獐子岛海域浮游动物群落时空变化特征及其与环境因子之间的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
獐子岛海域地处北黄海长山群岛南端,距离辽东半岛南侧最近距离50公里,距离鸭绿江口150公里,是我国北方虾夷扇贝的重要的养殖区。该海域物理环境季节变化明显,夏季受黄海冷水团和鸭绿江冲淡水影响,冬季沿岸流和黄海暖流作用较大,是开展生物-物理耦合研究的理想海域
     本论文利用2009年7月-2010年6月(除2010年1月与5月受恶劣天气影响未能登岛外)在獐子岛海域的周年逐月调查,分析了獐子岛海域浮游动物种类组成和丰度的周年变化情况,并分析了与环境因子的关系;通过与1959年普查时期浮游动物的周年变化数据对比,分析了该海域浮游动物群落的长期变化趋势。同时,重点分析了黄海冷水团对营养盐与叶绿素a浓度时空变化的影响,以及在中华哲水蚤种群结构和丰度周年变化过程中的作用主要研究结果如下:
     在调查期间獐子岛海域大网出现浮游动物29种,浮游幼虫7种,共计36种,其中:中华哲水蚤和强壮箭虫为该海域全年优势种;细长脚(虫戎)在全年均有出现,主要为冬春季的优势种;双刺唇角水蚤、克氏纺锤水蚤、夜光虫、长腕类幼体同时为海域春季的优势种;鸟喙尖头溞为9月份优势种。该海域浮游动物年丰度和饵料生物量平均值分别为131.3ind/m3和217.5mg/m3,高峰值出现在6月,低值出现在8月。10月和11月观测到栉水母大量出现,并且10月份水母生物量与浮游动物丰度具有显著的负相关(P<0.05)。该海域生物多样性指数,丰富度指数最高值分别出现在4月(1.81)和10月(1.56);均匀性指数较高,年平均值为0.49。与1959年普查数据相比,浮游动物优势种组成变动不大,丰度和多样性指数总体水平相近,但是2009年调查期间总丰度的波动幅度显著提高。
     獐子岛海域夏秋季的营养盐和叶绿素浓度时空分布格局主要受黄海冷水团影响。2009年温跃层主要在7月到10的外海出现,表层盐度的降低出现在养殖海域的7月和8月。夏季(7月-9月)营养盐浓度在养殖区和外海都随深度的增加而不断增加,在11月和12月,各水层浓度分布较为平均。在水柱平均值上,除了铵盐,其它的营养盐都是从夏季到秋季不断增加。低于浮游植物最低吸收阈值的营养盐限制主要出现在夏季表层,但是化学计量学上的N限制在7月-12月一直存在。水柱叶绿素平均浓度7月-12月在外海要低于养殖区,8月10月养殖区叶绿素a浓度显著提高,但是在外海叶绿素a浓度变化较小。我们的结果显示营养盐限制主要出现在黄海冷水团存在的夏季表层,冲淡水的输入和黄海冷水团营养盐的积累能够促进浮游植物初级生产,虽然8月份降雨导致了浮游植物大量爆发,但是影响仅限于表层,虾夷扇贝的可利用食物并没有显著增加。与筏式养殖相比,贝类底播养殖并没有给生态环境造成很大影响,它能改变营养盐之间的比值,对叶绿素a浓度几乎没有影响。关于底播养殖对环境影响的调查有待于在大的区域进行更深入的调查研究。
     黄海冷水团一直是优势种中华哲水蚤在中国沿海的度夏场所。在我们的周年调查中,中华哲水蚤的总丰度在10月份最低,在6月份最高;雌雄性比在2月份最高,8月份最低。水平分布的差异主要出现在黄海冷水团存在期间,在6月中华哲水蚤在养殖区的丰度为158.8ind/m3,在外海的丰度为532.1ind/m3;从7月到8月,黄海冷水团外中华哲水蚤的丰度从50.4ind/m3降低到1.9ind/m3,而在黄海冷水团内部中华哲水蚤丰度相似,分别为322.0ind/m3和324.4ind/m3。当9月份,黄海冷水团减弱的时候,中华哲水蚤分布较为平均。我们的结果显示黄海冷水团在春季延迟了中华哲水蚤的种群补充,但是在夏季保存了相当数量的度夏种群。成功度夏的种群在秋季扩散到近岸水域。除了低温,稳定的垂直结构也是中华哲水蚤度夏的关键条件。与黄海冷水团中部相比,边缘区也保存了相当丰度的中华哲水蚤度夏种群,但是种群结构(C5期个体所占比例及雌雄性比)明显不同。
The Zhangzi Island area, an important farming area for Patinopecten yessoensisin the Northern Yellow Sea, locates in the south part of the Changshan Archipelago,abouth50km from the south coast of Liaodong Penisulla and150km from the YaluRiver Estuary. Due to clear seasonal variation of physical environment, it is alsosuggested as an ideal place for biological-physical coupling studies.The physicalpattern is determined by the Yellow Sea Cold Water Mess (YSCWM) and Yalu Riverfreshwater discharge in summer and by coastal currents and the Yellow Sea WarmCurrent (YSWC) in winter.
