杭州湾滨海湿地植被群落演替及优势物种生理生态学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滨海滩涂湿地生态系统不仅可以抵御、减弱海洋台风、海啸等危害,还具有涵养水源、调蓄洪水、净化水质、调节气候、提供生物栖息地和独特旅游等作用和功能,是沿海地区社会、经济发展不可缺少的绿色生态屏障。杭州湾滨海湿地是我国滨海湿地的南北过渡带,具有重要的生态系统和生物多样性保护意义。因此,本文在遵循群落生态学、植物生理生态学原理的基础上,以杭州湾滨海湿地植被群落为研究对象,系统调查了该区植被分布情况,探索了湿地植被群落演替过程及群落结构特征,分析了环境因子对植被群落演替的影响以及优势草本植物对主要环境因子胁迫的响应,同时定位监测分析了演替各阶段优势物种的生理生态学特征及其与环境因子的关系。主要研究结果如下:
     1.杭州湾滨海湿地植被群落演替过程及其群落结构和多样性动态变化
     在杭州湾滨海湿地50个样方的植被调查中,共发现17种物种,隶属7科17属。根据双向指示种(TWINSPAN)聚类分析和降趋势对应分析(DCA)排序分析,得到本区域植被群落的演替序列为:海三棱藨草群落→芦苇群落→柽柳—芦苇群落→旱柳—白茅群落。
     随着杭州湾滨海湿地植被演替的进行,土壤含水量和土壤含盐量逐渐降低,群落物种种类逐渐增加,生活型逐渐变复杂,群落盖度和高度逐渐增加,群落物种丰富度逐渐增加,均匀度逐渐降低,而物种多样性则呈现先增加后降低的过程(在演替第Ⅲ阶段达到最大值);同时还发现群落单位面积的生物量也呈现先增加后降低的过程(演替第Ⅱ阶段生物量最大)。
     2.环境因子对植被群落分布的影响
     通过对群落植被因子与环境因子间的降趋势典型对应分析(DCCA)发现,土壤含盐量、含水量和高程是影响植被群落分布的主要环境因子,它们形成的DCCA第一排序轴可以影响植物群落与环境因子间关系的58.1%。进而分析盐基阳离子组成发现,Ca2+(91.48 mmol·kg-1)、Na+(79.44 mmol·kg-1)是主要组成部分;而通过DCCA分析发现四种盐基阳离子(K+、Ca2+、Na+、Mg2+)对植被群落分布均有明显的影响作用,第一排序轴解释了植物群落与盐基离子之间关系的59%,物种与环境因子的相关系数是0.864,以Ca2+的影响最大;第二排序轴进一步解释了植物群落与环境因子之间关系的25%,物种与环境因子的相关系数是0.615,即第一排序轴和第二排序轴共同解释了84%的植物群落与环境因子的关系。各盐基阳离子对群落植物多样性的影响基本相同,随着各盐基离子含量的逐渐增加,丰富度指数、综合多样性指数均呈现逐渐降低的过程;而均匀度指数则表现为逐渐增加的趋势。
     3.演替各阶段优势草本植物对盐分和海水水淹胁迫的响应
     杭州湾滨海湿地植被群落不同演替阶段3种优势草本植物对海水水淹胁迫和盐胁迫的响应存在一定的差异,海三棱藨草和芦苇具有非常强的抵抗海水水淹胁迫能力和盐胁迫(包括Ca2+、Na+胁迫)的能力。海三棱藨草抵抗Ca2+胁迫的能力相对较强,因此更好地适应高Ca2+含量的杭州湾滨海滩涂湿地,而芦苇则表现出较高的抵抗Na+胁迫的能力,因此可以认为植被演替前期向中期的转变与土壤盐基离子含量和两种优势植物抵抗不同离子胁迫的能力差异密切相关。与前两种草本植物相比,白茅抵抗海水水淹胁迫和盐胁迫的能力相对较弱,尤其在抗海水水淹胁迫方面存在显著差异,因此可以认为是演替中期向后期转化的主要影响因子。
     4.演替各阶段优势物种生理生态学特征
     通过研究杭州湾滨海湿地不同演替阶段优势物种的光合作用光响应曲线和CO2响应曲线发现,随着演替的进行,优势物种的光饱和点、光补偿点、最大净光合速率、CO2补偿点和暗呼吸速率逐渐下降,表观量子效率和羧化效率逐渐上升,优势植物对环境因子的变化适应性逐渐增强。
     根据各优势物种的光合作用、蒸腾作用日变化研究发现,无论是草本植物还是木本植物,较早出现的物种具有较高的净光合速率(日同化量)、蒸腾速率(日蒸腾量),随着演替的进行,各指标逐渐下降,同时还发现,与木本植物相比草本植物具有较高的净光合速率。而水分利用率则与光合作用和蒸腾作用不同,演替早期草本植物具有较低的水分利用率,随着演替的进行,逐渐增加;同时也发现草本植物大于木本植物。演替早期物种的叶片叶绿素含量相对较低,中后期物种含量明显大于前期物种,但叶绿素a/b在演替过程中则呈现逐渐上升的过程。经过对各优势物种光合作用和环境因子间通径分析发现,演替前期草本植物海三棱藨草和糙叶苔草主要受光合有效辐射的影响,且具有较大的间接通径系数;而演替后期植物则主要受叶面温度和饱和水蒸汽压亏缺的影响。
     经过对杭州湾滨海湿地3种草本植物叶片N、P化学计量学特征在生长季节的动态变化研究发现,杭州湾滨海植物N、P化学计量特征在生长末期比较稳定。随着演替的进行,草本植物叶片N、P含量逐渐下降,N:P逐渐增加,而木本植物N含量和N:P逐渐增加,P含量逐渐降低。
Coastal wetlands, occupying zones of transition between terrestrial and marine ecosystems, are the interface of the costal landscape. Coastal wetlands are suggested to offer many important ecosystem services, such as high productivity and diversity, providing habitats for flora and fauna, and helping to moderate water quality, water conservation, reduce and resist typhoon and tsunami, etc. Hangzhou Bay coastal wetlands is the intersection of north and south costal wetlands in China, and is suggested to be high value for scientific research, maintaining ecological balance and acting as a safeguard to prevent from erosion, attenuate waves and encourage sediment deposition.
