新疆石灰性土壤锌有效性及棉花对锌肥的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新疆地处亚欧大陆中心,属于干旱地区,土壤中的全锌含量大多超过我国和世界土壤平均含量,但有效态含量却较低。我国在上世纪80年代进行第二次土壤普查时确定以土壤有效锌含量0.5mg·kg~(-1)为新疆石灰性土壤作物施锌临界指标,这一指标已经延用30余年,而目前新疆的农业生产水平、土壤养分状况以及棉花栽培品种等均同30年前相比发生了重大变化,这一标准显然缺乏时效性依据。本研究以新疆石灰性土壤为主要研究对象,了解新疆土壤锌的丰缺状况,研究锌肥对棉花产量及品质的影响,并建立新疆土壤锌丰缺指标。
     在研究新疆不同土壤有效锌及锌组分含量的基础上,选择新疆、山东和江苏三种石灰性土壤进一步研究了土壤因素对土壤有效锌及锌组分含量的影响,通过吸附-解吸附模型阐明土壤环境因子对土壤锌有效性影响机理,以期为新疆石灰性农田土壤合理施用锌肥、提高棉花产量提供理论指导。本研究的主要结论如下:
     (1)新疆3种类型土壤有效锌平均含量为灰漠土(0.51mg·kg~(-1))<棕漠土(0.57mg·kg~(-1))<潮土(0.69mg·kg~(-1)),变异系数为棕漠土<潮土<灰漠土。不同地区土壤有效锌含量较为接近,但全锌含量差异明显。南疆土壤全锌含量高于北疆土壤,而北疆土壤全锌变异较大。
     在土壤锌组分中,松结有机态锌(WBO)、碳酸盐结合态锌(CARB)、氧化锰结合态锌(OxMn)、紧结有机态锌(SBO)、无定形结合态锌(AOFe)平均含量均为灰漠土<棕壤土<潮土。WBO、CARB、SBO分配率与土壤CaCO_3含量和物理性粘粒含量高度相关。WBO、CARB及SBO分配率与土壤物理性粘粒含量呈(极)显著正相关。交换结合态锌(Exc)与WBO呈显著正相关。WBO与CARB呈显著正相关。石灰性土壤有效锌含量与WBO、CARB含量呈显著正相关。
     (2)施锌在多数土壤上对棉花具有增产作用,能够显著促进棉花地上部生物量、产量的积累,提高棉花锌吸收量,但对根生物量影响无明显规律。棉花相对产量与土壤有效锌含量呈极显著正相关,新疆土壤缺锌的临界指标为0.6mg·kg~(-1),目前新疆石灰性耕地土壤锌有效性多处于中、低水平。
     (3)施锌促进了棉花干物质的积累,显著提高棉花产量,提高了单株结铃数、衣分和单铃重,单纯土施锌肥棉花增产率为1.14%~4.80%,喷施锌肥后棉花增产率为1.10%~6.11%;增加了棉花对氮、磷、钾肥料的吸收利用,P/N由0.26升高到为0.30,K/N由1.04升高到1.34;施锌方式处理间,喷施锌肥对棉花纤维长度、整齐度及伸长率无显著影响,土施10kg·hm~(-2)、20kg·hm~(-2)显著降低了马克隆值,土施0kg·hm~(-2)显著增加了棉花比强度;土施锌肥处理间,土施锌肥显著增加了棉花纤维长度和比强度,降低了棉花马克隆值及整齐度。土壤施锌是提高棉花单株结铃数的重要途径。在稳定提高单株结铃数的基础上,花期喷施锌肥不但促进单铃重增加,而且提高了棉花对氮磷钾的吸收,进而达到施锌棉花高产,肥料高效,品质优良的目的。
     (4)添加不同比例CaCO_3均显著降低了土壤有效锌含量,其作用顺序为CaCO_3添加比例20%>10%>5%>0%,CaCO_3对土壤有效锌含量的影响为高砂土>棕壤土>灰漠土,有效锌含量和CaCO_3含量高度负相关,灰漠土中两者相关性最好(r=-0.8628**)。培养360天后高砂土、棕壤土、灰漠土有效锌含量降幅分别为52%~77%,52%~59%,36%~58%。不同培养时间下同一土壤有效锌含量为1d>5d>30d>90d>180d>360d。不同类型土壤中的锌主要以Res和COFe组分存在,分别占到全锌含量的71.0%~73.2%和11.6%~19.9%,Exc所占比例最少。WBO组分含量在三种类型土壤中所占比例较为接近。添加CaCO_3后Exc、WBO大幅降低,而CARB大幅增加,其余锌组分变化幅度不大。3种土壤对Zn~(2+)的吸附-解吸附性能差别较大,随平衡液Zn~(2+)浓度的增加土壤对Zn~(2+)吸附量增加,表现为高砂土<棕壤土<灰漠土,随吸附量的增加Zn~(2+)解吸量也逐渐增加,但远小于土壤对Zn~(2+)吸附量;3种土壤对Zn~(2+)吸附均可用Freundlich方程描述,以高砂土Freundlich方程拟合最佳(P<0.01)。Freundlich方程常数A、K值为高砂土<棕壤土<灰漠土。
     不同盐分处理下,盐分含量低的土壤有效锌含量高;在不同培养时间下,土壤有效锌含量缓慢降低,培养360天后降幅分别为4.3%,25.6%,23.5%,30.3%。土壤锌组分变化幅度较大的主要有WBO、CARB和SBO。土壤WBO组分含量均上升,CARB和SBO组分含量下降。盐分含量越低(0.28%),CARB和SBO含量也较低,而WBO组分含量越高。这几种组分含量的变化主要发生在最初的30天,在180天时趋于稳定。不同盐分含量的土壤Zn~(2+)吸附动力学曲线相似,对Zn~(2+)的吸附量随吸附时间的延长而增加,相同吸附时间盐分含量越高,吸附量越大;土壤对Zn~(2+)的吸附均可用Langmuir、Freundlich和Temkin吸附方程进行描述,以Freundlich吸附方程拟合最佳。Zn~(2+)解吸量随吸附量的增加而增加,盐土对Zn~(2+)的解吸量远远小于土壤对Zn~(2+)的吸附量,在吸附量相同时,土壤盐分含量降低Zn~(2+)解吸量增加。淋洗盐分后,土壤对Zn~(2+)的最大吸附量减少,吸附强度减弱。
     土壤CaCO_3含量、盐分含量对土壤Zn~(2+)吸附和解吸附显著相关,高CaCO_3含量、高盐分的土壤锌有效性低。因此,不同类型的石灰性土壤、盐土要相应调整锌肥施用量和施用方法。
Xinjiang, which is located in the center of the Eurasian Continent, is an arid area. Thetotal zinc content of the soil is significantly higher than the average contents of China and theworld, but the available zinc content is limited. The soil available zinc content,0.5mg·kg~(-1),was set as the critical index of zinc to calcareous soil crops in Xinjiang when the secondnational general survey of soil was conducted. This index has been in use for over30years.However, with the fast development of agricultural productivity, especially in cottonproduction in Xinjiang, soil nutritional status, and cotton varieties of Xinjiang have changedconsiderably after the subsequent decades, this standard no longer accurately reflects soil Znsupply threshold. Then, to evaluate a Zn fertility index that accurately reflect soil real Znstatus is not only valuable for understanding soil Zn abundance in this area but also withimportant agricultural practical significance. Therefore, this study was conducted to evaluatethe state of soil Zinc in calcareous soils of Xinjiang, and to research the effects of Znapplication on yield and quality of cotton, finally to establish a soil available Zn critical indexfor cotton cultivation in Xinjiang area.