     In this study, monthly investgation was carried from July2009to June2010(except January and May for bad weather). Annual variation of zooplanktoncommunity was analyzed in relation to environmental conditions, includingtemperature regime, nutrient and Chlorophyll-a (Chl-a) concentrations. Long-termchange of zooplankton community was investigated through comparison withhistorical data in1959. Impacts of the YSCWM were emphasized on regimes ofnutrient and Chl a concentrations and population recruitment of Calanus sinicus,respectively.
     During the investigation, a total of29zooplankton species and7planktoniclarvae were indentified. Calanus sinicus and Saggita crassa were observed asdominant species in all months. Themisto gracilipes was sampled in each month, butrecorded as dominant species only in winter and spring. In spring, Labidocerabipinnata, Acartia clausi, Noctiluca scintillans and Ophiopluteus larvae were alsorecorded as dominant species. Penetia avirostris was recorded as dominant speciesonly in September. Zooplankton abundance (non-jellyfish) and biomass were highestin June and lowest in August, with annual averages of131.3ind/m3and217.5mg/m3. A ctenophores Beroe bloom was observed in October and November. Beroe biomasscorrelated negatively and significantly with other zooplankton abundance in October(P<0.05). Zooplankton species diversity was highest in October (1.56), and richnessindex was highest in April (1.81). The average value of eveness index was0.49. Thedomiant species of zooplankton community and annual variation of total abundance inthis study was similar to those recorded in the former study in1959, indicating lowpossibility of regime shift. The difference in species composition may result frominter-annual variation in freshwater discharge and warm currents intrusion
     Regimes of nutrient and Chl a concentration in summer and autumn wasdetermined mainly by the YSCWM. In2009, significant thermal stratificationpresented from July to October in open waters, and salinity decrease appeared in Julyand August in surface layers in mariculture area. Nutrient concentrations increasedwith depth in both areas in summer, but were similar through water column inNovember and December. On average, nutrient increased from summer to autumn inall components except ammonia. Nutrient concentrations lower than the minimumthresholds for phytoplankton growth presented only in upper layers in summer, butstoichiometric nitrogen limitation existed from July to December. Column averagedChl-a concentration was lower in open waters than in mariculture from July toDecember. It increased significantly in August and October in mariculture area, andwas less variable in open waters. Our results showed that nutrients limitation tophytoplankton growth presented mainly in upper layer in association withstratification caused by YSCWM in summer. Freshwater input and upwelling ofnutrients accumulated in YSCWM can stimulate phytoplankton production inmariculture area. Although phytoplankton bloom was induced by rainfall, littlecontribution was expected to food availability, as it was limited in surface layer.
     The Yellow Sea Cold Water Mass (YSCWM) was suggested an over-summeringsite of the dominant copepod species Calanus sinicus in coastal China Seas. In ourstudy, total abundance was lowest in October and highest in June, and sex ratio washighest in February and lowest in August. Evident spatial difference in abundance wasobserved during existence of the YSCWM. In June, total abundance averaged in 158.8ind/m3at well-stratified stations, and532.1ind/m3at the other stations. FromJuly to August, abundance decreased from50.4to1.9ind/m3outside the YSCWM, butsimilarly high abundance of322.0and324.4ind/m3was recorded inside. When theYSCWM disappeared in September, C. sinicus distributed evenly over the study area.Our results indicate that existence of YSCWM retarded population recruitment inspring but preserved a cohort with considerable abundance in summer. Theover-summered population was transported to neritic waters in autumn. Besides lowtemperature, stable vertical structure is also essential condition for preservation ofover-summer population. Comparing to the central YSCWM area, C. sinicus cansurvive summer condition with considerable abundance in marginal area, butpopulation structure was completely different in terms of C5proportion and sex ratio.