     Following community ecology and ecophysiology principles, succession process were found out using clustering and ordination through vegetation distribution investigation in Hangzhou Bay wetlands, and community structure and biodiversity were analyzed. Environmental factors were employed to find out the main influencing factors for succession using DCCA, and the physiological responses of dominant herbs at different stages were monitored to salinity and seawater stress. Finally, ecophysiological characteristics, and the relationship with environmental factors were determined in whole growth season. The main results were showed as follows:
     1. Vegetation succession process, community structure and biodiversity in Hangzhou Bay wetlands
     17 taxa, belonged to 17 genus and 7 families, were found in 50 plots in Hangzhou Bay wetlands. TWINSPAN and DCA were introduced to find out the succession process as follows: Comm. Scirpus mariqueter→Comm. Phragmites australis→Comm. Tamarix chinensis—Phragmites australis→Comm. Salix matsudana—Imperata cylindrical. As the succession going, soil moisture and salinity decreased significantly, species number increased and life form changed complication. Species richness increased significantly, while the evenness decreased obviously, the diversity increased firstly, then decreased at the later period of succession, and community biomass was found same trends with diversity index.
     2. Influence of environmental factors on vegetation community distribution
     DCCA was introduced to analyze relationship between vegetation community and environmental factors. The first DCCA axe, composed by the main influence factors soil salinity, soil moisture and altitude, explained 58.1% of relationship between vegetation community and environmental factors.
     Four base cations (K+, Ca2+, Na+, Mg2+) were monitored, Ca2+(with average 91.48 mmol·kg-1), Na+ (with average 79.44 mmol·kg-1) were found to be main base cotions in soil. DCCA was also introduced to analyze relationship between vegetation community and base cations. The first DCCA axe, primarily influenced by Ca2+, explained 59.0% of relationship between vegetation community and base cations, and the second DCCA axe was 25.0%. With the increasing of each base cation, richness and diversity indices increased and evenness index decreased gradually.
     3. Response of dominant herbs to salinity and seawater stress
     S. mariqueter and P. australis, the dominant herbs in early and mid succession stages, had higher resistance to salinity and seawater stress than later species I. cylindrical. Meanwhile, S. mariqueter had higher tolerance to Ca2+ stress, and could resident on beach wetlands with high Ca2+ content, but P. australis had higher tolerance to Na+ stress, and could resident on beach wetlands with high Na+ content. This probably was induced to the transferring from early stage to mid stage. I. cylindrical had lower tolerance to salinity and seawater stress than species in early and mid stage, especially in seawater stress, there were significantly difference between I. cylindrical and S. mariqueter, P. australis. This can be suggested to be the main influencing factor for transferring from mid stage to later stage.
     4. Ecophysiological characteristics of dominant species in different stages
     The results from light response curve indicated that the values of net photosynthesis rate showed sequences, Scirpus mariqueter>Carex scabrifolia>Phragmites australis> Tamarix chinensis>Imperata cylindrical>Salix matsudana, and the values of light compensation point (LCP), light saturation point (LSP), the maximum photosynthesis rate (Pmax) and the dark respiration rate (Rd) showed the similar sequences to Pn, but the sequences of apparent quantum efficiency (AQY) were contrary absolutely to Pn. The results from A/Ci curve showed that the carboxylation efficiency (CCE) at early succession was lower than later succession, but the CO2 compensation point (CCP) were higher. It was suggested there was a good correlation between photosynthetic characteristics of dominants and community succession.
     The daily dynamics of photosynthesis and transpiration of each dominants showed that species at early succession, whether herbs or woods, had higher net photosynthesis (daily assimilation) and transpiration (daily amount of transpiration), with the succession going, every index decreased, but lower water use efficiency (WUE) were found for herbs at early stage, higher values were displayed at later stage, and higher photosynthesis and WUE of herbs were found than woods. Leaf chlorophyll contents with species at early stage were lower than species at mid and later stages, but chlorophyll a/b were adverse. Path way analysis between photosynthesis and environmental factors were found that photosynthesis of species at early stages were mainly influenced by photosynthetic active radiation (PAR), and by leaf temperature and vapor press deficit (VPD) for species at later stages.
     N, P stoichiometry was relatively stable at later period of growth season through study on dynamics of species in whole growth season in Hangzhou Bay wetlands. With succession development, N, P content decreased and N:P increased for herbs, and N, N:P increased and P decreased for woods.
