjugated linoleic acid reduces the expression of fatty acid oxidation and drug detoxification enzymes in mouse liver. British Journal of Nutrition.97(1):58-66.
    Rebouche C J, Chenard C A.1991. Metabolic fate of dietary carnitine in human adults: identification and quantification of urinary and fecal metabolites. The Journal of Nutrition.121(4): 539-546.
    Renner R, Elcombe A.1967. Metabolic effects of feeding (?)°carbohydrate-free(?)± diets to chicks. The Journal of Nutrition.93(1):31.
    Rettie A E, Fisher M B.1999. Transformation enzymes:oxidative; non-P450. Handbook of Drug Metabolism.132-151.
    Ripp S L, Itagaki K, Philpot R M, Elfarra A A.1999. Species and sex differences in expression of flavin-containing monooxygenase form 3 in liver and kidney microsomes. Drug Metabolism and Disposition.27(1):46.
    Robins S, Armstrong M.1976. Billiary lecithin secretion. Ⅱ. Effects of dietary choline and biliary lecithin synthesis. Gastroenterology.70(3):397.
    Ryu S D, Yi H G, Cha Y N, Kang J H, Kang J S, Jeon Y C, Park H K, Yu T M, Lee J N, Park C S.2004. Flavin-containing monooxygenase activity can be inhibited by nitric oxide-mediated S-nitrosylation. Life Sciences.75(21):2559-2572.
    Schlaich N L.2007. Flavin-containing monooxygenases in plants:looking beyond detox. Trends Plant Science.12(9):412-418.
    Settar P, Fulton J E, Jarango J, Arthur J A, O'Sullivan N P.2008. Association of FMO3 gene with egg production and quality traits in brown layers. Poultry Science Association Annual.
    Shimizu M, Yano H, Nagashima S, Murayama N, Zhang J, Cashman J R, Yamazaki H.2007. Effect of genetic variants of the human flavin-containing monooxygenase 3 on N-and S-oxygenation activities. Drug Metabolism and Disposition.35(3):328.
    Simenhoff M L, Ginn H E, Teschan P E.1977. Toxicity of aliphatic amines in uremia. Transaction of American Society for Artificial Internal Organs.23:560-565.
    Smith J L.1992. Pharmacokinetics of methylamines. Ph. D. thesis. Massachusetts: Massachusetts Institute of Technology.
    Smith J L, Wishnok J S, Deen W M.1994. Metabolism and excretion of methylamines in rats. Toxicology and Applied Pharmacology.125(2):296-308.
    Smith M B, Reynolds T M, Buckingham C P, Back J F.1974. Studies on the carbohydrate of egg-white ovomucin. Australian Journal of Biological Sciences.27(4):349-360.
    Southern L, Brown D, Werner D, Fox M.1986. Excess supplemental choline for swine. Journal of Animal Science.62(4):992.
    Spellacy E, Watts R W E, Goolamali S.1979. Trimethylaminuria. Journal of Inherited Metabolic Disease.2(4):85-88.
    Spitaler M, Graier W.2002. Vascular targets of redox signalling in diabetes mellitus. Diabetologia.45(4):476-494.
    Stehr M, Diekmann H, Smau L, Seth O, Ghisla S, Singh M, Macheroux P.1998. A hydrophobic sequence motif common to N-hydroxylating enzymes. Trends Biochemical Science. 23(2):56-57.
    Tijet N, Boutros P C, Moffat I D, Okey A B, Tuomisto J, Pohjanvirta R.2006. Aryl hydrocarbon receptor regulates distinct dioxin-dependent and dioxin-independent gene batteries. Molecular Pharmacology.69(1):140.
    Tinker D A, Brosnan J T, Herzberg G R.1986. Interorgan metabolism of amino acids, glucose, lactate, glycerol and uric acid in the domestic fowl (Gallus domesticus). Biochemical Journal. 240(3):829.
    Vogt H, Harnisch S.1991. Choline in laying hen diets. Archiv fuer Gefluegelkunde (Germany, FR).55:236-240.
    Vondell J.1932. Is the production of off-flavor" eggs an individual characteristic. Poultry Science.11:375.
    Vondell J.1948. Detection of chickens laying" fishy eggs". Poultry Science.27:244.
    Wakeling D, Fenwick G, Pearson A, Butler E.1980. Fish meal and egg taint. Veterinary Record.107(18).