引文
ANDERSEN S, NASS K E1993. Shell growth and survival of scallop (Pecten maximus L) in afertilized shallow seawater pond. Aquaculture[J],110:71–86.
    ANRAKU M1962. The separation of copepod populations in a natural environment: a summary.Rapp. Proces-Verbaux Reunions Conseil Perm. Intern. Exploration Mer [J],153:165-176.
    ARIN L, ESTRADA M, SALAT J, CRUZADO A2005. Spatio-temporal variability of sizefractionated phytoplankton on the shelf adjacent to the EbroRiver (NW Mediterranean).Continental Shelf Research[J],25:1081-1095.
    ASMUS R M, ASMUS H1991. Mussel beds: limiting or promoting phytoplankton? Journal ofExperimental Marine Biology and Ecology [J],148:215-232.
    BEAUGRAND G, BRANDER K M, LINDLEY J A, et al.2003. Plankton effect on codrecruitment in the North Sea. Nature [J],426:661-664.
    BEC B, COLLOS Y, SOUCHU P VAQUER A2011. Distribution of picophytoplankton andnanophytoplankton along an anthropogenic eutrophication gradient in French Mediterraneancoastal lagoons. Aquatic Microbial Ecology[J],63:29-45.
    BURFORD M1997. Phytoplankton dynamics in shrimp ponds. Aquaculture Research[J],28:351-360.
    BURY S J, BOYD P W, PRESTON T, SAVIDGE G, OWENS N J P2001. Size-fractionatedprimary production and nitrogen uptake during a North Atlantic phytoplankton bloom:implications for carbon export estimates. Deep Sea Research part I:Oceanograghic ResearchPapers[J],48:689-720.
    CAD E G, HEGEMAN J1974. Primary production of the benthic microflora living on tidal flatsin the Dutch Wadden Sea. Netherlands Journal of Sea Research [J],8:260-291.
    CHEN C T A, GONG G WANG S L, ALEXANDER S B1996. Redfield ratios and regenerationrates of particulate matter in the Sea of Japan as a model of closed system. GeophysicalResearch Letters [J],23:1785-1788.
    CHISHOLM S W1992. Phytoplankton size. In: Falkowski, G., Woodhead, A. D., eds. PrimaryProductivity and Biogeochemical Cycles in the sea. New York: Plenum. p.213-217.rates ofparticulate matter in the Sea of Japan as a model of closed system. Geophysical ResearchLetters [J],23:1785-1788.
    CRANFORD P J, EMERSON C W, et al.1998. In situ feeding and absorption of sea scallopsPlacopecten magellanicus (Gmelin) to storm-induced changes in the quantity andcomposition of the seston. Journal of Experimental Marine Biology and Ecology [J],219:45–70.
    COLLOQUIUM M Z2001. Future marine zooplankton research—a perspective. Marine ecologyprogress series [J],222:297-308.
    CONOVER R J1956. Oceanography of Long Island Sound,1952-1954. VI. Biology of Acartiaclausi and A. tonsa. Bull. Bingham Oceanography [J],15:6-233.
    DAME R F, PRINS T C1998. Bivalve carrying capacity in coastal ecosystems. Aquatic Ecology[J],31:409–421.
    DORTCH Q, WHITLEDGE T E1992. Does nitrogen or silicon limit phytoplankton production inthe Mississipi River plume and nearby regions. Continental Shelf Research [J],12:1293-1309.
    ESTERLY C O1911. Third report on the Copepoda of the San Diego region [M]. The UniversityPress
    FISHER T R, PEELE E R, AMMERMAN J W1992. Nutrient limition of phytoplankton inChesapeake Bay. Marine Ecology Progress Series [J],82:51-63.
    FRANKIC A, HERSHNER C2003. Sustainable aquaculture: developing the promise ofaquaculture. Aquaculture International [J],11:517-530.
    GAO J-H, GAO S, CHENG Y, et al.2003. Sediment transport in Yalu River estuary. ChineseGeographical Science [J],13:157-163.
    GAO Q, XU Z, ZHUANG P2008. The relation between distribution of zooplankton and salinityin the Changjiang Estuary. Chinese Journal of Oceanology and Limnology [J],26:178-185.
    GUSMAO L F M, MCKINNON A D2009. Sex ratios, intersexuality and sex change in copepods.Journal of Plankton Research [J],31:1101-1117.