引文
安慧,上官周平.黄土高原植被不同演替阶段优势种的光合生理特性.应用生态学报, 2007, 18(6): 1175-1180
    陈睿,洪伟,郭文才,等.中亚热带丝栗栲群落的物种周转速率研究.江西农业大学学报, 2003, 25(5): 666-670
    陈芳清,郭成圆,王传华,等.水淹对秋华柳幼苗生理生态特征的影响.应用生态学报, 2008, 19(6): 1229-1233
    陈鹭真,林鹏,王文卿.红树植物淹水胁迫响应研究进展.生态学报, 2006, 26(2): 586-593
    陈中义,李博,陈家宽.互花米草与海三棱藨草的生长特征和相对竞争能力.生物多样性, 2005, 13(2): 130-136
    丁圣彦,宋永昌.浙江天童常绿阔叶林演替系列优势种光合生理生态的比较.生态学报, 1999, 19(3): 318-323
    丁印龙,廖启⊥,谢潮添,等.低温胁迫下夏威夷椰子幼苗叶肉细胞Ca2+水平及下拨超微结构变化的研究厦门大学学报(自然科学版), 2002, 41(增刊): 679-682
    杜泉滢,李智,刘书润,等.干旱、半干旱区湖泊周围盐生植物群落的多样性格局及特点.生物多样性, 2007, 15(3): 271-281
    冯云,马克明,张育新,等.东灵山辽东栎林木本植物多样性的研究.植物生态学报, 2008, 32(3): 568-573
    高三平,李俊祥,徐明策,等.天童常绿阔叶林不同演替阶段常见种叶片N、P化学计量特征.生态学报, 2007, 27: 947-952
    葛振鸣,王天厚,施文彧,等.崇明东滩围垦堤内植被快速次生演替特征.应用生态学报, 2005, 16(9): 1677-1681
    韩张雄. NaCl胁迫对3种荒漠植物幼苗叶绿素荧光参数的影响.西北植物学报, 2008, 28(9): 1843-1849
    红雨,王林和.臭柏群落在不同演替阶段叶片含水量、叶绿素含量变化的研究.内蒙古师范大学学报(自然科学汉文版), 2008, 37(1): 94-97
    黄玫,季劲钧,曹明奎,等.中国区域植被地上和地下生物量模拟.生态学报, 2006, 26(12): 4156-4163
    贾庆宇,周广胜,周莉,等. 2008湿地芦苇植株氮素分布动态特征分析.植物生态学报, 32(4): 858-864
    贾庆宇,周莉,谢艳兵.盘锦湿地芦苇群落生物量动态特征研究.气象与环境学报, 2006, 22(4): 25-29
    江行玉,窦君霞,王正秋. NaCl对玉米和棉花光合作用与渗透调节能力影响的比较.植物生理学通讯, 2001, 37(4): 303-305
    姜汉侨,段昌军,杨树华,等.植物生态学.北京:高等教育出版社, 2004
    蒋延惠,占新华,徐阳春,等.钙对植物抗逆能力的影响及其生态学意义.应用生态学报, 2005, 16(5): 971-976
    李峰,谢永宏,覃盈盈.盐胁迫条件下湿地植物的适应策略.生态学杂志. 2009, 28(2): 314-321
    李薇,唐海萍.准噶尔盆地荒漠区短命植物光合蒸腾特性及影响因素研究.西北植物学报, 2006(12): 2517-2522
    李侠,于明坚,慎佳泓,等.杭州湾滩涂Na元素含量对植物多样性和优势度的影响.生态学报, 2007, 27(11): 4603-4611
    李鑫,张丽娟,刘威生,杨建民,等.李营养累积、分布及叶片养分动态研究.土壤, 2007, 39(6): 982-986
    李得孝,侯万伟,员海燕.玉米叶片叶绿素快速浸提方法研究.西北农林科技大学学报(自然科学版), 2006, 34(11): 65-67
    李海英,彭红春,王启基.高寒矮嵩草草甸不同退化演替阶段植物群落地上生物量分析.草业学报, 2004, 13(5): 26-32
    李会珍,张志军,许玲,等.离体条件下盐胁迫对马铃薯试管苗叶绿素含量,脯安酸累积和抗氧化酶活性的影响.浙江大学学报(农业与生命科学版), 2006, 32(3): 300-306
    李萍萍,陈歆,付为国,等. 2006.虉草光合作用日变化及其与环境因子的关系.生态学杂志, 25(10): 1157-1160
    李青云,葛会波,胡淑明,等.钠盐和钙盐胁迫对草莓光合作用的影响.西北植物学报, 2006, 26(8): 1713-1717
    李庆康,马克平.植物群落演替过程中植物生理生态学特性及其主要环境因子的变化.植物生态学报, 2002,26: 9-19
    李庆康.辽东栎林群落演替的生理生态学特征,中国科学院植物研究所博士毕业论文, 2002
    李玉昌,李阳生,李绍清.淹涝胁迫对水稻生长发育与耐淹性机理研究的进展.中国水稻科学, 1998, 12(增刊): 62-65
    李政海,王海梅,刘书润,等.黄河三角洲生物多样性分析.生态环境, 2006, 15(3): 577-582
    利容千,王建波.植物逆境细胞及生理学.武汉:武汉大学出版社, 2002
    梁洁,严重玲,李裕红,等. Ca(NO3)2对NaCl胁迫下木麻黄扦插苗生理特征的调控.生态学报, 2004, 24(5): 1073-1077
    廖岩,陈桂珠.盐度对红树植物影响研究.湿地科学, 2007, 5(3): 266-273
    刘燕,蒋光霞.硒对铝胁迫下油菜酶活性及叶绿素含量的影响.安徽农业科学, 2008, 36(18): 7554-7555
    刘长娥,杨永兴,杨杨.九段沙芦苇湿地生态系统N、P、K的循环特征.生态学杂志, 2008, 27(11): 1876-7882
    刘广全,赵士洞,王浩,等.锐齿栎林非同化器官营养元素含量的分布.生态学报, 2001, 21(6): 883-889
    刘小京,李伟强,杨艳敏,等.河北省滨海盐碱地土壤与盐生植物养分特征的研究.中国生态农业学报, 2003, 11(2): 76-77
    吕宪国.湿地生态系统观测方法,北京:中国环境科学出版社, 2004
    罗立新,孙铁衍.镉胁迫下小麦叶片种超氧阴离子自由基的积累.环境科学学报, 1998, 18(5): 495-499
    雒维国,王世和,黄娟,等.植物光合及蒸腾特性对湿地脱氮效果的影响.中国环境科学, 2006, 26(1): 30-33
    孟陈,徐明策,李俊祥,等.栲树冠层光合生理特性的空间异质性.应用生态学报, 2007, 18(9): 1932-1936
    齐欣,曹坤芳,冯玉龙.热带雨林蒲桃属3个树种的幼苗光合作用对生长光强的适应.植物生态学报, 2004, 28(1): 31-38
    任书杰,于贵瑞,陶波,等.中国东部南北样带654种植物叶片氮和磷的化学计量.环境科学, 2007, 28(12): 1-9
    慎佳泓,胡仁勇,李铭红,等.杭州湾和乐清湾滩涂围垦对植物多样性影响.浙江大学学报(理学版), 2006, 33(3): 324-328
    宋国元,袁峻峰,左本荣,等.九段沙植被分布及其环境因子研究.上海师范大学学报(自然科学版), 2001, 30(1): 69-73
    宋永昌.植被生态学,上海:华东师范大学出版社, 2001
    孙书存,陈灵芝.东灵山地区辽东栎叶养分的季节动态与回收效率.植物生态学报, 2001, 25(1): 76-82
    唐承佳,陆健健.长江口九段沙植物群落研究生态学报, 2003, 23(2): 399-403
    王淼,代力民,姬兰柱.土壤水分状况对长白山阔叶红松林主要树种叶片生理生态特性的影响.生态学杂志, 2002, 21(1): 1-5
    王博轶,冯玉龙.生长环境光强对两种热带雨林树种幼苗光合作用的影响.生态学报, 2005, 25(1): 23-30
    王宪礼,李秀珍.湿地研究进展.生态学杂志, 1997, 16(1): 58-62
    王玉辉,周广胜.松嫩草地羊草叶片光合作用生理生态特征分析.应用生态学报, 2001, 12(1): 75-79
    吴明.杭州湾滨海湿地现状与保护对策林业资源管理, 2005, 26(6): 44-47