     On the base of studying the content of soil available Zn and Zinc fraction in differentsoils of Xinjiang region, three calcareous soils from Xinjiang, Shandong and Jiangsu wereselected to investigate the effects of soil factors such as CaCO_3, soil salinity on soil availableZn and Zn fraction, to clarify the mechanism of soil factors on soil available Zn content by theadsorption and sorption models. This research aims to provide theoretical guidance to applyZn fertilizer reasonably and improve the yield of cotton. The major conclusions of the studyare as follows.
     (1) The average available zinc content in three types of soils was aquic soil (0.69mg·kg~(-1))>brown desert soil (0.57mg·kg~(-1))>grey desert soil (0.51mg·kg~(-1)), the coefficient of variationwas gray desert soil>aquic soil>brown desert soil. Soil available Zn concentration was similarin different soil types in Xinjiang, however, the total Zn content varied greatly. Soil total zinccontent in southern Xinjiang was higher than that of northern Xinjiang, and with greatervariability.
     In the Zn fractal content, the component’s contents of SBO, CARB, OxMn, WBO andAOFe were aquic soil>brown desert soil>grey desert soil. The percentages of WBO, CARBand SBO were highly relevant to the contents of CaCO_3and physical clay. The relativepercentages were significantly or highly significantly positive correlatted in physical claycontent and WBO, CARB, SBO. The content of WBO remarkably influenced the content ofExc. There was a significant positive correlation between WBO and CARB. The content ofsoil available Zn was remarkably influenced by WBO and CARB.
     (2) Zinc application contributes to cotton yield in most of soil types, and improve thebiomass of the shoot of cotton, the accumulation of yield, and increases the zinc uptake ofcotton, but its effect on the biomass of roots is not noticeable. The relative yield of cotton andavailable zinc content of soil are positively related. The critical index of zinc deficiency is0.6mg·kg~(-1). At present the available zinc contents of the calcareous soils in Xinjiang are mostly at medium or low levels.
     (3) Zn application significantly increased the yield of cotton, improve the biomass ofcotton, contributed to boll number per plant, boll weight and lint percentage. Soil applicationof Zn on cotton yield increasing rate was ranging from1.14%to4.80%, while foliarapplication of Zn was ranging from1.10%to6.11%; Application of Zn fertility increased N、P and K absorption of cotton. The P/N rate increased from0.26to0.30and K/N rate increasedfrom1.04to1.34; under the different Zn application practices, foliar application of Zn can notobviously improve the fiber length, uniformity and elongation of cotton, however, soilapplication of Zn20kg·hm~(-2)significantly reduce the micron value; soil application of Zn at10kg·hm~(-2)and20kg·hm~(-2)significantly improve the fiber length and strength, decrease theuniformity and micron value. Soil application Zn is an important way to improve the bollnumber. On the base of improving boll number stably, foliar application of Zn at floweringstage not only improve the boll weight, but also improve the adsorption of N, P, K.