    GENDRON L, WEISE A F R, CHETTE M, et al.2003. Evaluation of the potential of culturedmussels (Mytilus edulis) to ingest stage I lobster (Homarus americanus) larvae [M]. Fisheriesand Oceans Canada
    GILES H, PILDITCH C A, BELL D G2006. Sedimentation from mussel culture in the Firth ofThames, New Zealand: Impacts on sediment oxygen and nutrient fluxes. Aquaculture [J],261:125-140.
    GRANT J1999. Ecological constraints on the sustainability of bivalve aquaculture. Sustainableaquaculture: food for the future [J],4:85-96.
    GREEN S, VISSER A, TITELMAN J, et al.2003. Escape responses of copepod nauplii in theflow field of the blue mussel, Mytilus edulis. Marine Biology [J],142:727-733.
    GUO D, HUANG J, Li J2011. Planktonic copepod compositions and their relationships withwater masses in the southern Taiwan Strait during the summer upwelling period. ContinentalShelf Research [J],31:67-76.
    HATTORI A1982. The nitrogen cycle in the sea with special reference to biogeochemicalprocesses. Journal of Oceanography,[J],38:245-265.
    HIRCHE H J1996. Diapause in the marine copepod, Calanus finmarchicus-a review. Ophelia [J],44:129-143.
    HORSTED S J, NIELSEN T G, RIEMANN B, et al.1988.Regulation of zooplankton bysuspension-feeding bivalves and fish in estuarine enclosures. Marine Ecology Progress Series.[J],48:217-224.
    HUANG C, UYE S, ONBE T1993. Geographic distribution, seasonal life cycle, biomass andproduction of a planktonic copepod Calanus sinicus in the Inland Sea of Japan and itsneighboring Pacific Ocean. Journal Plankton Research [J],15:1229-1246.
    HULSEMANN K.1994. Calanus sinicus Brodsky and C. jashnovi, nom. nov.(Copepoda:Calanoida) of the North-west Pacific Ocean: a comparison, with notes on the integumentalpore pattern in Calanus sinicus. str. Invertebr. Taxon,8(6):1461-1482.
    HWANG J, WONG C2005. The China Coastal Current as a driving force for transportingCalanus sinicus (Copepoda: Calanoida) from its population centers to waters off Taiwan andHong Kong during the winter northeast monsoon period. Journal of Plankton Research [J],27:205-210.
    IRIGOIEN X, OBERMULLER B, RHEAD N, et al.2000. The effect of food on the determinationof sex ratio in Calanus spp.: evidence from experimental studies and field data. ICES Journalof Marine Science[J],57:1752-1763.
    JANSEN H M, STRAND O, STROHMEIER T2011. Seasonal variability in nutrient regenerationby mussel Mytilus edulis rope culture in oligotrophic systems. Marine Ecology ProgressSeries[J],431:137-149.
    JUSTIC D, RABALAIS N N, TURNER R E1995. Stoichiometry nutrient balance and origin ofcoastal eutrophication. Marine Pollution Bulletin[J],30:41-46.
    KARLSSON O, JONSSON P R, LARSSON A I2003. Do large seston particles contribute to thediet of the bivalve Cerastoderma edule? Marine Ecology Progress Series[J],261:164–173.
    KAUTSKY N, EVANS S1987. Role of biodeposition by Mytilus edulis in the circulation ofmatter and nutrients in a Baltic Coastal ecosystem. Marine Ecology Progress Series[J],38:201-212.
    KI RBOE T2006. Sex, sex-ratios, and the dynamics of pelagic copepod populations.Oecologia[J],148:40-50.
    LEHANE C, DAVENPORT J2002. Ingestion of mesozooplankton by three species of bivalve;Mytilus edulis, Cerastoderma edule and Aequipecten opercularis. Journal of the MarineBiological Association of the UK [J],82:615-619.
    LIU Y, SUN S, ZHANG G2012. Seasonal variation in abundance, diel vertical migration andbody size of pelagic tunicate Salpa fusiformis in the Southern Yellow Sea. Chinese Journal ofOceanology and Limnology [J],30:92-104.
    LOPEZ G R, LEVINTON J S1987. Ecology of deposit-feeding animals in marine sediments.Quarterly Review of Biology [J]:235-260.
    LUMB C1989. Self-pollution by Scottish salmon farms? Marine Pollution Bulletin [J],20:375-379.
    MACDONALD B A, WARD J E1994. Variation in food quality and particle selectivity in the seascallop Placopecten magellanicus (Mollusca: Bivalvia). Marine Ecology Progress Series[J],104:251-264.