    吴永波,薛建辉.盐胁迫对3种白蜡幼苗生长与光合作用的影响.南京林业大学学报(自然科学版), 2002, 26(3): 19-22
    武维华.植物生理学,北京:科学出版社, 2003
    郗金标,宋玉民,刑尚军,等.黄河三角洲生态系统特征与演替规律.东北林业大学学报, 2002, 30(6): 111-114
    夏尚光,张金池,梁淑英.南方岩榆光合作用日变化及其影响因子研究.亚热带植物科学, 2007, 36(3): 8-11
    肖强,郑海雷,叶文景,等.水淹对互花米草生长及生理的影响.生态学杂志, 2005, 24(9): 1025-1028
    刑尚军,郗金标,张建锋,等.黄河三角洲植被基本特征及其主要类型.东北林业大学学报, 2003, 31(6): 85-86
    徐玲玲,张宪洲,石培礼,等.青藏高原高寒草甸生态系统表观量子产额和表观最大光合速率的确定.中国科学D辑, 2004, 34:125-130
    闫芊,陆健健,何文珊.崇明东滩湿地高等植被演替特征.应用生态学报, 2007, 18(5): 1097-1101
    阎恩荣,王希华,周武.天童常绿阔叶林演替系列植物群落的N:P化学计量特征.植物生态学报, 2008, 32(1): 13-22
    杨少辉,季静,王罡,等.盐胁迫对植物影响的研究进展.分子植物育种. 2006, 4(3): 139-142
    尹建道,龚洪柱,生原喜久雄,等.山东盐渍土林业开发利用前期研究—土壤盐基组成及其对植物危害分析.东北林业大学学报, 1998, 26(1): 29-33
    余叔文,汤章城.植物生理与分子生物学(第二版),北京:科学出版社, 1998
    曾德慧,陈广生.生态化学计量学:复杂生命系统奥秘的探索.植物生态学报, 2005, 29(6): 1007-1019
    翟志席,郭玉海,马永泽,等译.植物生理生态学北京:中国农业大学出版社, 1994
    张娟,姜闯道,平吉成.盐胁迫对植物光合作用影响的研究进展.农业科学研究, 2008, 29(3): 74-79
    
    张国平,周伟军.植物生理生态学,浙江:浙江大学出版社, 2003
    张继义,赵哈林,张铜会,等.科尔沁沙地植被恢复演替系列上群落演替与物种多样性的恢复动态.植物生态学报, 2004, 28(1): 86-92
    张金屯,柴宝峰,邱杨,等.晋西吕梁山严村流域撂荒地植物群落演替中的物种多样性变化.生物多样性, 2000, 8: 378-384
    张津林,张志强,查同刚,等.沙地杨树人工林生理生态特性.生态学报, 2006, 26(5): 1523-1532
    张文标,金则新,柯世省,等. 2006.木荷光合特性日变化及其与环境因子相关性分析.广西植物, 26(5): 492-498
    张雪林.浙江省海岛土壤发生特征及其分类.浙江师范大学学报(自然科学版), 2001, 24(4): 385-388
    赵昕. NaCl胁迫对盐芥和拟南芥光合作用的影响.植物学通报, 2007, 24(2): 154-160
    郑淑霞,上官周平.黄土高原地区植物叶片养分组成的空间分布格局.自然科学进展, 2006, 16(8): 965-973
    郑文菊,张承烈.盐生和中生环境中宁枸杞叶纤维和超微结构的研究.草业科学, 1998, 7(3): 72-76
    周俊山.盐胁迫对二色补血草光合作用的影响.山东师范大学学报(自然科学版), 2007, 22(1): 125-127
    周青,黄晓华,施国新,等.钙对紫外辐射B胁迫下小麦若干生物学特性的影响.环境科学, 2001, 22(6): 79-82
    Adams P, El-Gizawy AM. Effect of calcium stress on the calcium status of tomatoes grown in NFT. Acta Horticulturae, 1988, 222: 15-22
    Aerts R, Chapin FSⅢ. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 2000, 30: 1-68
    Ailstock MS, Michael NC, Paul JB. Common reed Phragmites australis: control and effect upon biodiversity in freshwater nontidal wetlands. Restoration Ecology, 2001, 9: 49-59
    Anderson T, Elser JJ, Hessen DO. Stoichiometry and population dynamics. Ecology Letters, 2004, 7: 884-900
    Bai LP, Sui FG, Sun ZH, et al. Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of Maize. Pedosphere, 2006, 16(3): 326-332
    Baldwin DS, Rees GN, Mitchell AM, et al. The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland. Wetlands, 2006, 26: 455-464
    Barraclough PB, Kyte J. Effect of water stress on chlorophyll meter readings in winter wheat. Plant Nutrition, 2001, 92: 722-723
    Bassow SL, Bazzaz FA. How environmental conditions affect canopy leaf-level photosynthesis in four deciduous tree species. Ecology, 1998, 79: 2660-2675
    Bazzaz FA. Plants in changing environments: linking physiological, population, and community ecology. NewYork: Cambridge University Press, 1996.
    Bazzaz FA. The physiology ecology of plant succession. Annual Review of Ecology and Systematics, 1979, 10: 351-371
    Boardman NK. Comparative photosynthesis of sun and shade plants. Annual Review of Plant Physiology, 1977, 28: 355-377
    Braatne JH, Bliss LC. Comparative physiological ecology of lupines colonizing early successional habitats on Mount St. Helens. Ecology, 1999, 80: 891-907.
    Brock MA, Nielsen DL, Crossle K. Changes in biotic communities developing from freshwater wetland under experimental salinity and water regimes. Freshwater biology, 2005, 50: 1376-1390
    Bruland GL, Richardson CJ. Hydrologic, edaphic and vegetative responses to microtopographic reestablishment in a restored wetland. Restoration Ecology, 2005, 13: 515-523