     (4) Exteral calcium carbonate remarkably decreased the content of soil available Zncontent, the order of available Zn reduction was CaCO_320%>10%>5%>0%. The order ofCaCO_3impacts on the content of soil available Zn was Paddy soil>Brown soil>Gray desertsoil. The content of soil available Zn was highly negative relevant to the contents of CaCO_3and the correlation was best in Gray desert soil(r=-0.8628**). The falling range of soilavailable Zn of Paddy soil, Brown soil and Gray desert soil, cultured360days, were52%~77%,52%~59%,36%~58%. The available Zn of soils under different incubation timewas1d>5d>30d>90d>180d>360d. Res and COFe were the main fractions in differenttype soils, which were71.0%~73.2%and11.6%~19.9%, and the proportion of Exc wasthe least. The proportion of WBO was rather nearly in three types soils. Exc and WBOreduced and CARB increased significantly, other Zn fractions change little. The adsorption-desorption characteristics of3types was different. The capacity of Zn~(2+)adsorbed by soilswas Paddy soil<Brown soil<Gray desert soil, the adsorption capacity increased with theinitial concentration of Zn~(2+)addition. It was also observed that the amount of desorbed Znfrom Zn absorbed soil increased with the amount of soil adsorbed Zn, but much lower thanthat soil adsorbed Zn; Zn~(2+)adsorption curves of3types soil could be well described byFreundlich equation with best fitness by Paddy soil (P<0.01). The adsorption reactionconstant A and K of Freundlich equation were Paddy soil<Brown soil<Gray desert soil.
     The content of soil available Zn was high when the soil salinity was low; the content ofsoil available Zn reduced with increasing of equilibrium time, and the falling range were4.3%,25.6%,23.5%,30.3%under cultured360days. WBO, CARB and SBO were the mainZn fraction changing largely. WBO fraction increased while CARB and SBO decreasedsignificantly. The content of WBO increased with increasing of soil sanility, while CARB andSBO decreased. These changes mainly happened in the first30days, and steady in180days.Kinetic curves of different soil salinity were similar, the adsorption of Zn increased withincreasing of equilibrium time. The higher soil salinity content, at the same equilibrium time,the more amount of adsorption; The Freundlich model was better than the Langmuir andTemkin models to decribe adsorption isotherms process. The sorption amount of Zn~(2+) increased with equilibrium time, higher salt content lead to less Zn desorption in salinity soil,the adsorption amount of Zn increased with decreasing soil salinity. The buffering capacityand adsorption intensity of soil Zn decreased by leaching.
     There is a close relationship between the content of soil CaCO_3, soil salinity and Zn~(2+)amount in soils desorption-sorption process. The high CaCO_3content or high salinity content,lead to lower available Zn. Therefore, adjust in the application amount and methods of Znfertilizer are needed for different types of calcareous soils and saline-alkali soils.
引文
鲍士旦.土壤农化分析(第三版).北京:中国农业出版社,2000,30-135;279-281.
    曹玉贤,田霄鸿,杨习文,陆欣春,陈辉林,南雄雄,李秀丽.土施和喷施锌肥对冬小麦子粒锌含量及生物有效性的影响.植物营养与肥料学报,2010,16(6):1394-1401.
    陈新平,张福锁.通过“3414”试验建立测土推荐施肥技术指标体系.中国农技推广,2006,22(4):36-39.
    程锦,萧文俊.棉花锌素营养诊断试验.江西棉花,1989,(2):32-33.
    丁胜,王献礼,屈喜军.海岛棉经济性状变化的一些规律探讨.中国棉花,2001,28(27):12-14.
    董合忠,辛承松,唐薇,李维江,张冬梅,温四民.山东东营滨海盐渍棉田盐分与养分的季节性变化及对棉花产量的影响.棉花学报,2006,18(6):362-366.
    董合忠,辛承松,李维江.滨海盐碱地棉田盐度等级划分.山东农业科学,2012,44(3):36-39.
    付宝荣,李法云,臧树良,宋丽.锌营养条件下镉污染对小麦生理特性的影响.辽宁大学学报,2000,27(4):366-370.
    高美荣,朱波,蒋明富.石灰性紫色土中锌的形态分布及其影响因素.应用生态学报,1999,10(4):415-418.
    高明,车福才,魏朝富,谢德体,杨剑虹.长期施用有机肥对紫色水稻土锰铁铜锌形态的影响.植物营养与肥料学报,2000,6(1):11-17.
    高质,林葆,周卫.锌素营养对春玉米内源激素与氧自由基代谢的影响.植物营养与肥料学报,2001,7(4):424-428.
    郭胜利,余存祖,戴鸣钧.有机肥对石灰性土壤中锌、锰生物有效性的影响.华北农学报,1996,11(4):63-68.
    郭新梅,戴继勋,王娟,徐矫健.锌离子(Zn2+)对坛紫菜叶状体光合色素含量的影响.中国海洋大学学报,2007,37(1):107-110.
    韩春丽,刘娟,肖春华,张旺锋,刘梅,黄建军.新疆绿洲连作棉田土壤微量元素含量的时空变化研究.土壤学报,2010,47(6):1194-1201.
    韩凤祥,胡霭堂,秦怀英,史瑞和.我国某些旱地土壤中锌的形态及其有效性.土壤,1990,(6):302-306.
    韩凤祥,胡霭堂,秦怀英,史瑞和.酸性、中性与石灰性土壤中外源可溶性锌的形态及活性.中国环境科学,1992,12(2):108-112.