    MESNAGE V, OGIER S, BALLY G, et al.2007. Nutrient dynamics at the sediment–waterinterface in a Mediterranean lagoon (Thau, France): influence of biodeposition by shellfishfarming activities. Marine Environmental Research [J],63:257-277.
    M HLENBERG F. RIISGAD H U1978. Efficiency of particle retention in13species ofsuspension-feeding bivalves. Ophelia[J],17:239–246.
    MURDOCH R, OLIVER M1995. Study of chlorophyll concentrations within and around musselfarms: Beatrix Bay, Pelorus Sound.6-WN. NIWA, Wellington.
    NALOY, R L, GOLDBUR,R J, PRIMAVERA, J H, et al.2000. Effect of aquaculture on worldfish supplies. Nature[J],405:1017-1024.
    NAIMIE C E, BLAIN C A, LYNCH D R.2001. Seasonal mean circulation in the Yellow Sea—amodel-generated climatology. Continental Shelf Research[J],21:667-695.
    NAVARRO J, THOMPSON R1995. Seasonal fluctuations in the size spectra, biochemicalcomposition and nutritive value of the seston available to a suspension-feeding bivalve in asubarctic environment. Marine Ecology Progress Series. Oldendorf [J],125:95-106.
    NEWELL R I1988. Ecological changes in Chesapeake Bay: are they the result of overharvestingthe eastern oyster (Crassostrea virginica)? In: Lynch, M. P. and Krome, E. C., eds.Understanding the estuary. Advances in Chesapeake Bay research, Chesapeake ResearchConsortium Publ.129, Gloucester Point, VA, p536–546
    NEWELL R I2004. Ecosystem influences of natural and cultivated populations ofsuspension-feeding bivalve molluscs: a review. Journal of Shellfish Research [J],23:51-62.
    NIZZOLI D, WELSH D T, FANO E A, et al.2006. Impact of clam and mussel farming on benthicmetabolism and nitrogen cycling, with emphasis on nitrate reduction pathways. MarineEcology Progress Series [J],315:151-165.
    NIXON S W, PILSON M E Q1983. Nitrogen in estuarine and coastal marine ecosystems. InCarpenter, E. J., and Capone, D. G., eds. Nitrogen in the Marine Environment. Academic,p565–648.
    PETERSON B J, HECK JR K L1999. The potential for suspension feeding bivalves to increaseseagrass productivity. Journal of Experimental Marine Biology and Ecology [J],240:37-52.
    PRINS T C, SMAAL A C, DAME R F1997. A review of the feedbacks between bivalve grazingand ecosystem processes. Aquatic Ecology [J],31:349-359.
    PU X, SUN S, YANG B, JI P, ZHANG Y S, ZHANG F2004. The combined effects oftemperature and food supply on Calanus sinicus in the southern Yellow Sea in summer.Journal of Plankton Research.[J],26:1049-1057.
    RAGUENEAU O, CHAUVAUD L, MORICEAU B, et al.2005. Biodeposition by an invasivesuspension feeder impacts the biogeochemical cycle of Si in a coastal ecosystem (Bay ofBrest, France). Biogeochemistry [J],75:19–41.
    REITAN K I, IE G, REINERTSEN H2002. Response on scallop culture to enhanced nutrientsupply by experimental fertilisation of a landlocked bay. Hydrobiologia[J],484:111–120.
    SHANNON C E, WEANER W1949The Mathematical Theory of Communication.Urbana,IL.:The University of Illinois Press[M],125.
    SMAAL A C, PRINS T C1993. The uptake of organic matter and the release of inorganicnutrients by bivalve suspension feeder beds. In: Dame, R. F.,(ed.), Bivalve filter feeders inestuarine and coastal ecosystem processes. SpringerVerlag, Berlin, pp.271–298.
    SEEBENS H, EINSLE U, STRAILE D2009. Copepod life cycle adaptations and success inresponse to phytoplankton spring bloom phenology. Global Change Biology[J],15:1394-1404.
    SOUCHU P, COLLOS Y, LANDREIN S, et al.2001. Influence of shellfish farming activities onthe biogeochemical composition of the water column in Thau lagoon. Marine EcologyProgress Series [J],218:141-152.
    SUN S, ZHANG G2005. Over-summering strategy of Calanus sinicus. IGBP Newsletter [J],62:12-13.
    SUN X, WANG S, SUN S2011. Introduction to the China Jellyfish Project-The Key Processes,Mechanism and Ecological Consequences of Jellyfish Bloom in China Coastal Waters.Chinese Journal of Oceanology and Limnology [J],29:491-492.