    Castellanos AE, Martinez MJ, Halvorson WL, et al. Successional trends in Sonoran Desert abandoned agricultural fields in northern Mexico. Journal of Arid Environments, 2005, 60: 437-455
    Christopher C, Judy R, John NS, et al. Twenty-five years of ecosystem development of constructed Spartina alterniflora (Loisel) Marshes. Ecological Applications, 1999, 9: 1405-1419
    Cingolani AM, Cabido M, Gurvich DE, et al. Filtering processes in the assembly of plant communities: are species presence and abundance driven by the same traits? Journal of Vegetation Science, 2007, 18: 911-920
    Collatz GJ, Ball JT, Grivet C, et al. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agricultural and Forest Meteorology, 1991, 54: 107-136.
    Connell JH, Slatyer RO. Mechanisms of succession in natural communities and their role in community stability and organization. The American Naturalist, 1977, 111: 1119-1144
    Cook WM, Yao J, Foster BL, et al. Secondary succession in an experimentally fragmented landscape: Community patterns across space and time. Ecology, 2005, 86: 1267-1279
    Cornwell WK, Ackerly DD. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecology Monographs, 2009, 79: 109-126
    Costanza R, Arge R, de Groot R, et al. The value of the word’s ecosystem services and nature capital. Nature, 1997, 387: 253-260
    Craft C, Clough J, Ehman J, et al. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment, 2009, 7: 73-78
    Craft CB, Reader JM, Sacco JN, et al. Twenty five years of ecosystem development on constructed Spartina alterniflora (Loisel) marshes. Ecological applications, 1999, 9: 1405-1419
    Crain CM, Albertson LK, Bertness MD. Secondary succession dynamics in estuarine marshes across landscape-scale salinity gradients. Ecology, 2008, 89: 2889-2899
    Crain CM, Silliman BR, Bertness SL, et al. Physical and biotic drivers of plant distribution across estuarine salinity gradients. Ecology, 2004, 85: 2539-2549
    Dai Q, Yan B, Huang S, et al. Response of oxidative stress defense systems in rice (Oryza sativa) leaves with supplemental UV-B radiation. Physiologia Plantarum, 1997, 101: 301-308
    Degn HJ. Succession from farmland to heathland: A case for conservation of nature and historic farming methods. Biological Conservation, 2001, 97: 319-330
    Drake BG, Gonzalez-Meler MA, Long SP. More efficient plants: A consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 609-639
    Drenovsky RE, Richards JH. Critiacal N:P values: predicting nutrient deficiencies in desert shrublands. Plant and Soil, 2004, 259: 59-69
    Dunn GM, Nealest F. Are the effects of salinity on growth and leaf gas exchange related? Photosynthetica, 1993, 29: 33-42
    Ellison AM, Farnsworth EJ. Simulated sea level change alters anatomy, physiology, growth, and reproduction of red mangrove (Rhizophoru mangle L.). Oecologia, 1997, 112: 435-446
    Elser JJ, Dobberfuhl D, Mackay NA, et al. Organism size, life history, and N:P stoichiometry: towards a unified view of cellular and ecosystem processes. Bioscience, 1996, 46: 674-684
    Elser JJ, Stemer RW, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems. Ecology Letters, 2000, 3, 540-550
    Ewanchuk, PJ, Bertness MD. The role of waterlogging in maintaining forb panes in northern New England salt marshes. Ecology, 2004, 85: 1568-1574
    Farquher GD, Von Caemmerer S, Beery JA. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 plants. Planta, 1980, 149: 78-90.