    何振立.污染及有益元素的土壤化学平衡.北京:中国环境科学出版社,1998:1-37.
    胡志林.新疆盐土中的微量元素.新疆八一农学院学报,1985,(4):1-9.
    蒋廷惠,胡霭堂,秦怀英.土壤中锌、铜、铁、锰形态区分方法的选择.环境科学学报,1990,10(3):280-286.
    蒋永清.几种土壤对砷酸盐的吸附.土壤学报,1983,20(4):394-405.
    雷咏雯,郭金强,危常州,侯振安,田长彦,鲍柏杨.棉花膜下滴灌水氮耦合的初步研究.石河子大学学报,2005,23(1):43-47.
    李春花,褚天铎,杨清,刘新保.灌溉水中HCO3-对菜豆吸收利用土壤有效养分的影响.植物营养与肥料学报,1997,3(4):329-333.
    李红伟,李立平,邢维芹.不同小尺度下潮土重金属有效性空间变异研究.土壤,2006,38(6):782-789.
    李文先.从新疆耕地土壤微量元素含量展望微肥的应用.干旱区研究,1985,(2):8-15.
    李泽鸿,赵兰坡,杨志超.吉林省中部不同亚类、不同母质黑土中铜、锌的分布变化规律.吉林农业科学,2003,28(2):29-31.
    李泽岩,谢玉英,田秀芬,杨洁泉.新疆土壤微量元素的含量与分布.土壤学报,1986,23(4):330-334.
    林玉锁,薛家骅.锌在石灰性土壤中的吸附.土壤学报,1987,24(2):135-141.
    林玉锁. Langmuir, Temkin, Freundlich方程应用于土壤吸附锌的比较.土壤,1997,(5):269-272.
    刘春生,杨守祥,宋国菡,史衍玺,马玉增,萧月芳.模拟酸雨对褐土盐基离子淋失的影响.土壤通报,1999,30(1):42-43.
    刘福来.土壤—植物系统中锌的研究概况.土壤学报,1998,(5):10-14.
    刘合满,张兴昌,苏少华.黄土高原主要土壤锌有效性及其影响因素.农业环境科学学报,2008,27(3):898-902.
    刘世全,张世熔,伍钧,庞学勇,袁大刚.土壤pH与碳酸钙含量的关系.土壤,2002,34(5):279-288.
    刘铮,唐丽华,朱其清.我国主要土壤中微量元素的含量与分布初步总结.土壤学报,1978,2(15):138-150.
    刘铮,朱其清,唐丽华,徐俊祥,尹楚良.我国缺乏微量元素的土壤及其区域分布.土壤学报,1982,19(3):209-223.
    刘铮,我国土壤中锌含量的分布规律.中国农业科学,1994,27(1):30-37.
    刘志光,潘淑贞,孙含元.南方酸性水稻土中硫化锌的形成问题.土壤通报,1988,4:151-152.
    龙新宪,倪吾钟,杨肖娥.菜园土壤铜吸附一解吸特性的研究.农村生态环境,2000,16(3):39-41.
    陆欣春,田霄鸿,杨习文,买文选,保琼莉,赵爱青.氮锌配施对石灰性土壤锌形态及肥效的影响.土壤学报,2010,47(6):1202-1213.
    马富裕,周治国,郑重,郑旭荣,李明思,李正尚,张卫国,邢明亮,夏东利.新疆棉花膜下滴灌技术的发展与完善.干旱地区农业研究,2004,22(3):202-208.
    马腾飞,危常州,王娟,侯振安,王肖娟,彭振宝,张波.不同灌溉方式下土壤中氮素分布和对棉花氮素吸收的影响.新疆农业科学,2010,47(5):859-864.
    马义兵,夏荣基,张国印,孙祖琰.石灰性土壤中锌的形态研究.土壤通报,1988,(6):259-264.
    倪吾钟,龙新宪,杨肖娥.菜园土壤锅吸附-解吸特性的研究.广东微量元素科学,2000,7(10):11-15.
    彭琳,彭祥林,余存祖,刘要红,黄凯.塿土的锌肥肥效和磷、锌关系.土壤学报,1980,17(1):62-68.
    钱金红,谢振翅.碳酸盐对土壤锌解吸影响的研究.土壤学报,1994,31(1):105-108.
    宋菲,郭玉文,刘孝义,张玉龙.镉、锌、铅复合污染对菠菜的影响.农业环境保护,1996,15(1):9-14.
    沈善敏.中国土壤肥力[M].北京:中国农业出版社,1998:80-83.
    孙继坤,胡志林,周鸿兴,党志正,杨震芳.天山山地土壤中微量元素的含量与分布.土壤学报,1987,24(4):335-342.
    田霄鸿,李生秀,宋书琴.碳酸氢根和铵态氮共同对菜豆生长及养分吸收的影响.园艺学报,2002,29(4):337-342.
    田霄鸿,张茜,李生秀.生长介质中CaCO3质量分数及水分状况与HCO3-的关系.生态环境,2005,14(2):230-233.
    汪洪,金继运,周卫.不同水分状况下施锌对玉米生长和锌吸收的影响.植物营养与肥料学报,2003,9(1):91-97.
    王海啸,吴俊兰,张铁金,吴启祥,陈阳,边俊生,陕方.山西石灰性褐土的磷、锌关系及其对玉米幼苗生长的影响.土壤学报,1990,27(3):241-249.