    UYE S, SHIMAZU T1997. Geographical and seasonal variations in abundance, biomass andestimated production rates of meso-and macrozooplankton in the Inland Sea of Japan.Journal of Oceanography[J],53:529-538.
    UYE S, IWAMOTO N, UEDA T, TAMAKI H, NAKAHIRA K.1999. Geographical variations inthe trophic structure of the plankton community along a eutrophic–mesotrophic–oligotrophictransect. Fisheries Oceanography[J],8:227-237.
    WANG R, ZUO T, WANG K2003. The Yellow Sea cold bottom water-an oversummering site forCalanus sinicus (Copepoda, Crustacea). Journal of Plankton Research [J],25:169-183.
    WATSON R, PAULY D2001. Systematic distortions in world fisheries catch trends. Nature [J],414:534-536.
    WIDDOWS J, BRINSLEY M D, SALKEL P N, et al.1998. Use of annular flumes to determinethe influence of current velocity and bivalves on material flux at the sediment matterinterface. Estuaries [J],21:552-559.
    XU Z, LIN X, LIN Q, et al.2007. Nitrogen, phosphorus, and energy waste outputs of four marinecage-cultured fish fed with trash fish. Aquaculture [J],263:130-141.
    YIN J, HUANG L, LI K, LIAN S, LI C, LIN Q2011. Abundance distribution and seasonalvariations of Calanus sinicus (Copepoda: Calanoida) in the northwest continental shelf ofSouth China Sea. Continental Shelf Research [J],31:1447-1456.
    YIN J, ZHAO Z, ZHANG G, WANG S, WAN A2013Tempo-spatial variation of nutrient andChlorophyll-a concentrations during summer and autumn in the Zhangzi Island area(Northern Yellow Sea). Journal of Chinese Oecan University(Oceanic and Coastal SeaResearch), accepted.
    YUAN X, ZHANG M, LIANG Y, et al.2010. Self-pollutant loading from a suspensionaquaculture system of Japanese scallop in the Changhai sea area, Northern Yellow Sea ofChina. Aquaculture [J],304:79-87.
    ZHANG G, SUN S, ZHANG F,2005. Seasonal variation of reproduction rates and body size ofCalanus sinicus in the Southern Yellow Sea, China. Journal of Plankton Research [J],27:135-143.
    ZHANG G, SUN S, YANG B.2007. Summer reproduction of the planktonic copepod Calanussinicus in the Yellow Sea: influences of high surface temperature and cold bottom water.Journal of Plankton Research [J],29:179-186.
    ZHANG G, WONG C2012. Population abundance and body size of Calanus sinicus in marginalhabitats in the coastal seas of southeastern Hong Kong. Journal of the Marine BiologicalAssociation of the United Kingdom[J],93:135-142.
    ZHANG G, ZHAO Z, LIU C, LIU Q, REN J2012. Influence of a Flood Event on Salinity andNutrients in the Changshan Archipelago Area (Northern Yellow Sea). Journal of OceanUniversity of China[J],11:1-8.
    ZHOU Y, YANG H, ZHANG T, et al.2006. Influence of filtering and biodeposition by thecultured scallop Chlamys farreri on benthic-pelagic coupling in a eutrophic bay in China.Marine Ecology Progress Series [J],317:127-141.
    白雪娥,庄志猛1991.渤海浮游动物生物量及其主要种类数量变动的研究.海洋水产研究[J],12:71-92.
    鲍献文,李娜,姚志刚等2009.北黄海温盐分布季节变化特征分析.中国海洋大学学报(自然科学版)[J],4:553-562.
    程家骅,丁峰元,李圣法等2005.东海区大型水母数量分布特征及其与温盐度的关系.生态学报[J],25:440-445.
    陈清潮1964.中华哲水蚤的繁殖,性比率和个体大小的研究.海洋与湖沼[J],6:272-288.
    陈清潮,章淑珍1965.黄海和东海的浮游桡足类I.哲水蚤目.海洋科学集刊[J],7:20-131.
    陈清潮,章淑珍,朱长寿.1974黄海和东海的浮游桡足类Ⅱ.剑水蚤目和猛水蚤目.海洋科学集刊[J],19:27-76.
    崔毅,陈碧鹃,陈聚法2005.黄渤海海水养殖自身污染的评估.应用生态学报[J],16:180-185.
    杜兵,张义钧,单毅春等1996.北黄海底层冷水团的变化特征及其对外长山岛海区养殖扇贝死亡的影响.海洋通报[J],15:17-28.