    Fisher SF. Recovery processes in lotic ecosystems: limits of successional theory. Environmetal management, 1990, 14:725-736
    Garde LM, Nicol JM, Conran JG. Changes in vegetation patterns on the margins of a constructed wetland after 10 years. Ecological Management and Restoration, 2004, 5: 111-117
    Gleason HA. The individualistic nature of plant community development. Vegetatio, 1926, 43: 141-146
    Gorokhova E, Kyle M. Analysis of nucleic acids in Daphnia: Development of methods and ontogenetic variations in RNA-DNA content. Journal of Plankton Research, 2002, 24, 511-522
    Gregg JW, Jones CG, Dawson TE. Physiological and developmental effects of O3 on cottonwood growth in urban and rural sites. Ecological Applications, 2006, 16: 2368-2381
    Grosso SD, Parton W, Stohlgren T, et al. Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology, 2008, 89: 2117-2126
    Gueswell S, Koerselman W. Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology, Evolution and Systematics, 2002, 5: 37-61
    Guesewell S. N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 2004, 164: 243-266
    Gulzar S, Ajmal KM, Ungar IA. Salt tolerance of a coastal salt marsh grass. Communications in Soil Science and Plant Analysis, 2003, 34: 2595-2605
    Han WX, Fang JY, Guo DL, et al. Leaf nitrogen and phosphorus stochiometry across 753 terrestrial plant species in China. New Phytologist, 2005, 168: 377-385
    Hassan NS, Awad SM. Reverse effect of vitamin E on oxidative stress, derivatives and conductivity changes of hemoglobin induced by exposure to candium. Journal of Applied Science Research, 2007, 3:437-443
    He JS, Fang JY, Wang ZH, et al. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 2006, 149: 115-122
    He JS, Wang L, Flynn DFB, et al. Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 2008, 155: 301-310
    Herrick JD, Thomas RB. Effects of CO2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweetgum trees (Liquidambar styraciflua) in a forest ecosystem. Tree Physiology, 1999, 19: 779-786
    Hester MW. Batzer and Sharitz—Ecology of freshwater and estuarine wetlands ecology. Ecology, 2008, 89: 589-590
    Holliger DY, Goltz SM, Davidson EA, et al. Seasonal patterns and environmental control of carbon and water vapor exchange in an ecotoinal boreal forest. Global Change Biology, 1999, 5: 891-902.
    Holmagren M, Poorter L. Does a ruderal strategy dominate the endemic flora of the West African forests. Journal of Biogeography, 2007, 34:1100-1111
    Jacquemyn H, Butaye J, Hermy M. Forest plant species richness in small, fragmented mixed deciduous forest patches: the role of area, time and dispersal limitation. Journal of Biogeography, 2001, 28: 801-812
    Kellogg CH, Bridgham SD, Leicht SA. Effects of water level, shade and time on germination and growth of freshwater marsh plants along a simulated successional gradient. Journal of Ecology, 2003, 91: 274-282
    Kitao M, Lei TT, Koike T, et al. Susceptibility to photoinhibition of three deciduous broadleaf tree species with different successional traits raised under various light regimes. Plant Cell Environment, 2000, 23: 81-89
    Koerselman W, Meuleman AFM. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 1996, 33: 1441-1450
    Koike T. Leaf structure and photosynthetic performance as related to the forest succession of deciduous broad-leaved trees. Plant Species Biology, 1988, 3: 77-87.
    Koyro HW. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environmental and Experimental Botany, 2006, 56: 136-146
    Lambers H, Chapin FSIII, Pons TL. Plant physiological ecology, New York: Springer-Verlag, 1998
    Leck MA, Brock MA. Ecological and evolutionary trends in wetlands: Evidence from seeds and seed banks in new south Wales, Australia and New Jersey, USA. Plant Species Biology, 2000, 15: 97-112
    Lee CS, You YH, Robinson GR. Secondary succession and natural habitat restoration in abandoned rice fields of central Korea. Restoration Ecology, 2002, 10: 306-314
    Lerman A, Mackenzie FT, Ver LMB. Nitrogen and phosphorous controls of the carbon cycle. Journal of Conference Abstracts, 2000, 5: 638
    Li NY, Chen SL, Zhou CY, et al. Effect of NaCl on photosynthesis, salt accumulation and ion compartmentation in two mangrove species, Kandelia candel and Bruguiera gymnorhiza. Aqutic Botany, 2008, 88: 303-310
    Lichter J. Primary succession and forest development on coastal lake Michigan sand dunes. Ecology Monographs, 1998, 68: 487-510
    Lin YM, Sternberg LSL. Nitrogen and phosphorus dynamics and nutrient resorption of Rhizophora mangle leaves in south Florida, USA. Bulletin of Marine Science, 2007, 80: 159-169
    Liu XL, Hua XJ, Guo J, et al. Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotechnology Letter, 2008, 30: 1275-1280
    Llambi LD, Fontaine M, Rada F, et al. Ecophysiology of dominant plant species during old-field succession in a high tropical Andean ecosystem. Arctic, Antarctic, and Alpine Research, 2003, 35: 447-453
    Loescher HW, Oberbauer SF, Gholz HL, et al. Environmental controls on net ecosystem-level carbon exchange and productivity in a Central American tropical wet forest. Global Change Biology, 2003, 9: 396-412
    Lusk CH. Leaf area accumulation helps juvenile evergreen trees tolerate shade in a temperate rainforest. Oecologia, 2002, 132: 188-196