    Wakeling D.1982. A fishy taint in eggs:Interaction between fishmeal diets and strain of bird. British Poultry Science.23(2):89-93.
    Ward A K.2008.Genetic and dietary interactions of fishy-egg taint in brown-shelled laying hens. Master thesis. Saskatoon:University of Saskatchewan.
    Ward A, Classen H, Buchanan F.2009. Fishy-egg tainting is recessively inherited when brown-shelled layers are fed canola meal. Poultry Science.88(4):714.
    Wastl H.1942. Effects of trimethylamine on growth and sexual development in the rat. Journal of Physiolosphy.101(2):192-199.
    Wills M R, Savory J.1981. Biochemistry of renal failure. Annals Clinical and Laboratory Science.11(4):292-299.
    Wyatt M K, Overby L H, Lawton M P, Philpot R M.1998. Identification of amino acid residues associated with modulation of flavin-containing monooxygenase (FMO) activity by imipramine:structure/function studies with FMO1 from pig and rabbit. Biochemistry.37(17): 5930-5938.
    Yamauchi H, Yamamura Y.1984. Metabolism and excretion of orally ingested trimethylarsenic in man. Bulletin of environmental contamination and toxicology.32(1):682-687.
    Yamazaki H, Fujieda M, Togashi M, Saito T, Preti G, Cashman J R, Kamataki T.2004. Effects of the dietary supplements, activated charcoal and copper chlorophyllin, on urinary excretion of trimethylamine in Japanese trimethylaminuria patients. Life Sciences.74(22):2739-2747.
    Yamazaki H, Fujita H, Gunji T, Zhang J, Kamataki T, Cashman J R, Shimizu M.2007. Stop codon mutations in the flavin-containing monooxygenase 3 (FMO3) gene responsible for trimethylaminuria in a Japanese population. Molecular Genetics and Metabolism.90(1):58-63.
    Yauk C L, Jackson K, Malowany M, Williams A.2010. Lack of change in microRNA expression in adult mouse liver following treatment with benzo (a) pyrene despite robust mRNA transcriptional response. Mutation Research/Genetic Toxicology and Environmental Mutagenesis.
    Yeung C K, Lang D H, Thummel K E, Rettie A E.2000. Immunoquantitation of FMO1 in human liver, kidney, and intestine. Drug Metabolism and Disposition.28(9):1107.
    Yeung C K, Adman E T, Rettie A E.2007. Functional characterization of genetic variants of human FMO3 associated with trimethylaminuria. Archives of Biochemistry and Biophysics.464(2): 251-259.
    Zeisel S H, daCosta K A, LaMont J T.1988. Mono-, di- and trimethylamine in human gastric fluid:potential substrates for nitrosodimethylamine formation. Carcinogenesis.9(1):179-181.
    Zeisel S H, daCosta K A, Youssef M, Hensey S.1989. Conversion of dietary choline to trimethylamine and dimethylamine in rats:dose-response relationship. The Journal of Nutrition. 119(5):800.
    Zeisel S H, Gettner S, Youssef M.1989. Formation of aliphatic amine precursors of N-nitrosodimethylamine after oral administration of choline and choline analogues in the rat. Food Chemistry and Toxicology.27(1):31-34.
    Zeisel S H, Stanbury J B, Wurtman R J, Brigida M, Fierro-Benitez R.1982. Choline content of mothers'milk in Ecuador and Boston. The New England Journal of Medicine.306(3):175-176.
    Zentek J, Kamphues J.2002. Investigations of antibiotic and dietary influences on egg taint. Wiener Tierarztliche Monatsschrift.89(4):100-106.
    Zhang A Q, Mitchell S C, Smith R L.1999. Dietary precursors of trimethylamine in man:a pilot study. Food Chemistry and Toxicology.37(5):515-520.
    Zhao Y, Christensen S K, Fankhauser C, Cashman J R, Cohen J D, Weigel D, Chory J.2001. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science.291(5502):306.
    Zhou J, Shephard E A.2006. Mutation, polymorphism and perspectives for the future of human flavin-containing monooxygenase 3. Mutation Research/Reviews in Mutation Research. 612(3):165-171.
    Ziegler D M.2002. An overview of the mechanism, substrate specificities, and structure of FMOs. Drug Metabolism Reviews.34(3):503-511.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700