    邓邦平,杨宇峰2009.大鹏澳养殖海域微表层与次表层水质及浮游动物群落特征的比较.暨南大学学报(自然科学与医学版)[J],30:101-105.
    高爽,李正炎2009.北黄海夏,冬季叶绿素和初级生产力的空间分布和季节变化特征.中国海洋大学学报(自然科学版)[J],4:604-610.
    赫崇本,汪园祥,雷宗友等1959.黄海冷水团的形成及其性质的初步探讨.山东海洋学院学报[J],2:11-15.
    黄凤鹏,黄景洲,杨玉玲等2009.胶州湾浮游桡足类时空分布.生态学报[J],29:4045-4052.
    黄加祺,陈柏云1985.九龙江口浮游桡足类的种类组成和分布.台湾海峡[J],4:79-88.
    黄加祺,洪幼环,朱长寿等1997.福建南日岛海域浮游动物的分布.东海海洋[J],4:46-57.
    黄文祥,沈亮夫,朱琳1984.黄海的浮游植物.海洋环境科学[J],3:19-28.
    姜强2010.春,秋季北黄海大中型浮游动物群落生态学研究[M].中国海洋大学.
    计新丽,林小涛,许忠能等2000.海水养殖自身污染机制及其对环境的影响.海洋环境科学[J],19:66-71.
    刘光兴,李松1998.厦门港瘦尾胸刺水蚤体长,体重与摄食率的季节变化.海洋学报[J],20:104-109.
    刘青,曲晗,张硕2007.强壮箭虫对温度,盐度的耐受性研究.海洋湖沼通报[J],1:111-116.
    李斌2010.獐子岛养殖区扇贝质量与环境的相互关系及体内细菌消长特征的研究[M].中国科学院研究生院(海洋研究所).
    李捷,蒲新明,张展等2007.两种藻类饲喂中华哲水蚤的繁殖差异.海洋水产研究[J],28:38-45.
    李文姬,谭克非2009.日本解决虾夷扇贝大规模死亡的启示.水产科学[J],28:609-612.
    李曌2010.夏季南黄海叶绿素a分布特征及环境因子的影响研究[M].国家海洋局第一海洋研究所.
    林元烧,李松1984.厦门港中华哲水蚤生活周期的初步研究.厦门大学学报(自然科学版)[J],23:111-117.
    毛玉泽2004.桑沟湾滤食性贝类养殖对环境的影响及其生态调控[M].中国海洋大学.
    毛玉泽,杨红生,周毅等2006.龙须菜(Gracilaria lemaneiformis)的生长,光合作用及其对扇贝排泄氮磷的吸收.生态学报[J],10:3225-3221.
    齐衍萍2008.夏,冬季黄东海浮游动物群落生态学研究[M].中国海洋大学.
    沈国英,施并章2002.海洋生态学[M].科学出版社.
    宋新,林霄沛,王悦2009.夏季黄海冷水团的多年际变化及原因浅析.广东海洋大学学报[J],29:59-63.
    苏育嵩,李凤岐,马鹤来等1989.东海北部底层冷水及双跃层初析.海洋与湖沼[J],20:75-86.
    谭树华,林元烧,曹文清等2003.东、黄海中华哲水蚤(Calanus sinicus)种群遗传的初步分析I:等位酶分析.厦门大学报[J],42:87-91.
    谭树华,曹文清,林元烧,李少菁,郭东晖2004.黄、东海精致真刺水蚤种群遗传结构研究.海洋科学[J],28:28-33.
    滕瑜,刘从力,沈建2012.我国贝类产业化现状及存在问题.科学养鱼[J],3:1-2.
    王保栋2000.黄海冷水域生源要素的变化特征及相互关系.海洋学报[J],22:47-54
    王敏晓2010.分子标记在中国近海浮游桡足类研究中的应用[M].中国科学院研究生院(海洋研究所).
    王如才,郑小东2004.我国海产贝类养殖进展及发展前景.中国海洋大学学报[J],34:775-780.
    王世伟2009.黄海中华哲水蚤繁殖,种群补充与生活史研究[M].中国科学院研究生院(海洋研究所).
    吴颖,李惠玉,李圣法等2008.大型水母的研究现状及展望.海洋渔业[J],30:80-87.
    王真良,刘晓丹1991.北黄海碱渣及三类废弃物处置海区浮游动物基线调查研究.海洋环境科学[J],10:29-36.