    Ma HC, Fung L, Wang SH, et al. Photosynthetic response of Populus euphratica to salt stress. Forest Ecology and Management, 1997, 93: 55-61
    MacArthur RH, Connell JH. The biology of populations, New York: Wiley and Sons Press, 1966
    Maeda Y, Yoshiba M, Tadano T. Comparison of Ca effect on the salt tolerance of suspension cells and intact plants of Tobacco (Nicotiana tabacum L., cv. Bright Yellow-2). Soil Science and Plant Nutrition, 2006, 51: 485-490
    Maestre FT, Reynolds JF. Amount or pattern? Grassland responses to the heterogeneity and availability of two key resources. Ecology, 2007, 88: 501-511
    Makino A, Nakano H, Mae T, et al. Photosynthesis, plant growth and N allocation in transgenic rice plants with decreased Rubisco under CO2 enrichment. Journal of Experimental Botany, 2000, 51: 383-389
    Markow TA, Raphael B, Dobberfuhl D, et al. Elemental stoichiometry of Drosophila and their hosts. Functional Ecology, 1999, 13: 78-84
    Martinez V, Lauchili A. Effects of Ca2+ on the salt-stress response of barley roots as observed by in-vivo 31P-nuclear magnetic resonance and in-vitro analysis. Planta, 1993, 190: 519-524
    Maslenkova LT, Zanev Y, Popova LP. Adaptation to salinity as monitored by PSⅡoxygen evolving reactions in barley thylakoids. Plant Physiology, 1993, 142: 629-634
    McCook LJ. Understanding ecological community succession: causal models and theories, a review. Vegetation, 1994, 110:115-147
    McGroddy ME, Daufresne T, Hedin LO. Scaling of C:N:P stoichiometry in forests worldwide: Implications of terrestrial Redfield-type ratios. Ecology, 2004, 85: 2390-2401
    Michaels AF. The ratios of life. Science, 2003, 300: 906-907
    Mielke MS, Almeida FAA, Gomes FP, et al. Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa amercana seedlings to soil flooding. Environmental and Experimental Botany, 2003, 50: 221-231
    Milory SP, Bange MP. Nitrogen and light responses of cotton photosynthesis and implications for crop growth. Crop science, 2003, 43: 904-913
    Mitsuhata Y, Uchida T, Matsuo K, et al. Various-scale electromagnetic investigations of high-salinity zones in a coastal plain. Geophysics, 2006, 71: 167-173
    Molles MCJ. Ecology concepts and applications(影印版).北京:高等教育出版社, 2002
    Muhammed S, Akbar M, Neue HU. Effect of Na/Ca and Na/K ratios in saline culture solution on the growth and mineral nutrition of rice (Oryza sativa L.). Plant and Soil, 1987, 104: 57-62
    Myster RW, Pickett STA. A comparison of rate of succession over 18 yr in 10 contrasting old fields. Ecology, 1994, 75: 387-392
    Nelson CR, Halpern CB, Antos JA. Variation in responses of late-seral herbs to disturbance and environmental stress. Ecology, 2007, 88: 2880-2890
    Nielson SL, Enriquez S, Duarte CM, et al. Scaling maximum growth rates across photosynthetic organisms. Functional Ecology, 1996, 27: 55-112
    Nilsson MC, Wardle DA. Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Frontiers in Ecology and the Environment, 2005, 3: 421-428
    Noda H, Muraoka H, Washitani I. Morphological and physiological acclimation responses to contrasting light and water regimes in Primula sieboldii. Ecological Research, 2004, 19: 331-340
    Orgeas J, Ourcival JM, Bonin G. Seasonal and spatial patterns of foliar nutrients in cork oak (Quercus suberL.) growing on siliceous soils in Province (France). Plant Ecology, 2002, 164: 201-211
    Otto R, Krusi BO, Burga JM, et al. Old-field succession along a precipitation gradient in the semi-arid coastal region of Tenerife. Journal of Arid Environments, 2006, 65: 156-178
    Ouerghi Z, Cornic G, Roudani M, et al. Effect of NaCl on photosynthesis of two wheat species (Triticum durum and T. aestivum) differing in their sensitivity to salt stress. Journal of Plant Physiology, 2000, 156: 335-340
    Payette S, Delwaide A. Dynamics of sub-arctic wetland forests over the past 1500 years. Ecological Monographs, 2004, 74: 373-391
    Pickett ST, Collins ASL, Armesto JJ. Models, mechanisms and pathways of succession. Botanical Review, 1987, 53: 335-371
    Portnoy JW. Salt marsh diking and restoration: Biogeochemical implications of altered wetland hydrology. Environmental Management, 1999, 24: 111-120
    Prioul JL, Chartier P. Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation: A critical analysis of the methods used. Annals of Botany, 1977, 41: 789-800
    Reich PB, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 11001-11006
    Reiners W A. Complementary models for ecosystems. American Naturalist, 1986, 127: 59-73
    Riddoch I, Grace J, Fasehum FE, et al. Photosynthesis and successional status of seedling in a tropical semi-deciduous rain forest in Nigeria. Jouranl of Ecology, 1991, 79: 491–503
    Roman CT, Garvine RW, Portnoy JW. Hydrologic modeling as a predictive basis for ecological of salt marshes. Environmental Management, 1995, 19: 559-566
    Sabate S, Gracia CA, Sanchez A. Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. Forest Ecology and Management, 2002, 162: 23-37
    Sairam RK, Srivastava GC. Water stress tolerance of wheat (Triticum aestivum L.): Variations inhydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. Journal of Agronomy and Crop Science, 2001, 186: 63-70