    王金鑫,危常州,王肖娟,李美宁,朱齐超,王娟.新疆石灰性土壤锌有效性及其影响因素.水土保持学报,2012,26(6):297-300+304.
    王金鑫,危常州,李美宁,朱齐超,王娟,王肖娟.新疆石灰性土壤锌状况及锌肥效研究.水土保持学报,2013,27(1):121-125.
    王瑞霞,王乐丰.水稻的锌素营养及其吸收利用规律的研究.延边大学农学学报,1998,20(1):25-28.
    王希华,黄建军,闫恩荣.天童国家森林公园若干树种叶水平上养分利用效率的研究.生态学杂志,2004,23(4):13-16.
    王新,周启星.外源镉铅铜锌在土壤中形态分布特性及改性剂的影响.农业环境科学学报,2003,22(5):541-545.
    危常州,张福锁,朱和明,侯振安,郭冠山,鲍柏洋.新疆棉花氮营养诊断及追肥推荐研究.中国农业科学,2002,35(12):1500-1505.
    魏孝荣,郝明德,田梅霞.长期定位施锌土壤-作物系统锌分布特征研究.中国农业生态学报,2005,13(2):96-98.
    魏义长,白由路,杨俐苹,林昌华,姚政,罗国安,徐四新,宋韦,朱春梅.基于ASI法的滨海滩涂地水稻土壤有效氮、磷、钾丰缺指标[J].中国农业科学,2008,41(1):138-143.
    夏汉平,高子勤.磷酸盐在白浆土中的吸附与解吸特性[J].土壤通报,1993,30(2):146-157.
    谢忠雷,杨佰玲,包国章,董德明.茶园土壤锌的形态分布及其影响因素.农业环境科学学报,2006,25:32-36.
    辛承松,董合忠,唐薇,张冬梅,罗振,李维江.滨海盐渍土抗虫棉养分吸收和干物质积累特点.作物学报,2008,34(11):2033-2040.
    邢雪荣,韩兴国,陈灵芝.植物养分利用效率研究综述.应用生态学报,2000,11(5):785-790.
    徐拔和.土壤化学选论[M].北京:科学出版社,1986.126-134.
    徐飞鹏,李云开,任树梅.新疆棉花膜下滴灌技术的应用与发展的思考.农业工程学报,2003,22(1):25-27.
    徐茂,王绪奎,蒋建兴,沈其荣.江苏省苏南地区耕地利用变化特征及其对策.土壤,2006,38(6):825-829.
    徐明岗,季国亮.恒电荷土壤及可变电荷土壤与离子间相互作用的研究. III. Cu2+和Zn2+的吸附特征.土壤学报,2005,42(2):225-231.
    徐晓燕,杨肖娥,杨玉爱.锌从土壤向食物链的迁移.广东微量元素科学,1996,3(7):21-29.
    许洁,曲东,周莉娜.硫营养对锌和干旱胁迫下玉米叶片中叶绿素含量的影响.干旱地区农业研究,2008,26(2):33-37.
    闫志刚,张元珍,张玉红,王衍安,张福锁,束怀瑞.不同供锌水平对苹果幼树干物质和锌积累及分配的影响.植物营养与肥料学报,2010,16(6):1402-1409.
    杨利华,郭丽敏.施锌对玉米氮磷钾肥料利用率、产量及籽粒品质的影响.中国生态农业学报,2003,11(4):11-12.
    杨荣清,黄标,孙维侠,邹忠,丁峰,苏建平.江苏省如皋市长寿人口分布区土壤及其微量元素特征.土壤学报,2005,42(5):753-760.
    杨亚提,张一平,张卫华.铜在土壤一溶液界面吸附一解吸特性的研究.西北农业大学学报,1998,7(4):82-85.
    殷宪强,王国栋,孙慧敏,韩新宁.干旱条件下锌、锰肥对玉米叶绿素含量的影响.中国农学通报,2004,20(6):196-198+226.
    余存祖,彭琳,刘耀宏,戴鸣钧.黄河中游地区土壤背景值与八个城市土壤元素富集的研究.环境科学,1986,7(2):69-72.
    于群英,李孝良.土壤对硅的吸附与解吸特性研究.安徽农业技术师范学院学报,1999,13(3):1-6.
    于素华,杨守祥,刘春生,刘方春.水分淋洗下菜园土壤各形态锌的迁移转化特征.水土保持学报,2006,20(4):31-34+39.
    张福锁.小麦锌营养状况对锌吸收的影响.植物生理学报,1993,19(2):143-148.
    张福锁,崔振岭,王激清,李春俭,陈新平.中国土壤和植物养分管理现状与改进策略.植物学通报,2007,24(6):687-694.
    章明奎,符娟林,黄昌勇.杭州市居民区土壤重金属的化学特性及其与酸缓冲性的关系.土壤学报,2005,42(1):44-51.
    章明奎.砂质土壤不同粒径颗粒中有机碳、养分和重金属状况.土壤学报,2006,43(4):584-591.
    张乃凤,王淑惠,刘新保,褚天铎,吴秀芳,李世仁.棉花施锌技术及其肥效研究.土壤肥料,1984,(5):4-7.
    张文凯.叶面喷施锌肥对小麦产量和效益的影响.河北农业科学,2008,12(3):89-90.