    王真良1995.大连湾水域浮游桡足类的分布.黄渤海海洋[J],13:47-54.
    王真良2003.小长山岛周围海域浮游动物群落结构的初步研究.大连水产学院学报[J],18:296-300.
    徐兆礼,蒋玫,陈亚瞿等2003.东海赤潮高发区春季浮游桡足类与环境关系的研究.水产学报[J],27:49-54.
    许振祖,张金标1978.粤东-闽南近海的浮游水螅水母类,管水母类和钵水母类.厦门大学学报(自然科学版)[J],17:19-63.
    许振祖,黄加祺1983.九龙江口水螅水母,管水母,钵水母和栉水母类的生态研究.厦门大学学报(自然科学版)[J],22:364-374.
    于非,张志欣,刁新源等2006.黄海冷水团演变过程及其与邻近水团关系的分析[J].海洋学报[J],28:26-34.
    闫启仑,郭皓1999.浮游动物在贝类筏式养殖区内,外生态特征研究.黄渤海海洋[J],17:46-50.
    于莹,张武昌,张光涛等2012.2010年两个航次獐子岛海域浮游纤毛虫丰度和生物量.生态学报[J],32:7220-7229.
    臧璐2009.北黄海生源要素的季节特征及冷水团对其影响的研究[M].中国海洋大学.
    张福绥,何义朝,马江虎等1984.虾夷扇贝的引种,育苗及试养.海洋科学[J],1:38-45.
    张福绥,杨红生1999.山东沿岸夏季栉孔扇贝大规模死亡原因分析.海洋科学[J],1:44-47.
    张辉,石晓勇,张传松等2009.北黄海营养盐结构及限制作用时空分布特征分析.中国海洋大学学报[J],39:773-780.
    张金标1979.中国海域水螅水母类区系的初步分析.海洋学报(中文版)[J],1:127-197.
    张金标,许振祖1980.中国海管水母类的地理分布.厦门大学学报(自然科学版)[J],19:100-108.
    张继红2008.滤食性贝类养殖活动对海域生态系统的影响及生态容量评估:博士学位论文[M].
    张继红,方建光,王诗欢2008a.大连獐子岛海域虾夷扇贝养殖容量.水产学报[J],32:236-241.
    张继红,方建光,蒋增杰等.2008b.獐子岛养殖水域叶绿素含量时空分布特征及初级生产力季节变化.海洋水产研究[J],29:22-28.
    张继红,王巍,蒋增杰等2009.獐子岛养殖海域氮,磷的分布特征.渔业科学进展[J],30:88-96.
    张武昌,王荣,王克2000.温度对中华哲水蚤代谢率的影响.海洋科学[J],24:42-44.
    张光涛,孙松,张芳2002.度夏过程中温度对中华哲水蚤生殖的伤害作用.海洋与湖沼:浮游动物研究专辑[J]:85-91.
    张光涛2003.中华哲水蚤在南黄海的生殖策略研究[M].中国科学院研究生院(海洋研究所)
    张武昌,王荣2001.海洋微型浮游动物对浮游植物和初级生产力的摄食压力.生态学报[J],21:1360-1368.
    周太玄,黄明显1958.烟台水螅水母类的研究.动物学报[J],10:173-191.
    朱德山,陈毓桢,王为祥1990.黄,东海鳀鱼及其他经济鱼类资源声学评估的调查研究.海洋水产研究[J],11:18-41.
    朱树屏,郭玉潔1959.十年来我国海洋浮游植物的研究.海洋与湖沼[J],2:224-232.
    朱延忠2008.夏,冬季北黄海大中型浮游动物群落生态学研究[M].中国海洋大学.
    郑执中,郑守仪1962.黃海和东海浮游有孔虫生态的研究.海洋与湖沼[J],4:60-85.
    郑执中,郑守仪1963.黄,东海及邻近水域浮游有孔虫地理区划的初步探讨.海洋与湖沼[J],5:207-214.
    郑执中,郑守仪1964.南海北部的浮游有孔虫.海洋与湖沼[J],6:38-84.
    郑重,郑执中,王荣等1965.烟,威鲐鱼渔埸及邻近水域浮游动物生态的初步研究.海洋与湖沼[J],4:329-354.
    郑重,李少菁,许振祖1984.海洋浮游生物学[M].海洋出版社.
    郑重1987.我国海洋浮游桡足类的生态习性和分布.郑重文集[J],101:133.
    郑重1992.海洋桡足类生物学[M].厦门大学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700