    Santos CV. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae. 2004, 103: 93-99
    Silvestri S, Defina A, Marani M. Tidal regime, salinity and salt marsh plant zonation. Estuarine, Coastal and Shelf Science, 2005, 62: 119-130
    Sim LL, Chambers JM, Davis JA. Ecological regime shifts in salinised wetland systems:Ⅰ. Salinity thresholds for loss of submerged macrophytes. Hydrobiologia, 2006, 573: 89-107
    Sterner RW, Elser JJ. Ecological stoichiometry: The biology of elements from molecules to the biosphere Princeton, NJ, USA: Princeton University Press, 2002
    Sterner RW, George NB. Carbon, nitrogen, and phosphorus stoichiometry of cyprinid fishes. Ecology, 2000, 81: 127-140
    Takemura T, Hanagata N, Sugihara K, et al. Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquatic Botany, 2000, 68: 15-28
    Ter Braak CJF. CANOCO—A FORTRAN program for canonical community ordination by [partial], [detrended], [canonical] correspondence analysis, principal components analysis and redundancy analysis. Wageningen: Agricultural Mathematics Group, 1991
    Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Annual Botany, 2003, 91: 503-527
    Tezara W, Mitchell VJ, Driscoll SD, et al. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature, 1999, 401: 914-917
    Thornley JHM. Dynamic model of leaf photosynthesis with acclimation to light and nitrogen. Annuals of Botany, 1998, 81: 421-430
    Townsend AR, Cleveland CC, Asner GP, et al. Controls over foliar N:P ratios in tropical forests. Ecology, 2007, 88: 107-118
    Travis SE, Hester MW. A space-for-time substitution reveals the long-term decline in genotypic diversity of a widespread salt marsh plant, Spartina alterniflora, over a span of 1500 years. Journal of Ecology, 2005, 93: 417-430
    Turner MG, Baker WL, Peterson CJ, et al. Factors influencing succession: lessons from large, infrequent natural disturbances. Ecosystems, 1998, 1: 511-523.
    Tzialla CE, Veresoglou DS, Papakosta D. Changes in soil characteristics and plant species composition along a moisture gradient in a Mediterranean pasture. Journal of Environmental Management, 2006, 80: 90-98
    Urabe J, Kyle M, Makino W, et al. Reduced light increases herbivore production due to stoichiometric effects of light: Nutrient balance. Ecology, 2002, 83: 619-627
    Vanni MJ, Flecker AS, Hood JM, et al. Stoichiometry of nutrient recycling by vertebrates in a tropical stream: Linking biodiversity and ecosystem function. Ecology Letters, 2002, 5: 285-293
    Vitouseck PM. Nutrient cycling and nutrient use efficiency. American Naturalist, 1982, 119: 553-572
    Vogelien DL, Hickok LG, Warne TR. Differential effects of Na+, Mg2+, K+, Ca2+ and osmotic stress on the wild type and the NaCl-tolerant mutants stl1 AND stl2 of Ceratopteris richardii. Plant, Cell and Environment, 1995, 19: 17-23
    Walters MB, Kruger EL, Reich PB. Growth, biomass distribution and CO2 exchange of northern hardwood seedling in high and low light: relationships with successional status and shade tolerance. Oecologia, 1993, 94: 7-16
    Wang GG, Bauerle WL, Mudder BT. Effects of light acclimation on the photosynthesis, growth, and biomass allocation in American chestnut (Castanea dentata) seedlings. Forest Ecology and Management, 2006, 226: 173-180
    Wang HQ, Hsieh YP, Harwell MA, et al. Modeling soil salinity distribution along topographic gradients in tidal salt marshes in Atlantic and Gulf coastal regions. Ecological Modeling, 2007, 201: 429-439
    Wang YP, Leuning R. A two-leaf model for canopy conductance photosynthesis and partitioning of available energyⅠ. Model description and comparison with a multi-layered model. Agricultural and Forest Meteorology, 1998, 91: 89-111
    Wardle DA, Walker LR, Bardgett RD. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science, 2004, 305: 509-513
    Waring RH, Coops NC, Ohmann JL, et al. Interpreting woody plant richness from seasonal ratios of photosynthesis. Ecology, 2002, 83: 2964-2970
    Wassen MJ, Olde Ventterink HGM, de Swart EOAM. Nutrient concentrations in mire vegetation as a measure of nutrient limitation in mire ecosystems. Journal of Vegetation Science, 1995, 6: 5-16
    Watling JR, Press MC, Quick WP. Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal Sorghum bicolor. Plant Physiology, 2000, 123: 1143-1152
    Zhang JT. Succession analysis of plant communities in abandoned croplands in the eastern Loess Plateau of China. Journal of Arid Environments, 2005, 63: 458-474
    Zhang LX, Bai YF, Han XG. Applicantion of N:P stoichiometry to ecology studies. Acta Botanica Sinica, 2003, 45: 1009-1018
    Zhang RS, Shen YM, Lu LY, et al. Formation of Spartina alterniflora salt marshes on the coast of Jiangsu province. China Ecological Engineering, 2004, 23: 95-105
    Zhao DL, Reddy KR, Kakani VG, et al. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal Agronomy, 2005, 22: 391-403
    Zhou WJ, Leul M. Uniconazole-induced tolerance of rape plants to heat stress in relation to changes in hormonal levels, enzyme activities and lipid peroxidation. Plant Growth Regulation, 2004, 27: 99-104
    Zhu JK. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 2002, 53: 247-273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700