    张炎,马海刚,徐万里,王海燕,齐桂红,杨洛成.施钾对加工番茄产量与品质的影响.中国土壤与肥料,2008,(3):40-42+51.
    张勇,王德森,张艳等.北方冬麦区小麦品种子粒主要矿物质元素含量分布及其相关性分析.中国农业科学,2007,40(9):1871-1876.
    张永娥,王瑞良,靳绍菊.土壤微量元素含量及其影响因素的研究.土壤肥料,2005,(5):35-37.
    赵莉,罗建新,黄海龙,肖巧琳.保护地土壤次生盐渍化的成因及防治措施.作物研究,2007,21(5):547-554.
    支金虎,赵书珍,段黄金,柴勃臻,夏鑫.锌素调节下棉花叶绿素和产量的协同响应.干旱地区农业研究,2010,28(03):137-140.
    支金虎,冯宏祖,王兰,齐龙杰.锌肥喷施对棉株体内锌素分配动态变化的影响.新疆农业科学,2011,48(12):2315-2320.
    朱波,青长乐,牟树森.紫色土外源锌、镉形态的生物有效性.应用生态学报,2002,13(5):555-558.
    邹娟,鲁剑巍,陈防,李银水.基于ASI法的长江流域冬油菜区土壤有效磷、钾、硼丰缺指标研究.中国农业科学,2009,42(6):2028-2033.
    Adriano D C. Trace Elements in Terrestrial Environments, Springer Verlag, New York/Berlin/Heidelberg,2001.
    Andreini C, Banci L, Bertini I, Rosato A. Zinc through the three domains of life. Journal of Proteomeresearch,2006,5:3173-3178.
    Arisa M, Perez-novo C, Osorio F, Lopez E, Soto B. Adsorption and desorption of copper and zinc in thesurface layer of acid soils. Journal of Colloid and Interface Science,2005,288(1):21-29.
    Bache B W, Ireland C. Desorption of phosphate from soil using anion-exchange resins. Soil Science,1980,31(2):297-306.
    Borges M R. Distribution and Availability of Heavy Metals in Soil after Application of Sewage Sludge.Master Thesis. Borges: Sao Paulo State University,2000
    Broadley M R, White P J, Hammond J P, Zelko I, Lux, A. Zinc in plants. New Phytolgist,2007,173:677-702.
    Brummer G, Tiller K G, Herms U, Clayton P M. Adsorption-desorption and/or precipitation-dissolutionprecesses of zinc in soils. Grederma,1983,31(4):337-354.
    Cakmak I. Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant andSoil,2002,247:3-24.
    Cakmak I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil,2008,302:1-17.
    Catlett K M, Heil D M, Lindsay W L, Ebinger M H. Soil Chemical Properties Controlling Zinc2+Activityin18Colorado Soils. Soil Science Society of America Journal,2002,66(4):1182-1189.
    Chen L J, Fan X M. Grain quality response to phosphorus and zinc fertilizer in rice genotype. Chinese RiceResNews,1997,5(3):9-10.
    Curtin D, Smillie G W. Soil solution composition as affected by liming and incubation. Soil ScienceSociety of America Journal,1983,47(4):701-707.
    Consolini F. Effects of pH on the Availability and Distribution of Zinc in Soil Fractions. PhD Thesis.Borges: Sao Paulo State University,2003.
    Dobermann A, Fairhurst T. Rice: Nutrient Management and Nutrient Disorders. Manila: PPI/PPIC andIRRI,2000:84-89.
    Erdal I, Yilmaz A, Taban S, Eker S, Torun B, Cakmak I. Phytic acid and phosphorus concentrations in seedsof wheat cultivars grown with and without zinc fertilization. Journal of Plant Nutrition,2002,25(1):113-127.
    Graham R D, Rengel Z. Genotypic variation in Zn uptake and utilization by plants//Robson A D. Zinc insoils and plants. Dordrecht: Kluwer Academic Publishers,1993:107-114.
    Graham R D, Welch R M. Breeding for staple-food crops with high micronutrient density: Working paperson agricultural strategies for micronutrients No.3. Washingt on DC: International Food Policy Institute,1996.
    Gupta R K, Elshout S V D, Abbol I P. Effect of pH on zinc adsorption-precipitation reactions in an alkalisoil. Soil Science,1987,143(3):198-204.
    Hajiboland R, Yang X E, Romheld V. Effects of bicarbonate and high pH on growth of Zn-efficiency andZn-inefficient genotypes of rice, wheat and rye. Plant and Soil,2003,250:349-357.
    Hajra G C, Mandal B, Mandal L N. Distribution of zinc fractions and their transformation in submergedrice soil. Plant and soil,1987,104:175-181.
    Han F X, Hu A T, Qi H Y. Transformation and distribution of forms of zinc in acid, neutral and calcareoussoils of China. Geoderma,1995,66:121-135.
    Hararah M A, Al-Nasir F, El-Hasan T, Al-Muhtaseb A H. Zinc adsorption-desorption isotherms: possibleeffects on the calcareous vertisol soils from Jordan. Environmental Earth Science,2012,65:2079-2085.
    Harrell D L. Chemistry, testing and management of phosphorus and zinc in calcareous Louisianasoils.Baton Rouge, LA: Agricultural and Mechanical College, Louisian a State University,1997:139-140.
    He Y, Liao H, Yan X L. Localized supply of phosphorus induces root morphological and architecturalchanges of rice in split and stratified soil cultures. Plant and Soil,2003,248(1&2):247-256.
    Hegney M A, McParlin I R, Jeffery R C. Using soil testing and petiole analysis to determine phosphorusfertilizer requirements of potatoes (Solanum tuberosum L. cv. Delaware) in the Manjimup-Pembertonregion of Western Australia. Australian Journal of Experimental Agriculture,2000,40:107-117.
    Hodgson J F, Lindsay W L, Trierweiler J F. Micronutrient cation complexing in soil solution: II.ComPlexing of zinc and copper indisplaced solution from calcareous soils. Soil Science Society ofAmerica Journal,1966,30(6):723-726.
    Houng K H, Lee D Y. Comparison of linear and nonlinear Langmuir and Freundlich curve-fit in the studyof Cu, Cd, and Pb adsoption on Taiwan soils. Soil Science,1998,163(2):115-121.
    Hussain S, Maqsood M A, Rahmatullah M. Increasing grain zinc and yield of wheat for the developingworld: A Review. Emirates Journal of Food and Agriculture,2010,22(5):326-339.
    Impellitteri C A, Saxe J K, Cochran M, Janssen G M C M, Allen H E. Predicting the bioavailability ofcopper and zinc in soils: Modeling the partitioning of potential bioavailable copper and zinc from solidto soil solution. Environmental Toxicology and Chemistry,2003,22(6):1380-1386.
    Jiang W, Struik P C, Keulen H V, Zhao M, Jin L N, Stomph T J. Does increased zinc uptake enhance grainzinc mass concentration in rice?. Annals of Applied Biology,2008,153(1):135-147.
    Karimian N, Moafpouryan G R. Zinc Adsorption Characteristics of Selected Calcareous Soils of Iran andTheir Relatinship with Soil Properties. Communications in Soil Science and Plant Analysis,1999,30(11&12):1721-1731.
    Khan H R, McDonald G K, Rrngel Z. Chickpea genotypes differ in their sensitunity to Zn efficiency. Plantand Soil,1998,198(1):11-18.
    Kuo S. Mikkelsen D S. Zinc adsorption by two alkaline soils. Soil Science,1979,128(5):274-278.
    Lair G J, Gerzaber M H, Haberhauer G, Jakusch M, Kirchmann H. Response of the sorption behavior of Cu,Cd, and Zn to different soil management. Journal of Plant Nutrition and Soil Science,2006,169(1):60-68.
    Liang B C, Gregorich E G, Schnitzer M, Schulten H R. Characterization of water extracts of two manuresand their adsorption on soils. Soil Science Society of America Journal,1996,60(6):1758-1763.
    Lindsay W L, Norvell W A. Development of a DTPA soil test for zinc, iron, manganese and copper. SoilScience Society of America journal,1978,42(3),421-428.
    Lombnaes P, Chang A C, Singh B R. Organic ligand, competing cation and pH effects on dissolution ofzinc in soils. Pedosphere,2008,18(1):92-101.
    Longnecker N E, Robson A D. Distribution and transport of Zinc in plants. In: Zinc in Soils and Plants(Edied by Robson A D) Kluwer Academic Publishers, Dordrecht, Boston, London:1993,79-91.
    Loosemore N, Straczek A, Hinsinger P, Jaillard B. Zinc mobilization from a contaminated soil by threegenotypes of tobacco as affected by soil and rhizosphere pH. Plant and Soil,2004,260:19-32.
    Malcouvie E, Sumner R N. Sophie soils distribution properties management and environmentalconsequences. NewYork: Oxfod University Press,1998.
    Marcar N, Ismail S, Hossain A. Trees shrubs and grasses for saltlant. Canberra: Australian centre forinternational agricutural research,1997.
    Ma L Q, Rao G N. Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils.Journal of Environmental Quality,1997,26(1):259-264.
    Ma Y B, Uren N C. The fate and transformation of zinc added to soils. Australian Journal of Soil Research,1997,53(4):727-738.
    Marschner H. Mineral Nutrition of Higher Plants. Plant, Cell&Environment,1988,11(2):147-148.
    Meers E, Unamuno V R, Du Laing G, Vangronsveld J, Vanbrockhoven K, Samson R, Diels L, Gecbelen W,Ruttens A, Vandegehuchte M, Tack F M G. Zn in the soil solution of unpolluted and polluted soils asaffected by soil characteristics. Geoderma,2006,136:107-119.
    Nodvin S C, Driscoll C T, Likens G E. Simple Partitioning of Anions and Dissolved Organic Carbon in AForest Soil. Soil Science,1986,142(1):27-35.
    Ozturk L, Yazici M A, Yucel C, Torun A, Cekic C, Bagci A, Ozkan H, Braun H, Sayers Z, Cakmak I.Concentration and localization of zinc during seed development and germination in wheat.Physiologia Plantarum,2006,128:144-152.
    Pardo M T, Guadalix M E. Zinc sorption-desorption by two andepts: effect of pH and support medium.European Journal of Soil Science,1996,47(2):257-263.
    Porter L K, Thorne D W. Interrelation of carbon dioxide and bicarbonate ions in causing plant chlorosis.Soil Science,1955,79(5):373-382.
    Potarzycki J, Grzebisz W. Effect of zinc foliar application on grain yield of maize and its yieldingcomponents. Plant Soil Environmental,2009,55(12):519-527.
    Prasad R. Effects of soil properties on different chemical pools of zinc in limy soil. Journal of the IndianSociety of Soil Science,1998,36(2):246-251.
    Randhawa H S, Singh S P. Zinc fractions in soils and their availability to maize. Journal of the IndianSociety of Soil Sciences,1995,43(4):594-596.
    Ranjbar G A, Bahmaniar M A. Effects of soil and foliar application of Zn fertilizer on yield and growthcharacteristics of bread wheat (Triticum aestivum L.) cultivars. Asian Journal of Plant Sciences,2007,6(6):1000-1005.
    Rashid A, Ryan J. Micronutrient Constraints to Crop Production in Soils with Mediterranean-typeCharacteristics: A Review. Journal of Plant Nutrition,2004,27(6):959-975.
    Rathore G S, Gupta G P, Khamparia R S, Sinha S B. Response of wheat to zinc application in alluvid soilsof morena district, Madhya pradesh. Journal of the Indian Society of Soil Science,1978,26(1):58-61.
    Rayment G E, Higginson F R. Australian laboratory handbook of soil and water chemical methods. InkataPress, Melbourne.1992.
    Santa-Maria G E, Cogliatti D H. The regulation of zinc uptake in wheat plants. Plant Science,1998,137(1):1-12.
    Sawan Z M, Hafez S A, Basyony A E, Alkassas A R. Cottonseed: protein, oil yields, and oil properties asinfluenced by potassium fertilization and foliar application of zinc and phosphorus. Grasasy aceites,2007,58(1):40-48.
    Selim H M, Zhang H. Arsenic adsorption in soils: Second-order and multireacton models.2007,172(6):444-458.
    Shen J, Li R, Zhang F, Fan J, Tang C, Rengel Z. Crop yields, soil fertility and phosphorus fractions inresponse to long-term fertilization under the rice monoculture system on a calcareous soil. Field CropResearch,2004,86(2&3):225-238.
    Shukla U C, Raj H. Zinc response in corn as influenced by genetic variability. Agronomy Journal,1976,68(1):20-22.
    Shuman L M. Zinc, manganese, and copper in soil fractions. Soil Science,1979,127(1):10-17.
    Sinha S, Matsumoto T, Tanaka Y, Ishida J, Kojima T, Kumar S. Solar desalination of saline soil forafforestation in arid areas: numerical and experimental investigation Japan. Energy Conversion andManagement,2002,43(1):15-31.
    Stephan C H, Courchesne F, Hendershot W H, McGrath S P, Chaudri A M, Sappin-Didier V, Sauve S.Speciation of zinc in contaminated soils. Environmental Pollution,2008,155:208-216.
    Takkar P N, Mann M S. Evaluation of analytical methods for estimating available zinc and response ofmaize to applied zinc in major soil series of ludhiana, puniab (India). Agrochimica,1975,19(5):420-430.
    Tan W F, Liu F, Li Y H, Hu H Q, Huang Q Y. Elemental composition and geochemical characteristics ofiron-manganese nodules in main soils of China. Pedosphere,2006,16(1):72-81.
    Tessier A, Campbell P G C, Bisson M. Sequential Extraction procedure for the Speciation of ParticulateTrace Metals[J]. Analytical Chemistry,1979,51(7):844-851.
    Trehan S P, Sekhon G S. Effect of Clay, Organic matter and CaCO3content on zinc adsorption by Soils.Plant and soil,1977,46(2):329-336.
    Tyagi N K. Optimal water management strategies for salinity control. Journal of Irrigation and DrainageEngineering,1986,112(2):81-97.
    Udo E J, Bohn H L, Tucker T C. Zinc adsorption by calcareous soils. Soil Science Society of AmericaJournal,1970,34(3):405-407.
    Wallace A, Berry W L. Dose-Response Curves for zinc, Cadmium and Nickel in Combination of One, Two,or Three?. Soil Science,1989,147(6):401-410.
    Westerman R L. Soil testing and plant analysis.3rd edn. American Society of Agronomy and Soil ScienceSociety of America, Madison.1990.
    Wong M T F, Corner R J, Cook S E. A decision support system for mapping the site-specific potassiumrequirement of wheat in the field. Australian Journal of Experimental Agriculture,2001,41:655-661.
    Xu W H, Liu H, Ma Q F, Xiong Z T. Root exudates, rhizosphere Zn fractions, and Zn accumulation ofryegrass at different soil Zn levels. Pedosphere,2007,17(3):389-396.
    Yilmaz A, Ekiz H, Torun B, Gultekin I, Karanlik S, Bagci S. A, Cakmak I. Effect of different zincapplication methods on grain yield and zinc concentration in wheat and zinc cultivars grown onzinc-deficient calcareous. Journal of Plant Nutrition,1997,20(4&5):461-471.
    Yoshida S, Forno D A, Bhadrachalam A. Zinc deficiency of the rice plant on calcareous and neutral soils inthe Philippines. Soil Science and Plant Nutrition,1971,17(2):83-87.
    Yuan S H. Effect of Zn Adsorption on Charge of Variable Charge Soils. Pedosphere.1993,3(3):239-246.
    Zhang M K, He Z L, Calvert D V, Stoffella P J. Extractability and mobility of copper and zinc accumulatedin sandy soils. Pedosphere,2006,16(1):43-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700